In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the sol...In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.展开更多
In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both...In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both stochastically C-stable and stochastically B-consistent,is convergent has been proved in a previous paper.In order to analyze the convergence of the split-step theta method(θ∈[1/2,1]),the stochastic C-stability and stochastic B-consistency under the condition of global monotonicity have been researched,and the rate of convergence 1/2 has been explored in this paper.It can be seen that the convergence does not require the drift function should satisfy the linear growth condition whenθ=1/2 Furthermore,the rate of the convergence of the split-step scheme for stochastic differential equations with additive noise has been researched and found to be 1.Finally,an example is given to illustrate the convergence with the theoretical results.展开更多
This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq...This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.展开更多
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite differen...A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.展开更多
A computational method for steady water waves is presented on the basis of potential theory in the physical plane with spatial variables as independent quantities. The finite Fourier series are applied to approximatin...A computational method for steady water waves is presented on the basis of potential theory in the physical plane with spatial variables as independent quantities. The finite Fourier series are applied to approximating the free surface and potential function. A set of nonlinear algebraic equations for the Fourier coefficients are derived from the free surface kinetic and dynamic boundary conditions. These algebraic equations are numerically solved through Newton's iterative method, and the iterative stability is further improved by a relaxation technology. The integral properties of steady water waves are numerically analyzed, showing that (1) the set-up and the set-down are both non-monotonic quantities with the wave steepness, and (2) the Fourier spectrum of the free surface is broader than that of the potential function. The latter further leads us to explore a modification for the present method by approximating the free surface and potential function through different Fourier series, with the truncation of the former higher than that of the latter. Numerical tests show that this modification is effective, and can notably reduce the errors of the free surface boundary conditions.展开更多
Condition monitoring and fault diagnosis of gearboxes play an important role in the maintenance of mechanical systems.The vibration signal of gearboxes is characterized by complex spectral structure and strong time va...Condition monitoring and fault diagnosis of gearboxes play an important role in the maintenance of mechanical systems.The vibration signal of gearboxes is characterized by complex spectral structure and strong time variability,which brings challenges to fault feature extraction.To address this issue,a new demodulation technique,based on the Fourier decomposition method and resonance demodulation,is proposed to extract fault-related information.First,the Fourier decomposition method decomposes the vibration signal into Fourier intrinsic band functions(FIBFs)adaptively in the frequency domain.Then,the original signal is segmented into short-time vectors to construct double-row matrices and the maximum singular value ratio method is employed to estimate the resonance frequency.Then,the resonance frequency is used as a criterion to guide the selection of the most relevant FIBF for demodulation analysis.Finally,for the optimal FIBF,envelope demodulation is conducted to identify the fault characteristic frequency.The main contributions are that the proposed method describes how to obtain the resonance frequency effectively and how to select the optimal FIBF after decomposition in order to extract the fault characteristic frequency.Both numerical and experimental studies are conducted to investigate the performance of the proposed method.It is demonstrated that the proposed method can effectively demodulate the fault information from the original signal.展开更多
The process of formation reconfiguration for close-range satellite formation should take into account the risk of collisions between satellites.To this end,this paper presents a method to rapidly generate low-thrust c...The process of formation reconfiguration for close-range satellite formation should take into account the risk of collisions between satellites.To this end,this paper presents a method to rapidly generate low-thrust collision-avoidance trajectories in the formation reconfiguration using Finite Fourier Series(FFS).The FFS method can rapidly generate the collision-avoidance threedimensional trajectory.The results obtained by the FFS method are used as an initial guess in the Gauss Pseudospectral Method(GPM)solver to verify the applicability of the results.Compared with the GPM method,the FFS method needs very little computing time to obtain the results with very little difference in performance index.To verify the effectiveness,the proposed method is tested and validated by a formation control testbed.Three satellite simulators in the testbed are used to simulate two-dimensional satellite formation reconfiguration.The simulation and experimental results show that the FFS method can rapidly generate trajectories and effectively reduce the risk of collision between satellites.This fast trajectory generation method has great significance for on-line,constantly satellite formation reconfiguration.展开更多
The differential quadrature method based on Fourier expansion basis is applied in this work to solve coupled viscous Burgers’ equation with appropriate initial and boundary conditions. In the first step for the given...The differential quadrature method based on Fourier expansion basis is applied in this work to solve coupled viscous Burgers’ equation with appropriate initial and boundary conditions. In the first step for the given problem we have discretized the interval and replaced the differential equation by the Differential quadrature method based on Fourier expansion basis to obtain a system of ordinary differential equation (ODE) then we implement the numerical scheme by computer programing and perform numerical solution. Finally the validation of the present scheme is demonstrated by numerical example and compared with some existing numerical methods in literature. The method is analyzed for stability and convergence. It is found that the proposed numerical scheme produces a good result as compared to other researcher’s result and even generates a value at the nodes or mesh points that the results have not seen yet.展开更多
A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already repor...A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already reported split-step balanced methods, the drift increment function of the methods can be taken from any chosen ane-step ordinary differential equations (ODEs) solver. The schemes is proved to be strong convergent with order one. For the mean-square stability analysis, the investigation is confined to two cases. Some numerical experiments are reported to testify the performance and the effectiveness of the methods.展开更多
This paper is dedicated to applying the Fourier amplitude sensitivity test(FAST)method to the problem of mixed extension and inflation of a circular cylindrical tube in the presence of residual stresses.The metafuncti...This paper is dedicated to applying the Fourier amplitude sensitivity test(FAST)method to the problem of mixed extension and inflation of a circular cylindrical tube in the presence of residual stresses.The metafunctions and the Ishigami function are considered in the sensitivity analysis(SA).The effects of the input variables on the output variables are investigated,and the most important parameters of the system under the applied pressure and axial force such as the axial stretch and the azimuthal stretch are determined.展开更多
In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is presented using Fourier spectral method that use to discretize the space variable and Leap-frog method scheme for time dependen...In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is presented using Fourier spectral method that use to discretize the space variable and Leap-frog method scheme for time dependence. Test problems including the single soliton wave motion, interaction of two solitary waves and interaction of three solitary waves will use to validate the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Finally, a Maxwellian initial condition pulse is then studied. The L<sub>2</sub> and L<sub>∞</sub> error norms are computed to study the accuracy and the simplicity of the presented method.展开更多
In this article, two split-step finite difference methods for Schrodinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for S...In this article, two split-step finite difference methods for Schrodinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for Schrodingerlike equation in time.(ii) The utilizations of high-order finite difference method for KdV-like equation in spatial discretization.(iii) Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently. Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.展开更多
Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the add...Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.展开更多
In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimati...In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.展开更多
In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-...In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-posed. We propose a regularization method for obtaining an approximate solution to the wave field on the unspecified boundary. We also give the convergence analysis and error estimate of the numerical algorithm. Finally, we present some numerical examples to show the effectiveness of this method.展开更多
Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are...Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.展开更多
Conventional frequency domain method used in random noise attenuation singular value decomposition (SVD) filtering processing causes bending event damage. To mitigate this problem, we present a mixed Cadzow filterin...Conventional frequency domain method used in random noise attenuation singular value decomposition (SVD) filtering processing causes bending event damage. To mitigate this problem, we present a mixed Cadzow filtering method based on fractional Fourier transform to suppress random noise in 3D seismic data. First, the seismic data is transformed to the time-frequency plane via the fractional Fourier transform. Second, based on the Eigenimage filtering method and Cadzow filtering method, the mixed high-dimensional Hankel matrix is built; then, SVD is performed. Finally, random noise is eliminated effectively by reducing the rank of the matrix. The theoretical model and real applications of the mixed filtering method in a region of Sichuan show that our method can not only suppress noise effectively but also preserve the frequency and phase of effective signals quite well and significantly improve the signal-to-noise ratio of 3D post-stack seismic data.展开更多
The Modified Recursive Fourier Meth(MRFM) is presented here and applied to DISA series integrated substation automation systems for AC measurement comparing with the other measure methods used in RTUs. The application...The Modified Recursive Fourier Meth(MRFM) is presented here and applied to DISA series integrated substation automation systems for AC measurement comparing with the other measure methods used in RTUs. The application shows its high accuracy, good real time response. And it can measure harmonic in real bine.展开更多
文摘In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.
基金Supported by the National Natural Science Foundation of China (Grant No. 12301521)the Natural Science Foundation of Shanxi Province (Grant No. 20210302124081)。
文摘In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both stochastically C-stable and stochastically B-consistent,is convergent has been proved in a previous paper.In order to analyze the convergence of the split-step theta method(θ∈[1/2,1]),the stochastic C-stability and stochastic B-consistency under the condition of global monotonicity have been researched,and the rate of convergence 1/2 has been explored in this paper.It can be seen that the convergence does not require the drift function should satisfy the linear growth condition whenθ=1/2 Furthermore,the rate of the convergence of the split-step scheme for stochastic differential equations with additive noise has been researched and found to be 1.Finally,an example is given to illustrate the convergence with the theoretical results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12071214)the Natural Science Foundation for Colleges and Universities of Jiangsu Province of China(Grant No.20KJB110011)+1 种基金supported by the National Science Foundation(Grant No.DMS-1620335)and the Simons Foundation(Grant No.637716)supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12272347).
文摘This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.
基金the National Natural Science Foundation of China
文摘A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.
基金The Jiangsu Province Natural Science Foundation for the Young Scholar under contract No.BK20130827the Fundamental Research Funds for the Central Universities of China under contract No.2010B02614+1 种基金the National Natural Science Foundation of China under contract Nos 41076008 and 51009059the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A computational method for steady water waves is presented on the basis of potential theory in the physical plane with spatial variables as independent quantities. The finite Fourier series are applied to approximating the free surface and potential function. A set of nonlinear algebraic equations for the Fourier coefficients are derived from the free surface kinetic and dynamic boundary conditions. These algebraic equations are numerically solved through Newton's iterative method, and the iterative stability is further improved by a relaxation technology. The integral properties of steady water waves are numerically analyzed, showing that (1) the set-up and the set-down are both non-monotonic quantities with the wave steepness, and (2) the Fourier spectrum of the free surface is broader than that of the potential function. The latter further leads us to explore a modification for the present method by approximating the free surface and potential function through different Fourier series, with the truncation of the former higher than that of the latter. Numerical tests show that this modification is effective, and can notably reduce the errors of the free surface boundary conditions.
基金supported by the National Key R&D Program of China(No.2019YFB2004604)the National Natural Science Foundation of China(No.52075477)the Key R&D Program of Zhejiang Province(No.2021C01139),China。
文摘Condition monitoring and fault diagnosis of gearboxes play an important role in the maintenance of mechanical systems.The vibration signal of gearboxes is characterized by complex spectral structure and strong time variability,which brings challenges to fault feature extraction.To address this issue,a new demodulation technique,based on the Fourier decomposition method and resonance demodulation,is proposed to extract fault-related information.First,the Fourier decomposition method decomposes the vibration signal into Fourier intrinsic band functions(FIBFs)adaptively in the frequency domain.Then,the original signal is segmented into short-time vectors to construct double-row matrices and the maximum singular value ratio method is employed to estimate the resonance frequency.Then,the resonance frequency is used as a criterion to guide the selection of the most relevant FIBF for demodulation analysis.Finally,for the optimal FIBF,envelope demodulation is conducted to identify the fault characteristic frequency.The main contributions are that the proposed method describes how to obtain the resonance frequency effectively and how to select the optimal FIBF after decomposition in order to extract the fault characteristic frequency.Both numerical and experimental studies are conducted to investigate the performance of the proposed method.It is demonstrated that the proposed method can effectively demodulate the fault information from the original signal.
基金supported in part by the National Natural Science Foundation of China(Nos.11702072 and 11672093)。
文摘The process of formation reconfiguration for close-range satellite formation should take into account the risk of collisions between satellites.To this end,this paper presents a method to rapidly generate low-thrust collision-avoidance trajectories in the formation reconfiguration using Finite Fourier Series(FFS).The FFS method can rapidly generate the collision-avoidance threedimensional trajectory.The results obtained by the FFS method are used as an initial guess in the Gauss Pseudospectral Method(GPM)solver to verify the applicability of the results.Compared with the GPM method,the FFS method needs very little computing time to obtain the results with very little difference in performance index.To verify the effectiveness,the proposed method is tested and validated by a formation control testbed.Three satellite simulators in the testbed are used to simulate two-dimensional satellite formation reconfiguration.The simulation and experimental results show that the FFS method can rapidly generate trajectories and effectively reduce the risk of collision between satellites.This fast trajectory generation method has great significance for on-line,constantly satellite formation reconfiguration.
文摘The differential quadrature method based on Fourier expansion basis is applied in this work to solve coupled viscous Burgers’ equation with appropriate initial and boundary conditions. In the first step for the given problem we have discretized the interval and replaced the differential equation by the Differential quadrature method based on Fourier expansion basis to obtain a system of ordinary differential equation (ODE) then we implement the numerical scheme by computer programing and perform numerical solution. Finally the validation of the present scheme is demonstrated by numerical example and compared with some existing numerical methods in literature. The method is analyzed for stability and convergence. It is found that the proposed numerical scheme produces a good result as compared to other researcher’s result and even generates a value at the nodes or mesh points that the results have not seen yet.
基金National Natural Science Foundation of China(No.11171352)
文摘A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already reported split-step balanced methods, the drift increment function of the methods can be taken from any chosen ane-step ordinary differential equations (ODEs) solver. The schemes is proved to be strong convergent with order one. For the mean-square stability analysis, the investigation is confined to two cases. Some numerical experiments are reported to testify the performance and the effectiveness of the methods.
文摘This paper is dedicated to applying the Fourier amplitude sensitivity test(FAST)method to the problem of mixed extension and inflation of a circular cylindrical tube in the presence of residual stresses.The metafunctions and the Ishigami function are considered in the sensitivity analysis(SA).The effects of the input variables on the output variables are investigated,and the most important parameters of the system under the applied pressure and axial force such as the axial stretch and the azimuthal stretch are determined.
文摘In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is presented using Fourier spectral method that use to discretize the space variable and Leap-frog method scheme for time dependence. Test problems including the single soliton wave motion, interaction of two solitary waves and interaction of three solitary waves will use to validate the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Finally, a Maxwellian initial condition pulse is then studied. The L<sub>2</sub> and L<sub>∞</sub> error norms are computed to study the accuracy and the simplicity of the presented method.
基金Supported by the National Natural Science Foundation of China under Grant No.11571181
文摘In this article, two split-step finite difference methods for Schrodinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for Schrodingerlike equation in time.(ii) The utilizations of high-order finite difference method for KdV-like equation in spatial discretization.(iii) Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently. Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.
基金supported by the National Natural Science Foundation of China (No. 10671154)the Na-tional Basic Research Program (No. 2005CB321703)the Science and Technology Foundation of Guizhou Province of China (No. [2008]2123)
文摘Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.
文摘In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.
文摘In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-posed. We propose a regularization method for obtaining an approximate solution to the wave field on the unspecified boundary. We also give the convergence analysis and error estimate of the numerical algorithm. Finally, we present some numerical examples to show the effectiveness of this method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60636030)
文摘Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.
基金sponsored by the major science and technology special topic of CNPC(No.2013E-38-08)
文摘Conventional frequency domain method used in random noise attenuation singular value decomposition (SVD) filtering processing causes bending event damage. To mitigate this problem, we present a mixed Cadzow filtering method based on fractional Fourier transform to suppress random noise in 3D seismic data. First, the seismic data is transformed to the time-frequency plane via the fractional Fourier transform. Second, based on the Eigenimage filtering method and Cadzow filtering method, the mixed high-dimensional Hankel matrix is built; then, SVD is performed. Finally, random noise is eliminated effectively by reducing the rank of the matrix. The theoretical model and real applications of the mixed filtering method in a region of Sichuan show that our method can not only suppress noise effectively but also preserve the frequency and phase of effective signals quite well and significantly improve the signal-to-noise ratio of 3D post-stack seismic data.
文摘The Modified Recursive Fourier Meth(MRFM) is presented here and applied to DISA series integrated substation automation systems for AC measurement comparing with the other measure methods used in RTUs. The application shows its high accuracy, good real time response. And it can measure harmonic in real bine.