The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd g...The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd generation of negative Poisson ratio(2G-NPR)bolt is a new independently developed material characterized by high strength and toughness.However,the influence of joint surface roughness on its anchorage shear performance remains unexplored.This study involves preparing regular saw-tooth jointed rock masses and conducting laboratory shear comparison tests on unbolted samples,2G-NPR bolts,and Q235 steel anchors.A three-dimensional finite element method,developed by the author,was employed for numerical simulations to analyze the influence of saw-tooth angles on the shear resistance of anchored bolts.The findings show that the anchorage of bolts enhances the shear strength and deformation of saw-tooth rock joints.The 2G-NPR bolts demonstrate superior performance in shear strength and deformation enhancement compared to Q235 steel anchors,including improved toughening and crack-arresting effects.Furthermore,the improvement of the shear strength and displacement of the bolt decreases with the increase of the joint saw-tooth angle.These findings provide a valuable test basis for the engineering application of 2G-NPR bolts in rock mass stabilization.展开更多
The shear characteristics of bolted rock joints are crucial for the stability of tunneling and mining,particularly in deep underground engineering,where rock bolt materials are exposed to high stress,water pressure,an...The shear characteristics of bolted rock joints are crucial for the stability of tunneling and mining,particularly in deep underground engineering,where rock bolt materials are exposed to high stress,water pressure,and engineering disturbance.However,due to the complex interaction between bolted rock joints and various geological contexts,many challenges and unsolved problems arise.Therefore,more investigation is needed to understand the shear performance of bolted joints in the field of deep underground engineering.This study presents a comprehensive review of research findings on the responses of bolted joints subjected to shearing under different conditions.As is revealed,the average shear strength of bolted rock joints increases linearly with the normal stress and increases with the compressive strength of rock until it reaches a stable value.The joint roughness coefficient(JRC)affects the contact area,friction force,shear strength,bending angle,and axial force of bolted rock joints.A mathematical function is proposed to model the relationship between JRC,normal load,and shear strength.The normal stress level also influences the deformation model,load-carrying capacity,and energy absorption ratio of bolts within bolted rock joints,and can be effectively characterized by a two-phase exponential equation.Additionally,the angle of the bolts affects the ratio of tensile and shear strength of the bolts,as well as the mechanical behavior of both bolted rock joints and surrounding rock,which favors smaller angles.This comprehensive review of experimental data on the shear behavior of bolted rock joints offers valuable theoretical insights for the development of advanced shear devices and further pertinent investigations.展开更多
A series of laboratory pull-out tests was conducted to study the effects of temperature on the performance and behaviours of fully grouted rock bolt specimens cured within a specific temperature range,as well as for d...A series of laboratory pull-out tests was conducted to study the effects of temperature on the performance and behaviours of fully grouted rock bolt specimens cured within a specific temperature range,as well as for different durations.Each specimen consisted of a 20M rebar bolt at 1300 mm embedment length grouted inside a Schedule 80 steel pipe using Portland cement grout at a 0.4 water-to-cement ratio.Two temperatures(20℃and 45℃)were explored to investigate the effects of geothermally active temperature conditions on fully grouted rock bolts.Distributed fiber optic sensors were employed to provide continuous strain profiles along the entire embedment length to observe micro-mechanisms and monitor internal specimen temperature change during testing.The specimens cured at 45℃generally resulted in higher grout UCS(in certain cases 25%e50%higher)compared to those at 20℃;the ultimate capacity was not significantly impacted as the specimens'embedment length allowed full development of the rock bolt's capacity.The resulting strain profile trends showed generally higher strains experienced by the shorter(i.e.3-d)curing duration specimens under both curing temperatures compared to long-term curing.The 45℃specimens generally experienced lower strains and faster strain profile attenuation compared to specimens cured at 20℃.Understanding these effects and further analysis of FGRB specimen behaviours over time provide insights for mobilized and critical embedment lengths,capacity development,and support system stabilization.This paper highlights the results of this study and aims to bridge selected gaps in existing literature with a view to aid practitioners.展开更多
A Double Shear Model(DSM) was used in a numerical simulation on bolted rock joint shearing performance.An entire bolt deformed as the letter'U'under a shear load between two joints.Near the bolt-joint intersec...A Double Shear Model(DSM) was used in a numerical simulation on bolted rock joint shearing performance.An entire bolt deformed as the letter'U'under a shear load between two joints.Near the bolt-joint intersection,the bolt partly deformed as the letter'Z'.There were two critical points along the bolt:one was at the bolt-joint intersection with zero bending moment and the other at the maximum bending moment(plastic hinge) with zero shear stress.The blocks on two sides slid along the bolt as it deformed. A separation area was found between the two joint contact surfaces of the middle rock block and sided block.This area of separation was related to bolt diameter and external forces.We assume that this area is related to the work of external forces.Further research is needed.展开更多
Expandable rock bolts are widely used in hard rock mines as an efficient ground control product.However, capacity and service life can be significantly reduced if the metallic body is subjected to corrosion.In some ha...Expandable rock bolts are widely used in hard rock mines as an efficient ground control product.However, capacity and service life can be significantly reduced if the metallic body is subjected to corrosion.In some hard rock mines in the U.S., highly corrosive ground conditions exist, and it has been reported that inflatable rock bolts have corroded within a few months after installation.To provide mining industry a cost-effective inflatable bolt and combat the corrosion issues, Jennmar Corporation, Inc.,and its subsidiary Keystone Mining Services, LLC(KMS), analyzed corroded bolt samples, identified root causes, evaluated properties of various coating materials, and developed a new inflatable rock bolt,Python M3^(TM), that is protected with an innovative PyFlexU2^(TM)coating.The new generation Python M3^(TM) features improved steel chemistry for reliable performance, modified profile for better inflation, and surface preparation and coating application.The PyFlexU2^(TM)is impervious to liquid and air, durable, and UV resistant.With a flexible, adhesive, and highly corrosion-resistant undercoating, and a very hard sacrificial surface coating, the PyFlexU2^(TM)coating system provides the Python M3^(TM)superior protection against chemical corrosion and physical scratch damage.The under-coating has exceptional flexibility and adhesion to prevent coating micro-cracks or fractures after bolt inflation and possesses excellent corrosion resistance to acids(pH < 3), alkalis(p H > 11), fuels, and salt solvents.The corrosion and scratch resistant PyFlexU2^(TM)coating offers very effective bolt protection for extra longevity in highly corrosive environments.The Python M3^(TM)coated with PyFlexU2^(TM)has been tested in the most challenging conditions,including laboratory corrosion tests in extreme acidic and basic solvents, rock slurry, and borehole scratch insertion tests.With demonstrated corrosion and scratch resistance, the product has been greatly welcomed by hard rock mines in the West and is currently installed in large scale.This paper identifies the root causes of the bolt corrosion, discusses the analysis process, and details laboratory and underground tests carried out on the Python M3^(TM)coated with PyFlexU2^(TM).The Python M3^(TM)and PyFlexU2^(TM) are subjects covered by pending U.S.Patent Applications assigned to FCI Holdings Delaware, LLC.展开更多
Fully grouted rock bolts have been used in mining industry for many years.Much research has been conducted to evaluate the load transfer behavior of fully grouted rock bolts with experimental programs.However,compared...Fully grouted rock bolts have been used in mining industry for many years.Much research has been conducted to evaluate the load transfer behavior of fully grouted rock bolts with experimental programs.However,compared with that,less work has been conducted with analytical modelling.Therefore,in this paper,the authors used an analytical model to study the load transfer behavior of fully grouted rock bolts.To confirm the credibility of this analytical model,an in-situ pull-out test was used to validate this model.There was a close match between the experimental result and the analytical result.Following it,a parametric study was conducted with this analytical model.The influence of coefficients,Young’s modulus of the rock bolt and the diameter of the rock bolt on the load transfer performance of rock bolts was studied.Furthermore,the load distribution along the fully grouted rock bolt was analytically studied.The results show that the axial load in the rock bolt decayed from the loaded end to the free end independent of the pull-out load.However,the trend of the load distribution curve was influenced by the pull-out load.This paper was beneficial for better understanding the load transfer mechanism of fully grouted rock bolts.展开更多
The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolt...The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolts are modeled by ANSYS software.Models show that profile rock bolt T_3 and T_ with load capacity 180 and 195 kN in the jointed rocks,are the optimum profiles.Finally,the performances of the selected profiles are examined in Tabas Coal Mine by FLAC software.There is good subscription between the results of numerical modeling and instrumentation reading such as tells tale,sonic extensometer and strain gauge rock bolt.According to the finding of this study,the proposed pattern of rock bolts,on 7 + 6 patterns per meter with 2 flexi bolt(4 m) for support gate road.展开更多
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i...In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.展开更多
Rock bolts are subjected to different loading conditions along their lengths such as axial,bending,and/or shear forces,which can cause failure at lower loads than those considered for design purposes.The common existi...Rock bolts are subjected to different loading conditions along their lengths such as axial,bending,and/or shear forces,which can cause failure at lower loads than those considered for design purposes.The common existing methodologies do not consider the actual loading of the rock bolts and assume it is only pure axial or pure shear.This study was conducted to investigate the un-grouted rock bolt performance under combined load conditions.Two loading regimes were evaluated:the effect of initial shear displacement on axial load capacity and displacement,and the effect of axial displacement on the shear load capacity.The first regime was also conducted for shear with a gap,when there is a spacing between the shear interfaces.The results of this study showed that the rock bolt can resist higher axial loads than shear under pure or combined load conditions.Under combined load conditions,the rock bolt capacity decreased significantly for both regimes.However,when applying the shear load with a gap,the rock bolt load capacity was not affected significantly.Also,the total bar deformation was improved for shear and axial.The findings of this study show the need to improve the rock bolt design considering the complex loading conditions in situ with/without a gap.展开更多
Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavat...Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavation by fastening to the more stable, undisturbed formations further from the excavation. The overall response of such a support element has been determined under varying loading conditions in the laboratory and in situ experiments in the past four decades; however, due to the limitations with conventional monitoring methods of capturing strain, there still exists a gap in knowledge associated with an understanding of the geomechanical responses of rock bolts at the microscale. In this paper, we try to address this current gap in scientific knowledge by utilizing a newly developed distributed optical strain sensing(DOS) technology that provides an exceptional spatial resolution of 0.65 mm to capture the strain along the rock bolt. This DOS technology utilizes Rayleigh optical frequency domain reflectometry(ROFDR) which provides unprecedented insight into various mechanisms associated with axially loaded rebar specimens of different embedment lengths, grouting materials, borehole annulus conditions, and borehole diameters. The embedment length of the specimens was found to be the factor that significantly affected the loading of the rebar. The critical embedment length for the fully grouted rock bolts(FGRBs) was systematically determined to be430 mm. The results herein highlight the effects of the variation of these individual parameters on the geomechanical responses FGRBs.展开更多
Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock mas...Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position.展开更多
In presence of difficult conditions in coal mining roadways, an adequate stabilization of the excavation boundary is required to ensure a safe progress of the construction. The stabilization of the roadways can be imp...In presence of difficult conditions in coal mining roadways, an adequate stabilization of the excavation boundary is required to ensure a safe progress of the construction. The stabilization of the roadways can be improved by fully grouted rock bolt, offering properties optimal to the purpose and versatility in use. Investigations of load transfer between the bolt and grout indicate that the bolt profile shape and spacing play an important role in improving the shear strength between the bolt and the surrounding strata. This study proposes a new analytical solution for calculation displacement and shear stress in a fully encapsulated rock bolt in jointed rocks. The main characteristics of the analytical solution consider the bolt profile and jump plane under pull test conditions. The performance of the proposed analytical solution, for three types of different bolt profile configurations, is validated by ANSYS software. The results show there is a good agreement between analytical and numerical methods. Studies indicate that the rate of displacement and shear stress from the bolt to the rock exponentially decayed. This exponential reduction in displacement and shear stress are dependent on the bolt characteristics such as: rib height, rib spacing, rib width and grout thickness, material and joint properties.展开更多
Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the hi...Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.展开更多
This study compares the strength characteristics of rocks anchored by NPR bolts and ordinary bolts with varied preloads,based on the mechanical properties of NPR bolts(with a negative Poisson’s ratio).The results sho...This study compares the strength characteristics of rocks anchored by NPR bolts and ordinary bolts with varied preloads,based on the mechanical properties of NPR bolts(with a negative Poisson’s ratio).The results show that the uniaxial compressive stress-strain curve of ordinary anchored rocks exhibits noticeable abrupt changes.After reaching peak strength,the bolt breaks,whereas the stress-strain curve of NPR-anchored rocks is smoother.The NPR bolt enters the stage of continuous resistance after reaching maximal strength and does not break.As the preload increases,the strength of the anchored rock grows linearly.A calculation equation for the strength of the anchored rock is proposed based on the preload.The theoretical equation fits the test results well,and the fitted parameters show that NPR bolts can better increase the strength of the rock.The concept of dynamic toughness UC of anchored rock is proposed to reflect the comprehensive mechanical properties of anchored rock,including strength and plasticity.As the preload increases,the UC of ordinary anchored rock first decreases and then increases,while the UC of the NPR anchored rock does not change significantly with the preload when the strain is small,and the UC increases with the increase of the preload when the strain is large.展开更多
For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structur...For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early.展开更多
To investigate the resist-decreasing effects of rock bolts on the strength of the rock mass around a roadway, a compara- tive study has been carded out using the numerical analysis code FLAC3D. An unsupported and a ro...To investigate the resist-decreasing effects of rock bolts on the strength of the rock mass around a roadway, a compara- tive study has been carded out using the numerical analysis code FLAC3D. An unsupported and a rock bolt supported model have been built for comparison. Two types of rock mass strength, the uniaxial compressive strength (UCS) and the wiaxial compressive strength (TCS) of rock mass have been obtained from each model, using a prepared Fish based on the Mohr-Coulomb criterion. The results indicate that when a roadway is excavated, both the UCS and TCS in a definite local rock mass around the roadway would inevitably decrease, no matter whether the roadway is supported or not. The major decreasing region did not settle in the middle of the roadway surface, but within a deeper horizon into the rock mass. The resist-decreasing effects of rock bolts both on the UCS and the TCS of rock mass around roadway are significant.展开更多
A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 4...A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 40°,60°, and 90°), two joint gaps (0 mm and 30 mm), and three kinds of host rock materials (weak concrete,strong concrete, and concrete-granite) were considered, and stressestrain measurements were conducted.Results show that the ultimate loads of both the D-Bolt and the rebar bolt remained constantwith any displacing angles. The ultimate displacement of the D-Bolt changed from 140 mm at the0 displacing angle (pure pull) to approximately 70 mm at a displacing angle greater than 40. Thedisplacement capacity of the D-Bolt is approximately 3.5 times that of the rebar bolt under pure pull and50% higher than that of the rebar bolt under pure shear. The compressive stress exists at 50 mm from thebolt head, and the maximum bending moment value rises with the increasing displacing angle. The rebarbolt mobilises greater applied load than the D-Bolt when subjected to the maximum bending. Theyielding length (at 0) of the D-Bolt is longer than that of the rebar bolt. The displacement capacity of thebolts increased with the joint gap. The bolt subjected to joint gap effect yields more quickly with greaterbending moment and smaller applied load. The displacement capacities of the D-Bolt and the rebar boltare greater in the weak host rock than that in the hard host rock. In pure shear condition, the ultimateload of the bolts slightly decreases in the hard rock. The yielding speed in the hard rock is higher thanthat in the weak rock. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on th...To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on the stress distribution around the tunnel. In this article, the effects of rock bolting on the stress distribution around the tunnel, including the pesition and orientation of bolts, the overburden depths, and the bolt lengths, are simulated using the ANSYS software with an elnstoplastic model. The effect of multiple bolts of 2 m and 1 m lengths on the stress distribution in the roof and on the lateral sides of a tunnel and at different overburden depths is considered. An important finding is that the tensile stress region that is very dangerous for rock in the bottom of the tunnel grows rapidly with increasing overburden depths when rock bolts are installed only in the roof or on the lateral sides of a tunnel. The determination of the length of the rock bolt used around a tunnel is dependent on the loads and the integrity of the rock mass around the tunnel. In addition, rock bolting around the tunnel can obviously reduce the coefficients and the size of the region of stress concentration, especially when installed in high-stress areas. This fact is very important and essential for the design of tunnels and ensures engineering safety in tunnel engineering.展开更多
The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical a...The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical analysis was carried out using FLAC3D and a special post-process methodology, using surfer, is proposed to process the numerical simulation results. The results indicate that pre-tensioned rock bolts have a significant effect on stress redistribution around a roadway. In the roof, pre-tensioned rock bolts greatly increase vertical stress; as a result, the strength of the rock mass increased significantly which results in a greater capacity of bearing a large horizontal stress. The horizontal stress decreases in the upper section of the roof, indicating that pre-tensioned rock bolts significantly reduce the coefficient and the size of the region concentration of horizontal stress. At the lat- eral side, pre-tensioned rock bolts greatly increase the horizontal stress; therefore, the rock mass strength significantly increases which results also in a greater capacity of bearing a large vertical stress. The greater the size of pre-tensioned force, the larger the region of stress redistribution around a roadway is affected and the higher the size of the stress on the roadway surface the more the rock mass strength increases.展开更多
The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to hig...The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to high geo-stress and strong disturbed effects. This paper is to investigate the strain energy evolution in the interaction between coal and rock masses with self-designed energy-absorbing props and rock bolts by numerical modeling with the finite difference method. The interaction between rock and rock bolt/prop is accomplished by the cables element and the interface between the inner and outer props. Roadway excavation and coal extraction conditions in deep mining are numerically employed to investigate deformation, plastic zone ranges, strain energy input, accumulation, dissipation,and release. The effect on strain energy input, accumulation, dissipation, and release with rock deformation, and the plastic zone is addressed. A ratio of strain energy accumulation, dissipation, and release with energy input a, β, γ is to assess the dynamic hazards. The effects on roadway excavation and coal extraction steps of a, β, γ are discussed. The results show that:(1) In deep high geo-stress roadways, the energyabsorbing support system plays a dual role in resisting deformation and reducing the scope of plastic zones in surrounding rock, as well as absorbing energy release in the surrounding rock, especially in the coal extraction state to mitigate disturbed effects.(2) The strain energy input, accumulation is dependent on roadway deformation, the strain energy dissipation is relied on plastic zone area and disturbed effects, and strain energy release density is the difference among the three. The function of energyabsorbing rock bolts and props play a key role to mitigate strain energy release density and amount, especially in coal extraction condition, with a peak density value from 4×10^(4) to 1×10^(4)J/m^(3), and amount value from 3.57×10^(8) to 1.90×10^(6)J.(3) When mining is advanced in small steps, the strain energy accumulation is dominated. While in a large step, the released energy is dominant, thus a more dynamic hazards proneness. The energy-absorbing rock bolt and prop can reduce three times strain energy release amount, thus reducing the dynamic hazards. The results suggest that energy-absorbing props and rock bolts can effectively reduce the strain energy in the coal and rock masses, and prevent rock bursts and other hazards.The numerical model developed in this study can also be used to optimize the design of energyabsorbing props and rock bolts for specific mining conditions.展开更多
基金Project(GZB202405561)supported by the Postdoctoral Fellowship Program of China Postdoctoral Science FoundationProject(42377154)supported by the National Natural Science Foundation of China。
文摘The shear performance of bolts plays a crucial role in controlling rock mass stability,and the roughness of the joint surface is one of the main factors affecting the mechanical properties of anchored joints.The 2nd generation of negative Poisson ratio(2G-NPR)bolt is a new independently developed material characterized by high strength and toughness.However,the influence of joint surface roughness on its anchorage shear performance remains unexplored.This study involves preparing regular saw-tooth jointed rock masses and conducting laboratory shear comparison tests on unbolted samples,2G-NPR bolts,and Q235 steel anchors.A three-dimensional finite element method,developed by the author,was employed for numerical simulations to analyze the influence of saw-tooth angles on the shear resistance of anchored bolts.The findings show that the anchorage of bolts enhances the shear strength and deformation of saw-tooth rock joints.The 2G-NPR bolts demonstrate superior performance in shear strength and deformation enhancement compared to Q235 steel anchors,including improved toughening and crack-arresting effects.Furthermore,the improvement of the shear strength and displacement of the bolt decreases with the increase of the joint saw-tooth angle.These findings provide a valuable test basis for the engineering application of 2G-NPR bolts in rock mass stabilization.
基金Open Fund of Badong National Observation and Research Station of Geohazards,Grant/Award Number:BNORSG202315Key R&D Program of Xinjiang Uygur Autonomous Region,Grant/Award Number:2021B03004-3+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:42207169,U22A20569Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20221126。
文摘The shear characteristics of bolted rock joints are crucial for the stability of tunneling and mining,particularly in deep underground engineering,where rock bolt materials are exposed to high stress,water pressure,and engineering disturbance.However,due to the complex interaction between bolted rock joints and various geological contexts,many challenges and unsolved problems arise.Therefore,more investigation is needed to understand the shear performance of bolted joints in the field of deep underground engineering.This study presents a comprehensive review of research findings on the responses of bolted joints subjected to shearing under different conditions.As is revealed,the average shear strength of bolted rock joints increases linearly with the normal stress and increases with the compressive strength of rock until it reaches a stable value.The joint roughness coefficient(JRC)affects the contact area,friction force,shear strength,bending angle,and axial force of bolted rock joints.A mathematical function is proposed to model the relationship between JRC,normal load,and shear strength.The normal stress level also influences the deformation model,load-carrying capacity,and energy absorption ratio of bolts within bolted rock joints,and can be effectively characterized by a two-phase exponential equation.Additionally,the angle of the bolts affects the ratio of tensile and shear strength of the bolts,as well as the mechanical behavior of both bolted rock joints and surrounding rock,which favors smaller angles.This comprehensive review of experimental data on the shear behavior of bolted rock joints offers valuable theoretical insights for the development of advanced shear devices and further pertinent investigations.
基金funded by the Canadian Department of National Defence(DND),the RMC Green Team Military GeoWorks Lab,and the National Sciences and Engineering Research Council(NSERC)of Canada.
文摘A series of laboratory pull-out tests was conducted to study the effects of temperature on the performance and behaviours of fully grouted rock bolt specimens cured within a specific temperature range,as well as for different durations.Each specimen consisted of a 20M rebar bolt at 1300 mm embedment length grouted inside a Schedule 80 steel pipe using Portland cement grout at a 0.4 water-to-cement ratio.Two temperatures(20℃and 45℃)were explored to investigate the effects of geothermally active temperature conditions on fully grouted rock bolts.Distributed fiber optic sensors were employed to provide continuous strain profiles along the entire embedment length to observe micro-mechanisms and monitor internal specimen temperature change during testing.The specimens cured at 45℃generally resulted in higher grout UCS(in certain cases 25%e50%higher)compared to those at 20℃;the ultimate capacity was not significantly impacted as the specimens'embedment length allowed full development of the rock bolt's capacity.The resulting strain profile trends showed generally higher strains experienced by the shorter(i.e.3-d)curing duration specimens under both curing temperatures compared to long-term curing.The 45℃specimens generally experienced lower strains and faster strain profile attenuation compared to specimens cured at 20℃.Understanding these effects and further analysis of FGRB specimen behaviours over time provide insights for mobilized and critical embedment lengths,capacity development,and support system stabilization.This paper highlights the results of this study and aims to bridge selected gaps in existing literature with a view to aid practitioners.
基金Financial support from the National Natural Science Foundation of China(No.50978251)the National Government Building High-Level University Graduate Programs of the China Scholarship Council
文摘A Double Shear Model(DSM) was used in a numerical simulation on bolted rock joint shearing performance.An entire bolt deformed as the letter'U'under a shear load between two joints.Near the bolt-joint intersection,the bolt partly deformed as the letter'Z'.There were two critical points along the bolt:one was at the bolt-joint intersection with zero bending moment and the other at the maximum bending moment(plastic hinge) with zero shear stress.The blocks on two sides slid along the bolt as it deformed. A separation area was found between the two joint contact surfaces of the middle rock block and sided block.This area of separation was related to bolt diameter and external forces.We assume that this area is related to the work of external forces.Further research is needed.
文摘Expandable rock bolts are widely used in hard rock mines as an efficient ground control product.However, capacity and service life can be significantly reduced if the metallic body is subjected to corrosion.In some hard rock mines in the U.S., highly corrosive ground conditions exist, and it has been reported that inflatable rock bolts have corroded within a few months after installation.To provide mining industry a cost-effective inflatable bolt and combat the corrosion issues, Jennmar Corporation, Inc.,and its subsidiary Keystone Mining Services, LLC(KMS), analyzed corroded bolt samples, identified root causes, evaluated properties of various coating materials, and developed a new inflatable rock bolt,Python M3^(TM), that is protected with an innovative PyFlexU2^(TM)coating.The new generation Python M3^(TM) features improved steel chemistry for reliable performance, modified profile for better inflation, and surface preparation and coating application.The PyFlexU2^(TM)is impervious to liquid and air, durable, and UV resistant.With a flexible, adhesive, and highly corrosion-resistant undercoating, and a very hard sacrificial surface coating, the PyFlexU2^(TM)coating system provides the Python M3^(TM)superior protection against chemical corrosion and physical scratch damage.The under-coating has exceptional flexibility and adhesion to prevent coating micro-cracks or fractures after bolt inflation and possesses excellent corrosion resistance to acids(pH < 3), alkalis(p H > 11), fuels, and salt solvents.The corrosion and scratch resistant PyFlexU2^(TM)coating offers very effective bolt protection for extra longevity in highly corrosive environments.The Python M3^(TM)coated with PyFlexU2^(TM)has been tested in the most challenging conditions,including laboratory corrosion tests in extreme acidic and basic solvents, rock slurry, and borehole scratch insertion tests.With demonstrated corrosion and scratch resistance, the product has been greatly welcomed by hard rock mines in the West and is currently installed in large scale.This paper identifies the root causes of the bolt corrosion, discusses the analysis process, and details laboratory and underground tests carried out on the Python M3^(TM)coated with PyFlexU2^(TM).The Python M3^(TM)and PyFlexU2^(TM) are subjects covered by pending U.S.Patent Applications assigned to FCI Holdings Delaware, LLC.
基金supported by the National Natural Science Foundation of China (Nos. 51574243 and 51904302)the Yue Qi Distinguished Scholar Project of China (No. 800015Z1138)+1 种基金China University of Mining and Technology, Beijingthe Fundamental Research Funds for the Central Universities, China (No.800015J6)。
文摘Fully grouted rock bolts have been used in mining industry for many years.Much research has been conducted to evaluate the load transfer behavior of fully grouted rock bolts with experimental programs.However,compared with that,less work has been conducted with analytical modelling.Therefore,in this paper,the authors used an analytical model to study the load transfer behavior of fully grouted rock bolts.To confirm the credibility of this analytical model,an in-situ pull-out test was used to validate this model.There was a close match between the experimental result and the analytical result.Following it,a parametric study was conducted with this analytical model.The influence of coefficients,Young’s modulus of the rock bolt and the diameter of the rock bolt on the load transfer performance of rock bolts was studied.Furthermore,the load distribution along the fully grouted rock bolt was analytically studied.The results show that the axial load in the rock bolt decayed from the loaded end to the free end independent of the pull-out load.However,the trend of the load distribution curve was influenced by the pull-out load.This paper was beneficial for better understanding the load transfer mechanism of fully grouted rock bolts.
文摘The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolts are modeled by ANSYS software.Models show that profile rock bolt T_3 and T_ with load capacity 180 and 195 kN in the jointed rocks,are the optimum profiles.Finally,the performances of the selected profiles are examined in Tabas Coal Mine by FLAC software.There is good subscription between the results of numerical modeling and instrumentation reading such as tells tale,sonic extensometer and strain gauge rock bolt.According to the finding of this study,the proposed pattern of rock bolts,on 7 + 6 patterns per meter with 2 flexi bolt(4 m) for support gate road.
基金Projects(51304125,51379114)supported by the National Natural Science Foundation of ChinaProject(BS2013NJ004)supported by Award Fund for Outstanding Young and Middle-Aged Scientist of Shangdong Province,ChinaProject(201301004)supported by the Innovation Fund for Postdoctor of Shandong Province,China
文摘In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.
基金The authors would like to thank Mining3,Minerals Research Institute of Western Australia,Curtin University and Peabody Energy for funding this research project.They also wish to thank Minova Global and its personnel who assisted in completing all the tests conducted at their facility in Nowra,NSW and for providing the rock bolts for testing.
文摘Rock bolts are subjected to different loading conditions along their lengths such as axial,bending,and/or shear forces,which can cause failure at lower loads than those considered for design purposes.The common existing methodologies do not consider the actual loading of the rock bolts and assume it is only pure axial or pure shear.This study was conducted to investigate the un-grouted rock bolt performance under combined load conditions.Two loading regimes were evaluated:the effect of initial shear displacement on axial load capacity and displacement,and the effect of axial displacement on the shear load capacity.The first regime was also conducted for shear with a gap,when there is a spacing between the shear interfaces.The results of this study showed that the rock bolt can resist higher axial loads than shear under pure or combined load conditions.Under combined load conditions,the rock bolt capacity decreased significantly for both regimes.However,when applying the shear load with a gap,the rock bolt load capacity was not affected significantly.Also,the total bar deformation was improved for shear and axial.The findings of this study show the need to improve the rock bolt design considering the complex loading conditions in situ with/without a gap.
基金Natural Sciences and Engineering Council of Canada(NSERC)the Canadian Department of National Defense+2 种基金MITACSYield Point Inc.the Royal Military College(RMC) Green Team
文摘Rock bolts are one of the primary support systems utilized in underground excavations within the civil and mining engineering industries. Rock bolts support the weakened rock mass adjacent to the opening of an excavation by fastening to the more stable, undisturbed formations further from the excavation. The overall response of such a support element has been determined under varying loading conditions in the laboratory and in situ experiments in the past four decades; however, due to the limitations with conventional monitoring methods of capturing strain, there still exists a gap in knowledge associated with an understanding of the geomechanical responses of rock bolts at the microscale. In this paper, we try to address this current gap in scientific knowledge by utilizing a newly developed distributed optical strain sensing(DOS) technology that provides an exceptional spatial resolution of 0.65 mm to capture the strain along the rock bolt. This DOS technology utilizes Rayleigh optical frequency domain reflectometry(ROFDR) which provides unprecedented insight into various mechanisms associated with axially loaded rebar specimens of different embedment lengths, grouting materials, borehole annulus conditions, and borehole diameters. The embedment length of the specimens was found to be the factor that significantly affected the loading of the rebar. The critical embedment length for the fully grouted rock bolts(FGRBs) was systematically determined to be430 mm. The results herein highlight the effects of the variation of these individual parameters on the geomechanical responses FGRBs.
基金Project(51979281)supported by the National Natural Science Foundation of ChinaProject(ZR2018MEE050)supported by the Natural Science Foundation of Shandong Province,ChinaProject(18CX02079A)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position.
文摘In presence of difficult conditions in coal mining roadways, an adequate stabilization of the excavation boundary is required to ensure a safe progress of the construction. The stabilization of the roadways can be improved by fully grouted rock bolt, offering properties optimal to the purpose and versatility in use. Investigations of load transfer between the bolt and grout indicate that the bolt profile shape and spacing play an important role in improving the shear strength between the bolt and the surrounding strata. This study proposes a new analytical solution for calculation displacement and shear stress in a fully encapsulated rock bolt in jointed rocks. The main characteristics of the analytical solution consider the bolt profile and jump plane under pull test conditions. The performance of the proposed analytical solution, for three types of different bolt profile configurations, is validated by ANSYS software. The results show there is a good agreement between analytical and numerical methods. Studies indicate that the rate of displacement and shear stress from the bolt to the rock exponentially decayed. This exponential reduction in displacement and shear stress are dependent on the bolt characteristics such as: rib height, rib spacing, rib width and grout thickness, material and joint properties.
基金This study has been funded by the National Natural Science Foundation of China(Grant No.41941018)and the Second Tibetan Plateau Scientific Expedition and Research Grant(Grant No.2019QZKK0708).
文摘Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.
基金supported by the National Natural Science Foundation of China(Grant Nos.52174096 and 51874311)。
文摘This study compares the strength characteristics of rocks anchored by NPR bolts and ordinary bolts with varied preloads,based on the mechanical properties of NPR bolts(with a negative Poisson’s ratio).The results show that the uniaxial compressive stress-strain curve of ordinary anchored rocks exhibits noticeable abrupt changes.After reaching peak strength,the bolt breaks,whereas the stress-strain curve of NPR-anchored rocks is smoother.The NPR bolt enters the stage of continuous resistance after reaching maximal strength and does not break.As the preload increases,the strength of the anchored rock grows linearly.A calculation equation for the strength of the anchored rock is proposed based on the preload.The theoretical equation fits the test results well,and the fitted parameters show that NPR bolts can better increase the strength of the rock.The concept of dynamic toughness UC of anchored rock is proposed to reflect the comprehensive mechanical properties of anchored rock,including strength and plasticity.As the preload increases,the UC of ordinary anchored rock first decreases and then increases,while the UC of the NPR anchored rock does not change significantly with the preload when the strain is small,and the UC increases with the increase of the preload when the strain is large.
基金Beijing Outstanding Young Scientist Program(BJJWZYJH01201911413037)the projects supported by National Natural Science Foundation of China(Grants Nos.41877257,51622404,and 51974117)Shaanxi Coal Group Key Project(2018SMHKJ-A-J-03)。
文摘For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early.
基金Project 2006BAK04B02 supported by the National Key Technology Research & Development Program of China
文摘To investigate the resist-decreasing effects of rock bolts on the strength of the rock mass around a roadway, a compara- tive study has been carded out using the numerical analysis code FLAC3D. An unsupported and a rock bolt supported model have been built for comparison. Two types of rock mass strength, the uniaxial compressive strength (UCS) and the wiaxial compressive strength (TCS) of rock mass have been obtained from each model, using a prepared Fish based on the Mohr-Coulomb criterion. The results indicate that when a roadway is excavated, both the UCS and TCS in a definite local rock mass around the roadway would inevitably decrease, no matter whether the roadway is supported or not. The major decreasing region did not settle in the middle of the roadway surface, but within a deeper horizon into the rock mass. The resist-decreasing effects of rock bolts both on the UCS and the TCS of rock mass around roadway are significant.
基金financially supported by Luossavaara-Kiirunavaara AB and Boliden Mineral AB,Sweden
文摘A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 40°,60°, and 90°), two joint gaps (0 mm and 30 mm), and three kinds of host rock materials (weak concrete,strong concrete, and concrete-granite) were considered, and stressestrain measurements were conducted.Results show that the ultimate loads of both the D-Bolt and the rebar bolt remained constantwith any displacing angles. The ultimate displacement of the D-Bolt changed from 140 mm at the0 displacing angle (pure pull) to approximately 70 mm at a displacing angle greater than 40. Thedisplacement capacity of the D-Bolt is approximately 3.5 times that of the rebar bolt under pure pull and50% higher than that of the rebar bolt under pure shear. The compressive stress exists at 50 mm from thebolt head, and the maximum bending moment value rises with the increasing displacing angle. The rebarbolt mobilises greater applied load than the D-Bolt when subjected to the maximum bending. Theyielding length (at 0) of the D-Bolt is longer than that of the rebar bolt. The displacement capacity of thebolts increased with the joint gap. The bolt subjected to joint gap effect yields more quickly with greaterbending moment and smaller applied load. The displacement capacities of the D-Bolt and the rebar boltare greater in the weak host rock than that in the hard host rock. In pure shear condition, the ultimateload of the bolts slightly decreases in the hard rock. The yielding speed in the hard rock is higher thanthat in the weak rock. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on the stress distribution around the tunnel. In this article, the effects of rock bolting on the stress distribution around the tunnel, including the pesition and orientation of bolts, the overburden depths, and the bolt lengths, are simulated using the ANSYS software with an elnstoplastic model. The effect of multiple bolts of 2 m and 1 m lengths on the stress distribution in the roof and on the lateral sides of a tunnel and at different overburden depths is considered. An important finding is that the tensile stress region that is very dangerous for rock in the bottom of the tunnel grows rapidly with increasing overburden depths when rock bolts are installed only in the roof or on the lateral sides of a tunnel. The determination of the length of the rock bolt used around a tunnel is dependent on the loads and the integrity of the rock mass around the tunnel. In addition, rock bolting around the tunnel can obviously reduce the coefficients and the size of the region of stress concentration, especially when installed in high-stress areas. This fact is very important and essential for the design of tunnels and ensures engineering safety in tunnel engineering.
基金Projects 2006BAB16B02 and 2006BAK03B06 supported by the National Scientific & Technological Foundation of China
文摘The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical analysis was carried out using FLAC3D and a special post-process methodology, using surfer, is proposed to process the numerical simulation results. The results indicate that pre-tensioned rock bolts have a significant effect on stress redistribution around a roadway. In the roof, pre-tensioned rock bolts greatly increase vertical stress; as a result, the strength of the rock mass increased significantly which results in a greater capacity of bearing a large horizontal stress. The horizontal stress decreases in the upper section of the roof, indicating that pre-tensioned rock bolts significantly reduce the coefficient and the size of the region concentration of horizontal stress. At the lat- eral side, pre-tensioned rock bolts greatly increase the horizontal stress; therefore, the rock mass strength significantly increases which results also in a greater capacity of bearing a large vertical stress. The greater the size of pre-tensioned force, the larger the region of stress redistribution around a roadway is affected and the higher the size of the stress on the roadway surface the more the rock mass strength increases.
基金the National Natural Science Foundation of China(Nos.52204114,52274145,U22A20165,and 52174089)the Natural Science Foundation of Jiangsu Province(No.BK20210522)+2 种基金the National Key Research and Development Program of China(No.2022YFE0128300)the China Postdoctoral Science Foundation(No.2023M733758)the Shandong Postdoctoral Science Foundation(No.SDCX-ZG-202302037).
文摘The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to high geo-stress and strong disturbed effects. This paper is to investigate the strain energy evolution in the interaction between coal and rock masses with self-designed energy-absorbing props and rock bolts by numerical modeling with the finite difference method. The interaction between rock and rock bolt/prop is accomplished by the cables element and the interface between the inner and outer props. Roadway excavation and coal extraction conditions in deep mining are numerically employed to investigate deformation, plastic zone ranges, strain energy input, accumulation, dissipation,and release. The effect on strain energy input, accumulation, dissipation, and release with rock deformation, and the plastic zone is addressed. A ratio of strain energy accumulation, dissipation, and release with energy input a, β, γ is to assess the dynamic hazards. The effects on roadway excavation and coal extraction steps of a, β, γ are discussed. The results show that:(1) In deep high geo-stress roadways, the energyabsorbing support system plays a dual role in resisting deformation and reducing the scope of plastic zones in surrounding rock, as well as absorbing energy release in the surrounding rock, especially in the coal extraction state to mitigate disturbed effects.(2) The strain energy input, accumulation is dependent on roadway deformation, the strain energy dissipation is relied on plastic zone area and disturbed effects, and strain energy release density is the difference among the three. The function of energyabsorbing rock bolts and props play a key role to mitigate strain energy release density and amount, especially in coal extraction condition, with a peak density value from 4×10^(4) to 1×10^(4)J/m^(3), and amount value from 3.57×10^(8) to 1.90×10^(6)J.(3) When mining is advanced in small steps, the strain energy accumulation is dominated. While in a large step, the released energy is dominant, thus a more dynamic hazards proneness. The energy-absorbing rock bolt and prop can reduce three times strain energy release amount, thus reducing the dynamic hazards. The results suggest that energy-absorbing props and rock bolts can effectively reduce the strain energy in the coal and rock masses, and prevent rock bursts and other hazards.The numerical model developed in this study can also be used to optimize the design of energyabsorbing props and rock bolts for specific mining conditions.