期刊文献+
共找到20,657篇文章
< 1 2 250 >
每页显示 20 50 100
基于分类估计的异质数据融合M_(split)模型 被引量:1
1
作者 陶叶青 束明聪 陈浩 《淮阴师范学院学报(自然科学版)》 2025年第1期45-51,共7页
从分类估计的角度研究异质数据融合理论,建立一种不依赖于随机模型的融合方法.该理论首先基于M_(split)估计对观测数据进行分类估计,然后根据分类估计结果,应用中位函数计算不同参数估值的中误差,最后通过定义尺度因子与相对权比函数构... 从分类估计的角度研究异质数据融合理论,建立一种不依赖于随机模型的融合方法.该理论首先基于M_(split)估计对观测数据进行分类估计,然后根据分类估计结果,应用中位函数计算不同参数估值的中误差,最后通过定义尺度因子与相对权比函数构建融合模型,实现异质数据的有效融合.通过两类不同精度量级的观测数据组成的控制测量实例对该方法进行验证,结果表明,该方法易于实现,得到的参数估值稳定. 展开更多
关键词 异质数据融合 分类估计 M_(split)估计 尺度因子 融合模型
在线阅读 下载PDF
Direct Observation of Large Altermagnetic Splitting in CrSb(100)Thin Film
2
作者 Sen Liao Xianglin Li +9 位作者 Xiuhua Chen Ziyan Yu Jianghao Yao Rui Xu Jiexiong Sun Zhengtai Liu Dawei Shen Yilin Wang Donglai Feng Juan Jiang 《Chinese Physics Letters》 2025年第6期285-290,共6页
Altermagnets represent a newly discovered class of magnetically ordered materials.Among all the candidates,CrSb stands out due to its largest spin splitting energy and highest Néel temperature exceeding 700 K,mak... Altermagnets represent a newly discovered class of magnetically ordered materials.Among all the candidates,CrSb stands out due to its largest spin splitting energy and highest Néel temperature exceeding 700 K,making it promising for room-temperature spintronic applications.Here we have successfully grown high quality CrSb(100)thin film on GaAs(110)substrate by molecular beam epitaxy.Using angle-resolved photoemission spectroscopy,we successfully obtained the three-dimensional electronic structure of the thin film.Moreover,we observed the emergence of the altermagnetic splitting bands corresponding to the calculated results along the low symmetry pathsT-QandP-D.The bands near the Fermi level are only spin splitting bands along theP-Ddirection,with splitting energy reaching as high as 910 meV.This finding provides insights into the magnetic properties of CrSb thin films and paves the way for further studies on their electronic structure and potential applications in spintronics. 展开更多
关键词 Crsb thin film molecular beam epitaxyusing magnetic properties angle resolved photoemission spectroscopy electronic structure spin splitting bands large altermagnetic splitting magnetically ordered materialsamong
原文传递
Zeeman splitting observations in laser-produced magnetized blast waves
3
作者 A.Triantafyllidis J.-R.Marquès +10 位作者 S.Ferri A.Calisti Y.Benkadoum Y.De León A.Dearling A.Ciardi J.Béard J.-M.Lagarrigue N.Ozaki M.Koenig B.Albertazzi 《Matter and Radiation at Extremes》 2025年第4期70-79,共10页
We report the observation of Zeeman splitting in multiple spectral lines emitted by a laser-produced,magnetized plasma(1–3×10^(18)cm^(-3),1–15 eV)in the context of a laboratory astrophysics experiment under a c... We report the observation of Zeeman splitting in multiple spectral lines emitted by a laser-produced,magnetized plasma(1–3×10^(18)cm^(-3),1–15 eV)in the context of a laboratory astrophysics experiment under a controlled magneticfield up to 20T.Nitrogen lines(NII)in the visible range were used to diagnose the magneticfield and plasma conditions.This was performed by coupling our data with(563–574 nm)the Stark–Zeeman line-shape code PPPB.The excellent agreement between experiment and simulations paves the way for a non-intrusive experimental platform to get time-resolved measurements of the local magneticfield in laboratory plasmas. 展开更多
关键词 laboratory astrophysics experiment zeeman splitting diagnose magnetic eld plasma conditionsthis Zeeman splitting controlled magnetic eld nitrogen lines coupling our data laser produced magnetized plasma
在线阅读 下载PDF
Co-optimization of CuBi_(2)O_(4)photocathode by heterojunction and hole-selective layer for efficient photoelectrochemical water splitting
4
作者 An-Zheng Zhu Hai Shan +8 位作者 Si-Min Cai Can-Can Chang Lei Yang Chong-Hai Deng Ning-Ning Zhou Kun-Hong Hu Hai Yu Jian-Guo Lv Gang He 《Rare Metals》 2025年第2期998-1013,共16页
CuBi_(2)O_(4)is identified as a promising photocathode in photoelectrochemical(PEC)water splitting systems.However,the PEC performance of CuBi_(2)O_(4)is far from expected due to the limited separation and transport e... CuBi_(2)O_(4)is identified as a promising photocathode in photoelectrochemical(PEC)water splitting systems.However,the PEC performance of CuBi_(2)O_(4)is far from expected due to the limited separation and transport efficiency of photogenerated carriers.To address the above issues,a cost-effective ternary Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode was designed.Firstly,a thin Cu:NiO_(X)film was inserted between CuBi_(2)O_(4)and FTO conducting substrate as a hole-selective layer,which promotes the transmission of photogenerated holes to the FTO substrate effectively.Furthermore,the modification of CuO film on the CuBi_(2)O_(4)electrode not only increases the absorption of sunlight and generates more photogenerated carriers,but also constitutes a heterojunction with CuBi_(2)O_(4),creating a built-in electric field,which facilitates the separation of electrons and holes,and accelerates the electrons transfer to electrode–electrolyte interface.The fabricated Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode exhibits a surprisingly high photocurrent density of−1.51 mA·cm^(−2)at 0.4 V versus RHE,which is 2.6 times that of the pristine CuBi_(2)O_(4)photocathode.The improved PEC performance is attributed to the synergy effect of the Cu:NiO_(X)hole-selective layer and the CuBi_(2)O_(4)/CuO heterojunction.Moreover,the combination with the BiVO_(4)/CoS,an unbiased overall water splitting was achieved,which has a photocurrent of 0.193 mA·cm^(−2). 展开更多
关键词 CuBi_(2)O_(4) PHOTOCATHODE PEC water splitting Unbiased overall water splitting
原文传递
内含肽介导的Split-Cre系统的构建 被引量:1
5
作者 敖艺菲 张琪 +2 位作者 陈昱僖 黄军就 文锦坤 《生物工程学报》 北大核心 2025年第4期1490-1499,共10页
Split-Cre系统是指被拆分为无活性的N端和C端这2个片段的Cre酶在一定条件下重组为有酶活性的全长Cre的基因工程工具。该系统常结合LoxP元件使用,近年来在多基因操纵、多基因活性标记以及神经环路示踪等方面有着重要的应用。为了开发更... Split-Cre系统是指被拆分为无活性的N端和C端这2个片段的Cre酶在一定条件下重组为有酶活性的全长Cre的基因工程工具。该系统常结合LoxP元件使用,近年来在多基因操纵、多基因活性标记以及神经环路示踪等方面有着重要的应用。为了开发更高效的Split-Cre系统,本研究利用海洋红嗜热盐菌(Rhodothermus marinus,Rma)内含肽对Cre进行拆分,在“红绿灯”报告细胞系中筛选出了能够高效介导Cre酶重组的S102拆分位点,并且通过双腺相关病毒(adeno-associatedvirus,AAV)将S102 Split-Cre系统递送至小鼠体内,证明了Rma内含肽介导的S102 Split-Cre系统在小鼠体内同样具有高效的活性。本研究为Split-Cre的基础和应用研究提供了可靠的参考。 展开更多
关键词 Cre酶 split-Cre系统 海洋红嗜热盐菌内含肽 断裂内含肽
原文传递
Split nitrogen application increases maize root growth,yield,and nitrogen use efficiency under soil warming conditions 被引量:2
6
作者 Zhenqing Xia Yuxiang Gong +3 位作者 Xiangyue Lyu Junchen Lin Yi Yang Haidong Lu 《The Crop Journal》 2025年第2期565-575,共11页
The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e... The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress. 展开更多
关键词 Maize(Zea mays L.) Soil warming split nitrogen application Root growth Nitrogen use efficiency Grain yield
在线阅读 下载PDF
Metal nanoparticles decorated CoFe-(oxy)hydroxysulfides nanosheets fabricated by a general strategy for electrocatalytic water splitting 被引量:1
7
作者 Xiaodong Yang Haochen Shen +7 位作者 Xiaoming Xiao Zhichao Li Qi Zhou Wei Yang Bin Jiang Yongli Sun Luhong Zhang Zhenhua Yan 《Journal of Energy Chemistry》 2025年第1期26-38,共13页
This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abun... This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abundant heterogeneous interfaces and hierarchical nanostructures demonstrated outstanding oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performance,achieving low overpotentials of 212 and 35 mV at 10 mA cm^(-2)in 1 M KOH,respectively.As both anode and cathode in water splitting,they required only 1.47 V to reach 10 mA cm^(-2)and exhibited high structural robustness,maintaining stability at 1000 mA cm^(-2)for 300 h.In-situ Raman analysis revealed that the synergistic effects of metal nanoparticles and S doping significantly promote the transformation into the S-Co1-xFexOOH layer,which serves as the active phase for water oxidation.Additionally,ultraviolet photoelectron spectroscopy(UPS)and density functional theory(DFT)analyses indicated that incorporating metal nanoparticles and S doping increase electron density near the Fermi level and reduce reaction energy barriers,thus enhancing intrinsic OER and HER activities.This study provides a scalable strategy for synthesizing high-performance electrocatalysts for water splitting,with promising potential for broader applications. 展开更多
关键词 LDH Spontaneous reaction Metal nanoparticles Water splitting
在线阅读 下载PDF
基于Split-GFP系统定量分析大肠杆菌中异源表达的类胶原蛋白Scl2
8
作者 色依德·斯马依 赵晨旭 +3 位作者 张轶群 刘业学 王稳航 李玉 《天津科技大学学报》 2025年第1期13-19,27,共8页
利用大肠杆菌(Escherichia coli)表达类胶原蛋白Scl2,并通过Split-GFP系统建立一种简便、快速且可定量检测Scl2的方法。结果表明,Scl2在大肠杆菌(Escherichia coli)BL21(DE3)中成功表达,并通过His亲和标签纯化得到较高纯度的Scl2。圆二... 利用大肠杆菌(Escherichia coli)表达类胶原蛋白Scl2,并通过Split-GFP系统建立一种简便、快速且可定量检测Scl2的方法。结果表明,Scl2在大肠杆菌(Escherichia coli)BL21(DE3)中成功表达,并通过His亲和标签纯化得到较高纯度的Scl2。圆二色光谱和差示扫描量热仪分析发现,Scl2的二级结构和热稳定性与动物源Ⅰ型胶原蛋白相似,并且GFP11的融合对其几乎没有影响。GFP1-10和Scl2-GFP11结合的前20 h的结合速度较高,达到最大相对荧光强度需要约70 h。当两者结合1 h时,Scl2-GFP11蛋白质量浓度与相对荧光强度之间能够形成较好的线性关系,相关系数R2为0.9995,重复性良好。本研究利用Split-GFP系统建立了体外检测并定量分析Scl2的方法,为下一步高通量筛选研究提供了快速、简便的工具。 展开更多
关键词 大肠杆菌 异源表达 类胶原蛋白Scl2 split-GFP 蛋白定量分析
在线阅读 下载PDF
In situ constructing lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x) as bifunctional electrocatalyst for high-current-density water splitting 被引量:1
9
作者 Yue Deng Jin Wang +6 位作者 Shao-Fei Zhang Zhi-Jia Zhang Jin-Feng Sun Tian-Tian Li Jian-Li Kang Hao Liu Shi Bai 《Rare Metals》 2025年第2期1053-1066,共14页
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-... The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting. 展开更多
关键词 Lamellar nanoporous structure Electronic structure regulation High current density Theoretical calculation Overall water splitting
原文传递
Direct seawater splitting for hydrogen production:Recent advances in materials synthesis and technological innovation
10
作者 Yilin Zhao Zhipeng Yu +4 位作者 Aimin Ge Lujia Liu Joaquim Luis Faria Guiyin Xu Meifang Zhu 《Green Energy & Environment》 SCIE EI CAS 2025年第1期11-33,共23页
Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the ... Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production. 展开更多
关键词 Seawater splitting CATALYST Membranes Mixed seawater systems Self-powered systems
在线阅读 下载PDF
Mott-Schottky electrocatalysts for water splitting
11
作者 PAN Jing FU Danfei +2 位作者 YANG Hao LUO Bifu YANG Zhongjie 《燃料化学学报(中英文)》 北大核心 2025年第9期1300-1319,共20页
The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplore... The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed. 展开更多
关键词 Mott-Schottky electrocatalysts water splitting HETEROJUNCTIONS SEMICONDUCTORS
在线阅读 下载PDF
MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting
12
作者 Liang Dong Jingkuo Qu +6 位作者 Tuo Zhang Guanghui Zhu Ningning Ma Chang Zhao Yi Yuan Xiangjiu Guan Liejin Guo 《Chinese Chemical Letters》 2025年第3期427-431,共5页
The development of stable and efficient non-noble metal cocatalysts has arisen as a promising yet challenging endeavor in the context of photocatalytic overall water splitting.In this study,NiCo alloy cocatalysts were... The development of stable and efficient non-noble metal cocatalysts has arisen as a promising yet challenging endeavor in the context of photocatalytic overall water splitting.In this study,NiCo alloy cocatalysts were synthesized with nickel/cobalt metal organic framework(NiCo-MOF)as source of nickel and cobalt.Systematic characterization results demonstrate the successful deposition of alloy cocatalysts onto the surface of SrTiO_(3).The prepared SrTiO_(3)loaded NiCo-alloy can generate hydrogen and oxygen in a stoichiometric ratio for photocatalytic overall water splitting,achieving an apparent quantum yield of 11.9%at 350±10 nm.Theoretical calculations indicate that the introduction of cobalt has a beneficial regulatory effect on the hydrogen evolution sites of Ni,reducing the free energy of H adsorption.The synergistic catalytic effect of bimetallic catalysts contributes to enhancing photocatalytic activity and stability.This study offers constructive insights for the development of high-efficiency and cost-effective cocatalyst systems. 展开更多
关键词 PHOTOCATALYSIS Overall water splitting Non-noble metals Alloy COCATALYST
原文传递
4H-SiC superjunction MOSFET with integrated high-K gate dielectric and split gate
13
作者 Jiafei Yao Zhengfei Yang +7 位作者 Yuxuan Dai Ziwei Hu Man Li Kemeng Yang Jing Chen Maolin Zhang Jun Zhang Yufeng Guo 《Journal of Semiconductors》 2025年第8期60-67,共8页
A 4H-SiC superjunction(SJ)MOSFET(SJMOS)with integrated high-K gate dielectric and split gate(HKSG-SJMOS)is proposed in this paper.The key features of HKSG-SJMOS involve the utilization of high-K(HK)dielectric as the g... A 4H-SiC superjunction(SJ)MOSFET(SJMOS)with integrated high-K gate dielectric and split gate(HKSG-SJMOS)is proposed in this paper.The key features of HKSG-SJMOS involve the utilization of high-K(HK)dielectric as the gate dielectric,which surrounds the source-connected split gate(SG)and metal gate.The high-K gate dielectric optimizes the electric field distribution within the drift region,creating a low-resistance conductive channel.This enhancement leads to an increase in the breakdown voltage(BV)and a reduction in the specific on resistance(R_(on,sp)).The introduction of split gate surrounded by high-K dielectric reduces the gate-drain capacitance(C_(gd))and gate-drain charge(Q_(gd)),which improves the switching characteristics.The simulation results indicate that compared to conventional 4H-SiC SJMOS,the HKSG-SJMOS exhibits a 110.5%enhancement in figure of merit(FOM,FOM=BV^(2)/R_(on,sp)),a 93.6%reduction in the high frequency figure of merit(HFFOM)of R_(on,sp)·C_(gd),and reductions in turn-on loss(E_(on))and turn-off loss(E_(off))by 38.3%and 31.6%,respectively.Furthermore,the reverse recovery characteristics of HKSG-SJMOS has also discussed,revealing superior performance compared to conventional 4H-SiC SJMOS. 展开更多
关键词 split gate SUPERJUNCTION high-K dielectric 4H-SIC MOSFET
在线阅读 下载PDF
Breakthrough Catalyst Boosts Water Splitting
14
《Bulletin of the Chinese Academy of Sciences》 2025年第2期80-81,共2页
Water oxidation-a critical yet sluggish step in green hydrogen production-is a major bottleneck for electrolysis efficiency.Traditional catalysts often degrade quickly under the high current densities needed for indus... Water oxidation-a critical yet sluggish step in green hydrogen production-is a major bottleneck for electrolysis efficiency.Traditional catalysts often degrade quickly under the high current densities needed for industrial scale. 展开更多
关键词 green hydrogen water oxidation CATALYST BREAKTHROUGH DEGRADATION water splitting electrolysis efficiency
在线阅读 下载PDF
Adult split liver transplantation to treat liver cancer: a single-center retrospective study
15
作者 Qiang Sun Haoze Cao +11 位作者 Xuesong Bai Xin Han Wanlu You Zhongquan Sun Yixin Zhang Xiaochang Wu Feng Fang Fan Wu Lianyue Yang Sheng Yan Yuan Ding Weilin Wang 《World Journal of Emergency Medicine》 2025年第1期57-62,共6页
BACKGROUND: The increasing morbidity of liver cancer has led to a growing demand for transplantation. Split liver transplantation(SLT) is a promising way to ameliorate organ shortages. However, the safety and efficacy... BACKGROUND: The increasing morbidity of liver cancer has led to a growing demand for transplantation. Split liver transplantation(SLT) is a promising way to ameliorate organ shortages. However, the safety and efficacy of SLT are still controversial. The aim of this study was to assess the clinical outcome of SLT in liver cancer patients at our center. METHODS: A total of 74 patients who received liver transplantation at a tertiary hospital from March 2019 to July 2023 were retrospectively studied, of whom 37 recipients underwent SLT and 37 recipients underwent whole-graft liver transplantation(WGLT). Clinical data were analyzed and compared between patients who underwent SLT and WGLT.RESULTS: SLT and WGLT were successfully performed, with no intraoperative transplantrelated mortality. Postoperatively, no significant differences in total bilirubin(TB, P=0.266), alanine transaminase(ALT, P=0.403) and aspartate transaminase(AST, P=0.160) levels within 30 d were detected between the two groups. The transplant-related mortality rates were 8.1% in the SLT group and 5.4% in the WGLT group within 30 d of surgery(P=1.000), and 10.8% and 8.1%, respectively, at 90 d after surgery(P=1.000). There were no significant differences in overall survival(OS) and progress-free survival(PFS) between the SLT and WGLT groups(P=0.910, P=0.190). CONCLUSION: Our results show that SLT does not imply additional risks in treating liver cancer compared with WGLT. 展开更多
关键词 ADULT split liver transplantation Liver cancer PROGNOSIS RETROSPECTIVE
暂未订购
Electronic modulation towards MOFs as template derived CoP via engineered heteroatom defect for a highly effcient overall water splitting
16
作者 Meijie Ding Zhiqiang Wei +6 位作者 Dexue Liu Wenhua Zhao Qiang Lu Zhiming Li Qingsong Yu Chenggong Lu Hua Yang 《Journal of Energy Chemistry》 2025年第2期598-607,I0012,共11页
The reasonable design of material morphology and eco-friendly electrocatalysts are essential to highly efficient water splitting.It is proposed that a promising strategy effectively regulates the electronic structure ... The reasonable design of material morphology and eco-friendly electrocatalysts are essential to highly efficient water splitting.It is proposed that a promising strategy effectively regulates the electronic structure of the d-orbitals of CoP using cerium doping in this paper,thus significantly improving the intrinsic property and conductivity of CoP for water splitting.As a result,the as-synthesize porous Ce-doped CoP micro-polyhedron composite derived from Ce-ZIF-67 as bifunctional electrocatalytic materials exhibits excellent electrocatalytic performance in both the oxygen evolution reaction(OER)and the hydrogen evolution reaction(HER),overpotentials of about 152 mV for HER at 10 mA cm^(-2)and about 352 mV for OER at 50 mA cm^(-2),and especially it shows outstanding long-term stability.Besides,an alkaline electrolyzer,using Ce0.04Co0.96P electrocatalyst as both the anode and cathode,delivers a cell voltage value of1.55 V at the current density of 10 mA cm^(-2).The calculation results of the density functional theory(DFT)demonstrate that the introduction of an appropriate amount of Ce into CoP can enhance the conductivity,and can induce the electronic modulation to regulate the selective adsorption of reaction intermediates on catalytic surface and the formation of O*intermediates(CoOOH),which exhibits an excellent electrocatalytic performance.This study provides novel insights into the design of an extraordinary performance water-splitting of the multicomponent electrocatalysts. 展开更多
关键词 Hydrogen evolution CERIUM PHOSPHIDES Oxygen evolution Water splitting
在线阅读 下载PDF
d-band center upshift and electronic modulation of nickel cobalt phosphide integrated with reduced graphene oxide for stable and efficient water-splitting electrocatalysis
17
作者 Saleem Sidra Van Hien Hoa Do Hwan Kim 《Journal of Energy Chemistry》 2025年第4期264-273,共10页
Green hydrogen is crucial for advancing renewable energy technologies and protecting the environment.This study introduces a controllable method for bimetallic nickel-cobalt phosphide on reduced graphene oxide on nick... Green hydrogen is crucial for advancing renewable energy technologies and protecting the environment.This study introduces a controllable method for bimetallic nickel-cobalt phosphide on reduced graphene oxide on nickel foam(NiCo_(3)P.C/NF).The material demonstrated low overpotentials of 58 and 180 mV at10 mA cm^(-2)for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in 1.0 M KOH.It achieved excellent electrochemical water-splitting performance with operating voltages of 1.54 and 2.6 V at 10 and 500 mA cm^(-2),respectively.The overall water-splitting performance of NiCo_(3).C/NF was extremely stable after 75 h of operation at 53 mA cm^(-2),retaining 98%efficiency,better than the sample Pt-C+RuO_(2),and outperforming previous reports.Density functional theory(DFT)results revealed a synergistic NiCo_(3)P.C interaction that yields nearly zero Gibbs free energy change(-0.100 eV)and upshift d-band center,the real active site at the Ni in HER,and the lowest overpotentials 0.26 V at the P active sites for OER.Furthermore,electronic charge distribution shows the maximum charge distribution between the NiCo_(3)P phase and graphene sheet heterojunction,enhancing the electrocatalyst conductivity.This combined approach offers an innovative strategy to design sustainable electrocatalysts for water s plitting. 展开更多
关键词 Nickel-cobalt phosphide Water splitting ELECTROCATALYST Graphene oxide d-band center
在线阅读 下载PDF
A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts
18
作者 Tianli Hui Tao Zheng +6 位作者 Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu 《Chinese Journal of Structural Chemistry》 2025年第3期63-78,共16页
Hydrogen is a critical renewable energy source in the energy transition.However,water electrolysis,which is the primary technique for achieving large-scale and low-carbon hydrogen production,still suffers from high pr... Hydrogen is a critical renewable energy source in the energy transition.However,water electrolysis,which is the primary technique for achieving large-scale and low-carbon hydrogen production,still suffers from high production costs and energy consumption.The key is to develop highly efficient electrochemical water splitting catalysts.In recent years,the preparation of electrocatalysts via plasma treatment has gained recognition for its rapid,eco-friendly,and controllable properties,especially in the optimization of nano-microstructure.This review comprehensively summarizes the impact of plasma treatment on the nano-microstructure of water electrolysis catalysts,encompassing dispersion enhancement,morphology modulation,surface functionalization,defect construction,and element doping.These impacts on the nano-microstructure increase the surface area,modify the pore structure,introduce active sites,and regulate the electronic environment,thereby promoting the water splitting performance of electrocatalysts.Finally,the remaining challenges and potential opportunities are discussed for the future development of plasma treatment.This review would be a valuable reference for plasmaassisted electrocatalyst synthesis and mechanism understanding in plasma impact on nano-microstructure. 展开更多
关键词 Plasma treatment ELECTROCATALYST Water splitting Nano-microstructure
原文传递
Optimizing heterointerface of NiCoP–Co/MXene with regulated charge distribution via built-in electric field for efficient overall water-splitting
19
作者 Liang Yan Yong-Hang Chen +1 位作者 Jia-Chun Xie Hao Li 《Rare Metals》 2025年第2期1067-1083,共17页
The quest for sustainable energy solutions has intensified the need for efficient water electrolysis techniques,pivotal for hydrogen production.However,developing effective bifunctional electrocatalysts capable of dri... The quest for sustainable energy solutions has intensified the need for efficient water electrolysis techniques,pivotal for hydrogen production.However,developing effective bifunctional electrocatalysts capable of driving the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a formidable challenge.Addressing this,we introduce a novel built-in electric field(BEF)strategy to synthesize NiCoP–Co nanoarrays directly on Ti_(3)C_(2)T_(x) MXene substrates(NiCoP–Co/MXene).This approach leverages a significant work function difference(ΔΦ),propelling these nanoarrays as adept bifunctional electrocatalysts for comprehensive water splitting.MXene,in this process,plays a dual role.It acts as a conductive support,enhancing the catalyst’s overall conductivity,and facilitates an effective charge transport pathway,ensuring efficient charge transfer.Our study reveals that the BEF induces an electric field at the interface,prompting charge transfer from Co to NiCoP.This transfer modulates asymmetric charge distributions,which intricately control intermediates’adsorption and desorption dynamics.Such regulation is crucial for enhancing the reaction kinetics of both HER and OER.Furthermore,under oxidative conditions,the NiCoP–Co/MXene catalyst undergoes a structural metamorphosis into Ni(Co)oxides/hydroxides/MXene,increasing OER performance.This research demonstrates the BEF’s role in fine-tuning interfacial charge redistribution and underscores its potential in crafting more sophisticated electrocatalytic designs.The insights gained here could pave the way for the next generation of electrocatalysis,with far-reaching implications for energy conversion and storage technologies. 展开更多
关键词 Built-in electric field Charge redistribution NiCoP-Co MXene Water splitting
原文传递
Recent Advances in Single-Atom Catalysts for Photoelectrocatalytic Water Splitting
20
作者 Jiao Yang Xiaoyang Zheng +4 位作者 Syed Shoaib Ahmad Shah Chao Wang Xueyao Li Zhishuo Yan Lishan Peng 《Carbon Energy》 2025年第4期110-138,共29页
Hydrogen is a highly promising energy carrier because of its renewable and clean qualities.Among the different methods for H_(2) production,photoelectrocatalysis(PEC)water splitting has garnered significant interest,t... Hydrogen is a highly promising energy carrier because of its renewable and clean qualities.Among the different methods for H_(2) production,photoelectrocatalysis(PEC)water splitting has garnered significant interest,thanks to the abundant and perennial solar energy.Single-atom catalysts(SACs),which feature well-distributed atoms anchored on supports,have gained great attention in PEC water splitting for their unique advantages in overcoming the limitations of conventional PEC reactions.Herein,we comprehensively review SAC-incorporated photoelectrocatalysts for efficient PEC water splitting.We begin by highlighting the benefits of SACs in improving charge transfer,catalytic selectivity,and catalytic activity,which address the limitations of conventional PEC reactions.Next,we provide a comprehensive overview of established synthetic techniques for optimizing the properties of SACs,along with modern characterization methods to confirm their unique structures.Finally,we discuss the challenges and future directions in basic research and advancements,providing insights and guidance for this developing field. 展开更多
关键词 hydrogen production PHOTOELECTROCATALYSIS single-atom catalysts water splitting
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部