期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进Mask R-CNN钢纤维混凝土裂缝检测模型 被引量:2
1
作者 周双喜 袁海强 邓芳明 《华东交通大学学报》 2021年第6期37-45,共9页
针对混凝土裂缝检测具有多类别影响的复杂性,难以做准确分类、分割和定位任务问题,提出基于改进Mask R-CNN钢纤维混凝土裂缝检测方案。为提高检测速率和精度,对方案模型主干网络增加分散注意力模块跨越特征图组,提高特征学习能力,在交... 针对混凝土裂缝检测具有多类别影响的复杂性,难以做准确分类、分割和定位任务问题,提出基于改进Mask R-CNN钢纤维混凝土裂缝检测方案。为提高检测速率和精度,对方案模型主干网络增加分散注意力模块跨越特征图组,提高特征学习能力,在交并比基础上增加目标与锚框间距离、重叠率、尺度和惩罚项提高回归精度,并与原始Mask R-CNN模型进行对比。仿真结果表明裂缝、数字以及词汇的平均精度均值达到96.09%,能够精准定位裂缝并作出像素级分割,单样本耗时198 ms。提出的模型既增加了准确率又降低了图片处理延时,与原始Mask R-CNN模型相比,平均精度均值和图片处理速率分别提升6.2%和5.7%。仿真实验证明改进后的模型具有较强的鲁棒性以及泛化能力。 展开更多
关键词 裂缝检测 钢纤维混凝土 改进Mask R-CNN split-attention 平均精度均值
在线阅读 下载PDF
多分支多尺度的自注意力细粒度图像分类算法 被引量:1
2
作者 张峰 王高才 《小型微型计算机系统》 CSCD 北大核心 2023年第12期2784-2790,共7页
细粒度视觉分类(FGVC)是计算机视觉的一个重要的研究分支,但是由于细粒度分类任务中图片由于变形,遮挡,光照差异等引起的同种类之间差异大和不同种类之间差异小的原因,使得它成为一项十分具有挑战性的任务.本篇论文通过改进MMAL-net(Mul... 细粒度视觉分类(FGVC)是计算机视觉的一个重要的研究分支,但是由于细粒度分类任务中图片由于变形,遮挡,光照差异等引起的同种类之间差异大和不同种类之间差异小的原因,使得它成为一项十分具有挑战性的任务.本篇论文通过改进MMAL-net(Multi-branch and Multi-scale Attention Learning for Fine-Grained Visual Categorization)算法以细粒度视觉分类的问题.本文的方法使用注意对象定位模块(ALOM)预测对象在图片中的位置,注意力部分建议模块(APPM)以在不需要边框或部分标注的情况下提出信息丰富的部分区域.得到的目标图像不仅包含了目标的几乎整个结构,而且包含了更多的细节,部分图像具有许多不同的尺度和更细粒度的特征,原始图像包含了完整的目标.三类图像由多分支网络进行监督学习.本文引入注意力机制使用Split-Attention模块对不同分支之间的输出进行权重再分配,并且引入SENet(Squeeze-and-Excitation Networks)使模型关注通道特征.本文的模型对不同尺度的图像具有良好的分类能力与鲁棒性,同时可以端到端进行训练并且有较短的推理时间.通过在CUB200-2011、FGVC-Airline和Stanford Cars数据集上的综合实验表明,本文的方法具有超越MMAL-net的分类性能,并且可以与最好的算法进行比较. 展开更多
关键词 细粒度视觉分类 弱监督学习 注意力机制 split-attention SENet
在线阅读 下载PDF
Action Research: The Application of Cognitive Load Theory to Reading Teaching 被引量:1
3
作者 GAO Jun-xia 《Sino-US English Teaching》 2007年第4期19-23,共5页
In this report, the author found out that the materials on hand imposed undue cognitive load on students. In order to maximize learning, the author changed her instructional design, kept a close eye on the whole proce... In this report, the author found out that the materials on hand imposed undue cognitive load on students. In order to maximize learning, the author changed her instructional design, kept a close eye on the whole process, and ultimately discovered that reducing the cognitive load of the learning materials is beneficial for the increase of learners' interest and the liven-up of the classroom atmosphere, which can finally maximize learners' language learning. 展开更多
关键词 cognitive load split-attention effect redundancy effect reading teaching
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部