Background:Glioblastoma(GBM)is one of the most malignant types of central nervous system tumors.Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression.Howeve...Background:Glioblastoma(GBM)is one of the most malignant types of central nervous system tumors.Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression.However,the mechanisms of hypoxia-promoted tumor progression remain elusive.Methods:Alternative splicing of diacylglycerol kinase gamma(DGKG)-Δexon13 was amplified and verified by PCR-Sanger sequencing.The functions of DGKG and DGKG-Δexon13 were analyzed by Cell counting kit-8(CCK-8),Transwell,Matrigeltranswell experiments,and in vivo orthotropic GBM animal models.Transcriptome analyses were done to find out the regulated genes.Results:In this study,we found that a new transcript DGKG-Δexon13 was generated in GBM under hypoxia via alternative splicing.Moreover,the results of CCK-8,Transwell,and Matrigel-transwell experiments showed that the proliferation,migration,and invasion abilities of U87-MG and T98G were decreased after DGKG knockdown.Compared to wild-type DGKG,DGKG-Δexon13 overexpression significantly promoted cellular proliferation,migration,and invasion abilities in GBM.Furthermore,in vivo,orthotropic GBM animal models analysis showed that the tumor volumes were much smaller in the DGKG knockdown group.However,the tumor sizes in the DGKG and DGKG-Δexon13 rescue groups were restored,especially in the DGKG-Δexon13 group.Transcriptome analysis revealed that MORC1,KLHDC7B,ATP1A2,INHBE,TMEM119,and FGD3 were altered significantly when DGKG was knocked down.IL-16,CCN2,and EFNB3 were specifically regulated by DGKG-Δexon13.Conclusions:Our study found that hypoxia-induced alternative splicing transcript DGKG-Δexon13 promotes GBM proliferation and infiltration,which might provide a new potential target for the clinical treatment and diagnosis of GBM.展开更多
The tensile property of the spliced yarn splice under different splicing conditions has been investigated. The retained spliced strength of the splice spliced under different splicing conditions was obtained as the in...The tensile property of the spliced yarn splice under different splicing conditions has been investigated. The retained spliced strength of the splice spliced under different splicing conditions was obtained as the indicator for the performance of the splicer under that particular splicing condition. The results showed that, the length of the yarn tails and the yarn linear density are the parameters that has the most important effect to the tensile property of the spliced yarn.展开更多
Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the...Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the whole range of the losses using a standard loss distribution. We tackle this modeling problem by proposing a three-component spliced regression model that can simultaneously model zeros, moderate and large losses and consider heterogeneous effects in mixture components. To apply our proposed model to Privacy Right Clearinghouse (PRC) data breach chronology, we segment geographical groups using unsupervised cluster analysis, and utilize a covariate-dependent probability to model zero losses, finite mixture distributions for moderate body and an extreme value distribution for large losses capturing the heavy-tailed nature of the loss data. Parameters and coefficients are estimated using the Expectation-Maximization (EM) algorithm. Combining with our frequency model (generalized linear mixed model) for data breaches, aggregate loss distributions are investigated and applications on cyber insurance pricing and risk management are discussed.展开更多
OCT4 is one of the key transcription factors in maintaining the pluripotency and self-renewal of embryonic stem (ES) cells.Human OCT4 can generate two isoforms OCT4A and OCT4B by alternative splicing.OCT4B1 is a rec...OCT4 is one of the key transcription factors in maintaining the pluripotency and self-renewal of embryonic stem (ES) cells.Human OCT4 can generate two isoforms OCT4A and OCT4B by alternative splicing.OCT4B1 is a recently discovered novel OCT4 spliced variant,which has been considered as a putative marker of stemness.Compared with the OCT4B mRNA,OCT4B1 mRNA is generated by retaining intron 2 as a cryptic exon which contains a TGA stop codon in it.As a result,the protein product of OCT4B1 mRNA could be truncated.Interestingly,we present here that OCT4B1 can indirectly produce the same protein products as OCT4B.We have demonstrated that OCT4B1 mRNA can be spliced into OCT4B mRNA,and encode three protein isoforms.The splicing of OCT4B1 mRNA into OCT4B mRNA can be remarkably inhibited by the mutation of the classical splicing site.Our result suggests that OCT4B mRNA may originate from OCT4B1 mRNA by alternative splicing.展开更多
The analysis of spliced column has been carried out to detect optimum location of providing splices in the column.In the present work,static and dynamic(free vibration)analyses of spliced column have been done by rand...The analysis of spliced column has been carried out to detect optimum location of providing splices in the column.In the present work,static and dynamic(free vibration)analyses of spliced column have been done by randomising the location of splicing.A symmetrical four storey steel framed building has been modelled,analysed and designed for loads(dead,live and earthquake loads)recommended by Indian Codal provisions using Staad.Pro.The critical column at each floor level is identified based on axial force(AF),bending moment(BM)and shear force(SF).The total 16 models of spliced columns have been designed and then modelled in a 3D CAD Design tool(SOLIDWORKS)and then imported in the finite element tool(ANSYSWorkbench 14.0)for detailed analysis.The variation of stress,strain and deflection of the spliced column are shown in the form of contour.Further,the modal analysis is performed to determine the natural frequencies.The results of static and dynamic analyses are compared for each modelled spliced column to obtain the optimum location for providing splices in the column.The dynamic analysis of spliced column is of utmost importance in the region where dynamic loadings like earthquake,cyclones etc.are more frequent,and mere static analysis does not account for the safety of the structure.This study will help the engineers to select directly the optimum size and location of the splices in the column of a steel framed building.展开更多
In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage d...In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage data analysis indicates that G- and C-ending codons are predominant in the genes. The base usage in all three codon positions suggests a selection-mutation balance. Multivariate statistical analysis reveals that the codon usage variation has a strong positive correlation with the expressivities of the genes (r=0.5790, P<0.0001). All 27 codons identified as optimal are G- and C-ending codons. Correlation analysis shows a strong negative correlation between the gene length and codon adaptation index value (r=0.2252, P<0.0001), and a significantly positive correlation between the gene length and Nc values (r=0.1876, P<0.0001). These results suggest that the comparatively shorter genes in the genes have higher codon usage bias to maximize translational efficiency, and selection may also contribute to the reduction of highly expressed proteins.展开更多
Environmental stresses profoundly altered accumulation of nonsense mRNAs including intron-retaining (IR) transcripts in Arabidopsis. Temporal patterns of stress-induced IR mRNAs were dissected using both oscillating...Environmental stresses profoundly altered accumulation of nonsense mRNAs including intron-retaining (IR) transcripts in Arabidopsis. Temporal patterns of stress-induced IR mRNAs were dissected using both oscillating and non-oscillating transcripts. Broad-range thermal cycles triggered a sharp increase in the long IR CCA1 isoforms and altered their phasing to different times of day. Both abiotic and biotic stresses such as drought or Pseudomonas syringae infection induced a similar increase. Thermal stress induced a time delay in accumulation of CCA1 14Rb transcripts, whereas functional mRNA showed steady oscillations. Our data favor a hypothesis that stress-induced instabilities of the central oscillator can be in part compensated through fluctuations in abundance and out-of-phase oscillations of CCA1 IR transcripts. Taken together, our results support a concept that mRNA abundance can be modulated through altering ratios between functional and nonsense/IR transcripts. SR45 protein specifically bound to the retained CCA1 intron in vitro, suggesting that this sp!icing factor could be involved in regulation of intron retention. Transcriptomes of nonsense-mediated mRNA decay (NMD)-impaired and heat-stressed plants shared a set of retained introns associated with stress- and defense-inducible transcripts. Constitutive activation of certain stress response networks in an NMD mutant could be linked to disequilibrium between functional and nonsense mRNAs.展开更多
Alternative splicing is a tightly regulated process that contributes to cancer development.CRNDE is a long noncoding RNA with alternative splicing and is implicated in the pathogenesis of several cancers.However,wheth...Alternative splicing is a tightly regulated process that contributes to cancer development.CRNDE is a long noncoding RNA with alternative splicing and is implicated in the pathogenesis of several cancers.However,whether deregulated expression of CRNDE is common and which isoforms are mainly involved in cancers remain unclear.In this study,we report that CRNDE is aberrantly expressed in the majority of solid and hematopoietic malignancies.The investigation of CRNDE expression in normal samples revealed that CRNDE was expressed in a tissue- and cell-specific manner.Further comparison of CRNDE expression in 2938 patient samples from 15 solid and hematopoietic tumors showed that CRNDE was significantly overexpressed in 11 malignancies,including 3 reported and 8 unreported,and also implicated that the overexpressed isoforms differed in various cancer types.Furthermore,anti-cancer drugs could efficiently repress CRNDE overexpression in cancer cell lines and primary samples,and even had different impacts on the expression of CRNDE isoforms.Finally,experimental profiles of 12 alternatively spliced isoforms demonstrated that the spliced variant CRNDE-g was the most highly expressed isoform in multiple cancer types.Collectively,our results emphasize the cancer-associated feature of CRNDE and its spliced isoforms,and may provide promising targets for cancer diagnosis and therapy.展开更多
Circular RNAs(circ RNAs),covalently closed continuous RNA loops,are generated from cognate linear RNAs through back splicing events,and alternative splicing events may generate different circ RNA isoforms at the same ...Circular RNAs(circ RNAs),covalently closed continuous RNA loops,are generated from cognate linear RNAs through back splicing events,and alternative splicing events may generate different circ RNA isoforms at the same locus.However,the challenges of reconstruction and quantification of alternatively spliced full-length circ RNAs remain unresolved.On the basis of the internal structural characteristics of circ RNAs,we developed Circ AST,a tool to assemble alternatively spliced circ RNA transcripts and estimate their expression by using multiple splice graphs.Simulation studies showed that Circ AST correctly assembled the full sequences of circ RNAs with a sensitivity of 85.63%–94.32%and a precision of 81.96%–87.55%.By assigning reads to specific isoforms,Circ AST quantified the expression of circ RNA isoforms with correlation coefficients of 0.85–0.99 between theoretical and estimated values.We evaluated Circ AST on an in-house mouse testis RNA-seq dataset with RNase R treatment for enriching circ RNAs and identified 380 circ RNAs with full-length sequences different from those of their corresponding cognate linear RNAs.RT-PCR and Sanger sequencing analyses validated 32 out of 37 randomly selected isoforms,thus further indicating the good performance of Circ AST,especially for isoforms with low abundance.We also applied Circ AST to published experimental data and observed substantial diversity in circular transcripts across samples,thus suggesting that circ RNA expression is highly regulated.Circ AST can be accessed freely at https://github--com.3pco.8686c.com/xiaofengsong/CircAST.展开更多
Genes encoding proteins with PHD (plant homeodomain) finger motif (C4HC3) are highly conserved from Arabidopsis to Homo sapiens. One of the major functions of these genes is regulating the expression of homeotic genes...Genes encoding proteins with PHD (plant homeodomain) finger motif (C4HC3) are highly conserved from Arabidopsis to Homo sapiens. One of the major functions of these genes is regulating the expression of homeotic genes during the stage of embryonic development. They play a role in cell-cycle and cell differentiation and seem to be related with some human malignant diseases, such as leukemia. A human placenta cDNA library has been screened with cDNA probe amplified by PCR. The PGR primers have been designed according to the M96 (a mouse gene encoding a protein with PHD domain) homologous data in dbEST.A 2. 1 kb insert fragment in a positive cDNA clone has been isolated and sequenced. This new full-length cDNA is named PHF2 (GenBank Acc: AF052205). The putative protein composed of 567 aa has two typical PHD fingers at its N-terminus. Meanwhile it is identified that there are several alternatively spliced transcripts of PHF2 in different human tissues through the PCR amplification, Northern blot展开更多
All lymphocytes depend on the cytokine IL-7 for their development and homeostasis,and cell surface expression of the IL-7 receptor is a prerequisite for responses to IL-7.1 Notably,the IL-7 receptorα-chain(IL-7Rα)do...All lymphocytes depend on the cytokine IL-7 for their development and homeostasis,and cell surface expression of the IL-7 receptor is a prerequisite for responses to IL-7.1 Notably,the IL-7 receptorα-chain(IL-7Rα)does not only exist as a membranebound form but is also found as a soluble protein in human serum.2,3 The exact role of soluble IL-7Rα(sIL-7Rα)proteins remains to be determined.However,increased amounts of sIL-7Rαhave been associated with an increased risk of inflammation and autoimmunity.3,4 Mechanistically,sIL-7Rαproteins can be generated by alternative splicing of Il7r gene transcripts that encode IL-7Rα.Curiously,however,such Il7r splice isoforms have only been described in humans and have never been described in mice.5 Consequently,the importance of Il7r alternative splice products that are not conserved across species has remained questionable.展开更多
The formation of root system architecture(RSA)plays a crucial role in plant growth.OsDRO1 is known to have a function in controlling RSA in rice,however,the role of potato StDRO2,a homolog of rice OsDRO1,in root growt...The formation of root system architecture(RSA)plays a crucial role in plant growth.OsDRO1 is known to have a function in controlling RSA in rice,however,the role of potato StDRO2,a homolog of rice OsDRO1,in root growth remains unclear.In this study,we obtained potato dro2 mutant lines by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9(CRISPR/Cas9)-mediated genome editing system.The mutant lines were generated from a splicing defect of the StDRO2 intron 1,which causes a nonsense mutation in StDRO2.Furthermore,the secondary structure of StDRO2 mRNA analyzed with RNAfold Web Server was altered in the dro2 mutant.Mutation of StDRO2 conveys potato adaptation through changing the RSA via alteration of auxin transport under drought stress.The potato dro2 lines showed higher plant height,longer root length,smaller root growth angle and increased tuber weight than the wild-type.The alteration of RSA was associated with a disturbance of IAA distribution in the dro2 mutant,and the levels of StPIN7 and StPIN10 detected by using real-time PCR were up-regulated in the roots of potato dro2 lines grown under drought stress.Moreover,the microRNAs(miRNAs)PmiREN024536 and PmiREN024486 targeted the StDRO2 gene,and auxin positively and negatively regulated the expression of StDRO2 and the miRNAs PmiREN024536 and PmiREN024486,respectively,in the potato roots.Our data shows that a regulatory network involving auxin,StDRO2,PmiREN024536 and PmiREN024486 can control RSA to convey potato fitness under drought stress.展开更多
Objectives:KH-type splicing regulatory protein(KHSRP)is an RNA-binding protein involved in several cellular processes,including nuclear splicing,mRNA localization,and cytoplasmic degradation.While KHSRP’s role has be...Objectives:KH-type splicing regulatory protein(KHSRP)is an RNA-binding protein involved in several cellular processes,including nuclear splicing,mRNA localization,and cytoplasmic degradation.While KHSRP’s role has been studied in other cancers,its specific involvement in gastric cancer remains poorly understood.This study aims to explore KHSRP expression in gastric cancer and its potential effects on tumor progression and immune response.Methods:KHSRP expression in gastric cancer tissues and normal tissues was analyzed using data from The Cancer Genome Atlas(TCGA)database.The correlation between KHSRP expression,patient survival,and immune response was also assessed.Immunohistochemistry was performed to evaluate KHSRP expression in gastric cancer tissues.Gain-and loss-of-function experiments were conducted to assess KHSRP’s effects on gastric cancer cell proliferation,stemness,and migration.Furthermore,the impact of KHSRP silencing on tumor volume and immune cell infiltration was evaluated in a C3H/He mouse xenograft model.Results:KHSRP was found to be overexpressed in gastric cancer tissues compared to normal tissues,with a positive correlation to tumor stage and a negative correlation with patient prognosis.Functional assays revealed that KHSRP promotes gastric cancer cell proliferation,enhances cancer stem cell properties,and increases migratory capabilities in vitro.In vivo,KHSRP silencing led to a significant reduction in tumor volume and increased immune cell infiltration in the mouse xenograft model.Conclusions:KHSRP acts as an oncogene in gastric cancer by promoting tumorigenesis and suppressing anti-tumor immune responses.Its overexpression is associated with poor prognosis,making KHSRP a potential prognostic marker and therapeutic target in gastric cancer.展开更多
Pentatricopeptide repeat(PPR)proteins are a large group of eukaryote-specific RNA-binding proteins that play pivotal roles in plant organelle gene expression.Here,we report the function of PPR21 in mitochondrial intro...Pentatricopeptide repeat(PPR)proteins are a large group of eukaryote-specific RNA-binding proteins that play pivotal roles in plant organelle gene expression.Here,we report the function of PPR21 in mitochondrial intron splicing and its role in maize kernel development.PPR21 is a typical P-type PPR protein targeted to mitochondria.The ppr21 mutants are arrested in embryogenesis and endosperm development,leading to embryo lethality.Null mutations of PPR21 reduce the splicing efficiency of nad2 intron 1,2,and 4 and impair the assembly and activity of mitochondrial complex I.Previous studies show that the P-type PPR protein EMP12 is required for the splicing of identical introns.However,our protein interaction analyses reveal that PPR21 does not interact with EMP12.Instead,both PPR21 and EMP12 interact with the small MutS-related(SMR)domain-containing PPR protein 1(PPR-SMR1)and the short P-type PPR protein 2(SPR2).PPR-SMR1 interacts with SPR2,and both proteins are required for the splicing of many introns in mitochondria,including nad2 intron 1,2,and 4.These results suggest that a PPR21-(PPR-SMR1/SPR2)-EMP12 complex is involved in the splicing of nad2 introns in maize mitochondria.展开更多
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re...In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.展开更多
BACKGROUND In recent years,many studies have shown that proteasome 26S subunit non-ATPase 6(PSMD6)plays an important role in the occurrence and development of malignant tumours.Unfortunately,there are no reports on th...BACKGROUND In recent years,many studies have shown that proteasome 26S subunit non-ATPase 6(PSMD6)plays an important role in the occurrence and development of malignant tumours.Unfortunately,there are no reports on the evaluation of the potential role of PSMD6 in hepatocellular carcinoma(HCC).AIM To comprehensively evaluate the overexpression pattern and clinical significance of PSMD6 in HCC tissues.METHODS This study integrated PSMD6 mRNA expression profiles from 4672 HCC and 3667 non-HCC tissues,along with immunohistochemical scores from 383 HCC and adjacent tissues,to assess PSMD6 overexpression in HCC.Clustered regularly interspaced short palindromic repeats knockout technology evaluated PSMD6’s essential role in HCC cell growth.Functional enrichment analysis explored the molecular mechanism of PSMD6 abnormalities in HCC.Drug sensitivity analysis and molecular docking analysed the effect of abnormal expression of PSMD6 on the drug sensitivity of HCC cells.RESULTS The results of 41 external and two internal datasets showed that PSMD6 mRNA(SMD=0.26,95%CI:0.09-0.42,P<0.05)and protein(SMD=2.85,95%CI:1.19-4.50,P<0.05)were significantly overexpressed in HCC tissues.The integrated analysis results showed that PSMD6 had a significant overexpression pattern in HCC tissues(SMD=0.40,95%CI:0.15-0.66,P<0.05).PSMD6 knockout inhibited HCC cell growth(chronos scores<-1).Functional enrichment implicated ribosome biogenesis and RNA splicing.Significant enrichment of signalling pathways such as RNA degradation,ribosomes,and chemical carcinogenesis—reactive oxygen species.Drug sensitivity analysis and a molecular docking model showed that high expression of PSMD6 was associated with the tolerance of HCC cells to drugs such as ML323,sepantronium bromide,and GDC0810.Overexpressed PSMD6 effectively distinguished HCC tissues(AUC=0.75,95%CI:0.71-0.79).CONCLUSION This study was the first to discover that PSMD6 was overexpressed in HCC tissues.PSMD6 is essential for the growth of HCC cells and may be involved in ribosome biogenesis and RNA splicing.展开更多
Caspases,which play key roles in cell apoptosis,undergo alternative splicing to form different splicing variants that can regulate the apoptotic process.Lepidopteran insect caspases undergo alternative splicing,althou...Caspases,which play key roles in cell apoptosis,undergo alternative splicing to form different splicing variants that can regulate the apoptotic process.Lepidopteran insect caspases undergo alternative splicing,although the functions of their splicing variants are still unclear.The Spodoptera exigua caspase-5(SeCaspase-5)gene was cloned and found to produce four different splicing variants with different gene sequences and protein functional domains,which were named SeCaspase-5a,SeCaspase-5b,SeCaspase-5c and SeCaspase-5d.Overexpression of these variants in S.exigua cells(Se-3)showed that SeCaspase-5a had a proapoptotic function,whereas SeCaspase-5b,SeCaspase-5c and SeCaspase-5d did not.Semi-qPCR analysis revealed that the expression of the SeCaspase-5 variants significantly differed during Autographa californica multiple nucleopolyhedrovirus(AcMNPV)infection.Furthermore,the SeCaspase-5 variants were constructed into the AcMNPV bacmid and transfected into Se-3 cells,which revealed that SeCaspase-5a promoted cell apoptosis and reduced virus production,whereas SeCaspase-5b,SeCaspase-5c and SeCaspase-5d did not promote cell apoptosis but instead increased virus production.Moreover,an analysis of the interactions between the SeCaspase-5 variants revealed that SeCaspase-5a directly interacted with SeCaspase-5b,SeCaspase-5c and SeCaspase-5d.Coexpression of these variants in Se-3 cells also revealed that SeCaspase-5b,SeCaspase-5c and SeCaspase-5d inhibited the proapoptotic function of SeCaspase-5a,resulting in a reduction in the percentage of apoptotic cells by about 20%.These results indicate that SeCaspase-5 undergoes alternative splicing and is involved in regulating the apoptosis induced by baculovirus infection.These findings increase our understanding of the functions of lepidopteran insect caspases and provide new insights into the mechanism of host-cell apoptosis induced by baculoviruses.展开更多
ObjectivesThe PTPRQ gene is essential for preserving the structure and function of stereocilia in inner ear.However,research on splicing mutations within this gene is limited.This study aims to investigate novel splic...ObjectivesThe PTPRQ gene is essential for preserving the structure and function of stereocilia in inner ear.However,research on splicing mutations within this gene is limited.This study aims to investigate novel splicing mutations in PTPRQ,clarify their molecular mechanisms,and provide new insights into the genetic factors associated with hearing loss,ultimately enhancing diagnostic accuracy.MethodClinical data and peripheral blood samples were obtained from members of a family with congenital hearing loss.Variants were identified through high-throughput sequencing and confirmed by Sanger sequencing to ensure genealogical co-segregation.The splicing effects of PTPRQ variants were evaluated using bioinformatics tools and minigene assays.ResultsWe used whole exome sequencing to identify novel double compound heterozygous splice-altering variants(c.5426+1 G>A and c.6603-3 T>G)in the PTPRQ gene with DFNB84A.We molecularly characterized these variants,and they were found to co-segregate with the disease within the family.Minigene assays and Sanger sequencing confirmed that the c.6603-3 T>G variant caused exon 43 skipping,resulting in a frameshift mutation(p.Ser2201ArgfsTer112).Further bioinformatic analysis supported these findings.ConclusionsThis study identifies a novel compound heterozygous splicing variant in the PTPRQ gene in a Chinese family with DFNB84A,expanding the known spectrum of PTPRQ mutations.These findings enhance the understanding of PTPRQ-related hearing loss and may aid in early diagnosis,prevention,and therapeutic strategies.展开更多
The plant circadian clock temporally drives gene expression throughout the day and coordinates various physiological processes with diurnal environmental changes. It is essential for conferring plant fitness and compe...The plant circadian clock temporally drives gene expression throughout the day and coordinates various physiological processes with diurnal environmental changes. It is essential for conferring plant fitness and competitive advantages to survive and thrive under natural conditions through the circadian control of gene transcription. Chinese cabbage(Brassica rapa ssp. pekinensis) is an economically important vegetable crop worldwide, although there is little information concerning its circadian clock system. Here we found that gene expression patterns are affected bycircadian oscillators at both the transcriptional and post-transcriptional levels in Chinese cabbage. Time-course RNA-seq analyses were conducted on two short-period lines(SPcc-1 and SPcc-2) and two long-period lines(LPcc-1 and LPcc-2) under constant light. The results showed that 32.7–50.5% of the genes were regulated bythe circadian oscillator and the expression peaks of cycling genes appeared earlier in short-period lines than long-period lines. In addition, approximately 250 splicing events exhibited circadian regulation, with intron retention(IR) accounting for a large proportion. Rhythmically spliced genes included the clock genes LATE ELONGATEDHYPOCOTYL(BrLHY), REVEILLE 2(BrRVE2) and EARLY FLOWERING 3(BrELF3). We also found that thecircadian oscillator could notably influence the diurnal expression patterns of genes that are associated with glucose metabolism via photosynthesis, the Calvin cycle and the tricarboxylic acid(TCA) cycle at both the transcriptional andpost-transcriptional levels. The collective results of this study demonstrate that circadian-regulated physiological processes contribute to Chinese cabbage growth and development.展开更多
Background:Alterations in splicing factors contribute to aberrant alternative splicing(AS),which subsequently promotes tumor progression.The splicing factor polypyrimidine tract binding protein 1(PTBP1)has been shown ...Background:Alterations in splicing factors contribute to aberrant alternative splicing(AS),which subsequently promotes tumor progression.The splicing factor polypyrimidine tract binding protein 1(PTBP1)has been shown to facilitate cancer progression by modulating oncogenic variants.However,its specific role and underlying mechanisms in hepatocellular carcinoma(HCC)remain to be elucidated.Methods:PTBP1 expression was evaluated in HCC tissues and cell lines.Subsequently,cells were transfected with vectors designed for PTBP1 overexpression or downregulation.The biological function of PTBP1 was assessed in vitro and in vivo using MTS assays,colony formation assays,transwell assays,xenograft formation,tail vein injection,and orthotopic models.Transcriptome analysis was conducted to elucidate the underlying molecular mechanisms.Results:Our findings demonstrated that PTBP1 exhibited elevated expression in HCC cell lines and tissues.Furthermore,its expression positively correlated with overall and disease-free survival rates,as well as tumor grade and stage.PTBP1 knockdown reduced HCC cell proliferation,migration,and invasion in vitro and suppressed hepatocarcinoma xenograft growth and infiltration in vivo.RNA sequencing(RNA-Seq)analysis identified the AS events associated with PTBP1.PTBP1 functionally enhanced cell proliferation,invasion,and migration by modulating the AS of the microtubule-associated protein tau(MAPT)gene and promoting oncogene expression.Notably,the dysregulation of MAPT splicing coincided with increased PTBP1 expression in HCC.Conclusions:PTBP1-guided AS of the MAPT gene enhances tumorigenicity in HCC through activation of the MAPK/ERK pathways.展开更多
基金funded by Guizhou Province Science and Technology Plan Project Qiankehe Foundation-ZK[2023]General 360,362Science and Technology Fund project of Guizhou Provincial Health Commission(gzwkj-2022-09,gzwkj-2023-035)+1 种基金National Natural Science Foundation Cultivation Project of Guizhou Medical University(21NSFCP14,gyfynsfc-2022-25)The PhD Scientific Research Launch Fund Project of the Affiliated Hospital of Guizhou Medical University(gyfybsky-2022-02).
文摘Background:Glioblastoma(GBM)is one of the most malignant types of central nervous system tumors.Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression.However,the mechanisms of hypoxia-promoted tumor progression remain elusive.Methods:Alternative splicing of diacylglycerol kinase gamma(DGKG)-Δexon13 was amplified and verified by PCR-Sanger sequencing.The functions of DGKG and DGKG-Δexon13 were analyzed by Cell counting kit-8(CCK-8),Transwell,Matrigeltranswell experiments,and in vivo orthotropic GBM animal models.Transcriptome analyses were done to find out the regulated genes.Results:In this study,we found that a new transcript DGKG-Δexon13 was generated in GBM under hypoxia via alternative splicing.Moreover,the results of CCK-8,Transwell,and Matrigel-transwell experiments showed that the proliferation,migration,and invasion abilities of U87-MG and T98G were decreased after DGKG knockdown.Compared to wild-type DGKG,DGKG-Δexon13 overexpression significantly promoted cellular proliferation,migration,and invasion abilities in GBM.Furthermore,in vivo,orthotropic GBM animal models analysis showed that the tumor volumes were much smaller in the DGKG knockdown group.However,the tumor sizes in the DGKG and DGKG-Δexon13 rescue groups were restored,especially in the DGKG-Δexon13 group.Transcriptome analysis revealed that MORC1,KLHDC7B,ATP1A2,INHBE,TMEM119,and FGD3 were altered significantly when DGKG was knocked down.IL-16,CCN2,and EFNB3 were specifically regulated by DGKG-Δexon13.Conclusions:Our study found that hypoxia-induced alternative splicing transcript DGKG-Δexon13 promotes GBM proliferation and infiltration,which might provide a new potential target for the clinical treatment and diagnosis of GBM.
文摘The tensile property of the spliced yarn splice under different splicing conditions has been investigated. The retained spliced strength of the splice spliced under different splicing conditions was obtained as the indicator for the performance of the splicer under that particular splicing condition. The results showed that, the length of the yarn tails and the yarn linear density are the parameters that has the most important effect to the tensile property of the spliced yarn.
文摘Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the whole range of the losses using a standard loss distribution. We tackle this modeling problem by proposing a three-component spliced regression model that can simultaneously model zeros, moderate and large losses and consider heterogeneous effects in mixture components. To apply our proposed model to Privacy Right Clearinghouse (PRC) data breach chronology, we segment geographical groups using unsupervised cluster analysis, and utilize a covariate-dependent probability to model zero losses, finite mixture distributions for moderate body and an extreme value distribution for large losses capturing the heavy-tailed nature of the loss data. Parameters and coefficients are estimated using the Expectation-Maximization (EM) algorithm. Combining with our frequency model (generalized linear mixed model) for data breaches, aggregate loss distributions are investigated and applications on cyber insurance pricing and risk management are discussed.
基金supported by the National Basic Research Program of China (973 Program) (No 2006CB943601)the National Natural Science Foundation of China (NSFC) (No 90919042)
文摘OCT4 is one of the key transcription factors in maintaining the pluripotency and self-renewal of embryonic stem (ES) cells.Human OCT4 can generate two isoforms OCT4A and OCT4B by alternative splicing.OCT4B1 is a recently discovered novel OCT4 spliced variant,which has been considered as a putative marker of stemness.Compared with the OCT4B mRNA,OCT4B1 mRNA is generated by retaining intron 2 as a cryptic exon which contains a TGA stop codon in it.As a result,the protein product of OCT4B1 mRNA could be truncated.Interestingly,we present here that OCT4B1 can indirectly produce the same protein products as OCT4B.We have demonstrated that OCT4B1 mRNA can be spliced into OCT4B mRNA,and encode three protein isoforms.The splicing of OCT4B1 mRNA into OCT4B mRNA can be remarkably inhibited by the mutation of the classical splicing site.Our result suggests that OCT4B mRNA may originate from OCT4B1 mRNA by alternative splicing.
文摘The analysis of spliced column has been carried out to detect optimum location of providing splices in the column.In the present work,static and dynamic(free vibration)analyses of spliced column have been done by randomising the location of splicing.A symmetrical four storey steel framed building has been modelled,analysed and designed for loads(dead,live and earthquake loads)recommended by Indian Codal provisions using Staad.Pro.The critical column at each floor level is identified based on axial force(AF),bending moment(BM)and shear force(SF).The total 16 models of spliced columns have been designed and then modelled in a 3D CAD Design tool(SOLIDWORKS)and then imported in the finite element tool(ANSYSWorkbench 14.0)for detailed analysis.The variation of stress,strain and deflection of the spliced column are shown in the form of contour.Further,the modal analysis is performed to determine the natural frequencies.The results of static and dynamic analyses are compared for each modelled spliced column to obtain the optimum location for providing splices in the column.The dynamic analysis of spliced column is of utmost importance in the region where dynamic loadings like earthquake,cyclones etc.are more frequent,and mere static analysis does not account for the safety of the structure.This study will help the engineers to select directly the optimum size and location of the splices in the column of a steel framed building.
基金the National Natural Science Foundation of China (No. 60171038) and the Science and Technology Ministry of China (No. 2001CCA01400)
文摘In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage data analysis indicates that G- and C-ending codons are predominant in the genes. The base usage in all three codon positions suggests a selection-mutation balance. Multivariate statistical analysis reveals that the codon usage variation has a strong positive correlation with the expressivities of the genes (r=0.5790, P<0.0001). All 27 codons identified as optimal are G- and C-ending codons. Correlation analysis shows a strong negative correlation between the gene length and codon adaptation index value (r=0.2252, P<0.0001), and a significantly positive correlation between the gene length and Nc values (r=0.1876, P<0.0001). These results suggest that the comparatively shorter genes in the genes have higher codon usage bias to maximize translational efficiency, and selection may also contribute to the reduction of highly expressed proteins.
文摘Environmental stresses profoundly altered accumulation of nonsense mRNAs including intron-retaining (IR) transcripts in Arabidopsis. Temporal patterns of stress-induced IR mRNAs were dissected using both oscillating and non-oscillating transcripts. Broad-range thermal cycles triggered a sharp increase in the long IR CCA1 isoforms and altered their phasing to different times of day. Both abiotic and biotic stresses such as drought or Pseudomonas syringae infection induced a similar increase. Thermal stress induced a time delay in accumulation of CCA1 14Rb transcripts, whereas functional mRNA showed steady oscillations. Our data favor a hypothesis that stress-induced instabilities of the central oscillator can be in part compensated through fluctuations in abundance and out-of-phase oscillations of CCA1 IR transcripts. Taken together, our results support a concept that mRNA abundance can be modulated through altering ratios between functional and nonsense/IR transcripts. SR45 protein specifically bound to the retained CCA1 intron in vitro, suggesting that this sp!icing factor could be involved in regulation of intron retention. Transcriptomes of nonsense-mediated mRNA decay (NMD)-impaired and heat-stressed plants shared a set of retained introns associated with stress- and defense-inducible transcripts. Constitutive activation of certain stress response networks in an NMD mutant could be linked to disequilibrium between functional and nonsense mRNAs.
基金National Natural Science Foundation of China (Nos.81530003,81300403,81770153 and 91440114)The National Key Research and Development Program (No.2016YFC0902800)+1 种基金Shanghai Leading Talent Projects (No.2015008)the Academic Leader Program of Shanghai Science and Technology Committee (No.2015137).
文摘Alternative splicing is a tightly regulated process that contributes to cancer development.CRNDE is a long noncoding RNA with alternative splicing and is implicated in the pathogenesis of several cancers.However,whether deregulated expression of CRNDE is common and which isoforms are mainly involved in cancers remain unclear.In this study,we report that CRNDE is aberrantly expressed in the majority of solid and hematopoietic malignancies.The investigation of CRNDE expression in normal samples revealed that CRNDE was expressed in a tissue- and cell-specific manner.Further comparison of CRNDE expression in 2938 patient samples from 15 solid and hematopoietic tumors showed that CRNDE was significantly overexpressed in 11 malignancies,including 3 reported and 8 unreported,and also implicated that the overexpressed isoforms differed in various cancer types.Furthermore,anti-cancer drugs could efficiently repress CRNDE overexpression in cancer cell lines and primary samples,and even had different impacts on the expression of CRNDE isoforms.Finally,experimental profiles of 12 alternatively spliced isoforms demonstrated that the spliced variant CRNDE-g was the most highly expressed isoform in multiple cancer types.Collectively,our results emphasize the cancer-associated feature of CRNDE and its spliced isoforms,and may provide promising targets for cancer diagnosis and therapy.
基金the National Natural Science Foundation of China(Grant No.61571223)the National Key R&D Program of China(Grant No.2016YFA0503300)+4 种基金supported by the National Natural Science Foundation of China(Grant Nos.61171191,31471403,and 81771641)the 333 Project of Jiangsu Province(Grant No.BRA2016386)the Program for Distinguished Talents of Six Domains in Jiangsu Province(Grant No.YY-019)the Fundamental Research Funds for the Central Universities(Grant No.NP2018109)the Fok Ying Tung Education Foundation(Grant No.161037),China.
文摘Circular RNAs(circ RNAs),covalently closed continuous RNA loops,are generated from cognate linear RNAs through back splicing events,and alternative splicing events may generate different circ RNA isoforms at the same locus.However,the challenges of reconstruction and quantification of alternatively spliced full-length circ RNAs remain unresolved.On the basis of the internal structural characteristics of circ RNAs,we developed Circ AST,a tool to assemble alternatively spliced circ RNA transcripts and estimate their expression by using multiple splice graphs.Simulation studies showed that Circ AST correctly assembled the full sequences of circ RNAs with a sensitivity of 85.63%–94.32%and a precision of 81.96%–87.55%.By assigning reads to specific isoforms,Circ AST quantified the expression of circ RNA isoforms with correlation coefficients of 0.85–0.99 between theoretical and estimated values.We evaluated Circ AST on an in-house mouse testis RNA-seq dataset with RNase R treatment for enriching circ RNAs and identified 380 circ RNAs with full-length sequences different from those of their corresponding cognate linear RNAs.RT-PCR and Sanger sequencing analyses validated 32 out of 37 randomly selected isoforms,thus further indicating the good performance of Circ AST,especially for isoforms with low abundance.We also applied Circ AST to published experimental data and observed substantial diversity in circular transcripts across samples,thus suggesting that circ RNA expression is highly regulated.Circ AST can be accessed freely at https://github--com.3pco.8686c.com/xiaofengsong/CircAST.
文摘Genes encoding proteins with PHD (plant homeodomain) finger motif (C4HC3) are highly conserved from Arabidopsis to Homo sapiens. One of the major functions of these genes is regulating the expression of homeotic genes during the stage of embryonic development. They play a role in cell-cycle and cell differentiation and seem to be related with some human malignant diseases, such as leukemia. A human placenta cDNA library has been screened with cDNA probe amplified by PCR. The PGR primers have been designed according to the M96 (a mouse gene encoding a protein with PHD domain) homologous data in dbEST.A 2. 1 kb insert fragment in a positive cDNA clone has been isolated and sequenced. This new full-length cDNA is named PHF2 (GenBank Acc: AF052205). The putative protein composed of 567 aa has two typical PHD fingers at its N-terminus. Meanwhile it is identified that there are several alternatively spliced transcripts of PHF2 in different human tissues through the PCR amplification, Northern blot
基金supported by the Intramural Research Program of the US National Institutes of Health,the National Cancer Institute,the Center for Cancer Researchthe Financial Support Project,Long-Term Overseas Dispatch,Tenure-Track Faculty,Pusan National University.
文摘All lymphocytes depend on the cytokine IL-7 for their development and homeostasis,and cell surface expression of the IL-7 receptor is a prerequisite for responses to IL-7.1 Notably,the IL-7 receptorα-chain(IL-7Rα)does not only exist as a membranebound form but is also found as a soluble protein in human serum.2,3 The exact role of soluble IL-7Rα(sIL-7Rα)proteins remains to be determined.However,increased amounts of sIL-7Rαhave been associated with an increased risk of inflammation and autoimmunity.3,4 Mechanistically,sIL-7Rαproteins can be generated by alternative splicing of Il7r gene transcripts that encode IL-7Rα.Curiously,however,such Il7r splice isoforms have only been described in humans and have never been described in mice.5 Consequently,the importance of Il7r alternative splice products that are not conserved across species has remained questionable.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.32260085,31860064,31660501,31970609,32260718 and 31901870)the Key Projects of the Applied Basic Research Plan of Yunnan Province(Grant No.202301AS070082)+3 种基金the Start-up fund from Xishuangbanna Tropical Botanical Garden,the‘Top Talents Program in Science and Technology’from Yunnan Province,the Major Science and Technology Project in Yunnan Province(Grant Nos.202102AE090042 and 202202AE090036)the Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program in Yunnan Province(Grant No.202205AC160076)China Postdoctoral Science Foundation(Grant No.2019M653849XB)the High-level Talents Introduction Plan of Yunnan Province-Young Talents Special Project。
文摘The formation of root system architecture(RSA)plays a crucial role in plant growth.OsDRO1 is known to have a function in controlling RSA in rice,however,the role of potato StDRO2,a homolog of rice OsDRO1,in root growth remains unclear.In this study,we obtained potato dro2 mutant lines by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9(CRISPR/Cas9)-mediated genome editing system.The mutant lines were generated from a splicing defect of the StDRO2 intron 1,which causes a nonsense mutation in StDRO2.Furthermore,the secondary structure of StDRO2 mRNA analyzed with RNAfold Web Server was altered in the dro2 mutant.Mutation of StDRO2 conveys potato adaptation through changing the RSA via alteration of auxin transport under drought stress.The potato dro2 lines showed higher plant height,longer root length,smaller root growth angle and increased tuber weight than the wild-type.The alteration of RSA was associated with a disturbance of IAA distribution in the dro2 mutant,and the levels of StPIN7 and StPIN10 detected by using real-time PCR were up-regulated in the roots of potato dro2 lines grown under drought stress.Moreover,the microRNAs(miRNAs)PmiREN024536 and PmiREN024486 targeted the StDRO2 gene,and auxin positively and negatively regulated the expression of StDRO2 and the miRNAs PmiREN024536 and PmiREN024486,respectively,in the potato roots.Our data shows that a regulatory network involving auxin,StDRO2,PmiREN024536 and PmiREN024486 can control RSA to convey potato fitness under drought stress.
基金Supported by the Jiangxi Provincial Health Technology Project(No.202130037 to CWL)was also sponsored by the Jiangxi Provincial Health Technology Project(No.202410009 to SHL)。
文摘Objectives:KH-type splicing regulatory protein(KHSRP)is an RNA-binding protein involved in several cellular processes,including nuclear splicing,mRNA localization,and cytoplasmic degradation.While KHSRP’s role has been studied in other cancers,its specific involvement in gastric cancer remains poorly understood.This study aims to explore KHSRP expression in gastric cancer and its potential effects on tumor progression and immune response.Methods:KHSRP expression in gastric cancer tissues and normal tissues was analyzed using data from The Cancer Genome Atlas(TCGA)database.The correlation between KHSRP expression,patient survival,and immune response was also assessed.Immunohistochemistry was performed to evaluate KHSRP expression in gastric cancer tissues.Gain-and loss-of-function experiments were conducted to assess KHSRP’s effects on gastric cancer cell proliferation,stemness,and migration.Furthermore,the impact of KHSRP silencing on tumor volume and immune cell infiltration was evaluated in a C3H/He mouse xenograft model.Results:KHSRP was found to be overexpressed in gastric cancer tissues compared to normal tissues,with a positive correlation to tumor stage and a negative correlation with patient prognosis.Functional assays revealed that KHSRP promotes gastric cancer cell proliferation,enhances cancer stem cell properties,and increases migratory capabilities in vitro.In vivo,KHSRP silencing led to a significant reduction in tumor volume and increased immune cell infiltration in the mouse xenograft model.Conclusions:KHSRP acts as an oncogene in gastric cancer by promoting tumorigenesis and suppressing anti-tumor immune responses.Its overexpression is associated with poor prognosis,making KHSRP a potential prognostic marker and therapeutic target in gastric cancer.
基金supported by the National Natural Science Foundation of China(32072126 and 32230075)the Shandong Provincial Natural Science Foundation(ZR2019MC005).
文摘Pentatricopeptide repeat(PPR)proteins are a large group of eukaryote-specific RNA-binding proteins that play pivotal roles in plant organelle gene expression.Here,we report the function of PPR21 in mitochondrial intron splicing and its role in maize kernel development.PPR21 is a typical P-type PPR protein targeted to mitochondria.The ppr21 mutants are arrested in embryogenesis and endosperm development,leading to embryo lethality.Null mutations of PPR21 reduce the splicing efficiency of nad2 intron 1,2,and 4 and impair the assembly and activity of mitochondrial complex I.Previous studies show that the P-type PPR protein EMP12 is required for the splicing of identical introns.However,our protein interaction analyses reveal that PPR21 does not interact with EMP12.Instead,both PPR21 and EMP12 interact with the small MutS-related(SMR)domain-containing PPR protein 1(PPR-SMR1)and the short P-type PPR protein 2(SPR2).PPR-SMR1 interacts with SPR2,and both proteins are required for the splicing of many introns in mitochondria,including nad2 intron 1,2,and 4.These results suggest that a PPR21-(PPR-SMR1/SPR2)-EMP12 complex is involved in the splicing of nad2 introns in maize mitochondria.
文摘In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.
基金Supported by National Natural Science Foundation of China,No.82160762Guangxi Zhuang Autonomous Region Administration of Traditional Chinese Medicine Scientific Research Project,No.GXZYA20230267+2 种基金China Undergraduate Innovation and Entrepreneurship Training Program,No.S202410598060XChina Undergraduate Innovation and Entrepreneurship Training Program,No.X202410598360Future Academic Star of Guangxi Medical University,No.WLXSZX24074.
文摘BACKGROUND In recent years,many studies have shown that proteasome 26S subunit non-ATPase 6(PSMD6)plays an important role in the occurrence and development of malignant tumours.Unfortunately,there are no reports on the evaluation of the potential role of PSMD6 in hepatocellular carcinoma(HCC).AIM To comprehensively evaluate the overexpression pattern and clinical significance of PSMD6 in HCC tissues.METHODS This study integrated PSMD6 mRNA expression profiles from 4672 HCC and 3667 non-HCC tissues,along with immunohistochemical scores from 383 HCC and adjacent tissues,to assess PSMD6 overexpression in HCC.Clustered regularly interspaced short palindromic repeats knockout technology evaluated PSMD6’s essential role in HCC cell growth.Functional enrichment analysis explored the molecular mechanism of PSMD6 abnormalities in HCC.Drug sensitivity analysis and molecular docking analysed the effect of abnormal expression of PSMD6 on the drug sensitivity of HCC cells.RESULTS The results of 41 external and two internal datasets showed that PSMD6 mRNA(SMD=0.26,95%CI:0.09-0.42,P<0.05)and protein(SMD=2.85,95%CI:1.19-4.50,P<0.05)were significantly overexpressed in HCC tissues.The integrated analysis results showed that PSMD6 had a significant overexpression pattern in HCC tissues(SMD=0.40,95%CI:0.15-0.66,P<0.05).PSMD6 knockout inhibited HCC cell growth(chronos scores<-1).Functional enrichment implicated ribosome biogenesis and RNA splicing.Significant enrichment of signalling pathways such as RNA degradation,ribosomes,and chemical carcinogenesis—reactive oxygen species.Drug sensitivity analysis and a molecular docking model showed that high expression of PSMD6 was associated with the tolerance of HCC cells to drugs such as ML323,sepantronium bromide,and GDC0810.Overexpressed PSMD6 effectively distinguished HCC tissues(AUC=0.75,95%CI:0.71-0.79).CONCLUSION This study was the first to discover that PSMD6 was overexpressed in HCC tissues.PSMD6 is essential for the growth of HCC cells and may be involved in ribosome biogenesis and RNA splicing.
基金funded by the National Natural Science Foundation of China(32202393)the Natural Science Foundation of Shandong Province,China(ZR2021QC190)+1 种基金the Science and Technology Benefiting the People Demonstration Project of Qingdao,China(24-1-8-xdny-10-nsh)the Qingdao Agricultural University High-level Talent Fund,China(663/1120101)。
文摘Caspases,which play key roles in cell apoptosis,undergo alternative splicing to form different splicing variants that can regulate the apoptotic process.Lepidopteran insect caspases undergo alternative splicing,although the functions of their splicing variants are still unclear.The Spodoptera exigua caspase-5(SeCaspase-5)gene was cloned and found to produce four different splicing variants with different gene sequences and protein functional domains,which were named SeCaspase-5a,SeCaspase-5b,SeCaspase-5c and SeCaspase-5d.Overexpression of these variants in S.exigua cells(Se-3)showed that SeCaspase-5a had a proapoptotic function,whereas SeCaspase-5b,SeCaspase-5c and SeCaspase-5d did not.Semi-qPCR analysis revealed that the expression of the SeCaspase-5 variants significantly differed during Autographa californica multiple nucleopolyhedrovirus(AcMNPV)infection.Furthermore,the SeCaspase-5 variants were constructed into the AcMNPV bacmid and transfected into Se-3 cells,which revealed that SeCaspase-5a promoted cell apoptosis and reduced virus production,whereas SeCaspase-5b,SeCaspase-5c and SeCaspase-5d did not promote cell apoptosis but instead increased virus production.Moreover,an analysis of the interactions between the SeCaspase-5 variants revealed that SeCaspase-5a directly interacted with SeCaspase-5b,SeCaspase-5c and SeCaspase-5d.Coexpression of these variants in Se-3 cells also revealed that SeCaspase-5b,SeCaspase-5c and SeCaspase-5d inhibited the proapoptotic function of SeCaspase-5a,resulting in a reduction in the percentage of apoptotic cells by about 20%.These results indicate that SeCaspase-5 undergoes alternative splicing and is involved in regulating the apoptosis induced by baculovirus infection.These findings increase our understanding of the functions of lepidopteran insect caspases and provide new insights into the mechanism of host-cell apoptosis induced by baculoviruses.
基金supported in part by the Natural Science Foundation of Shandong Province(no.ZR2022QH373,ZR2022QH292 and ZR2023MH2474).
文摘ObjectivesThe PTPRQ gene is essential for preserving the structure and function of stereocilia in inner ear.However,research on splicing mutations within this gene is limited.This study aims to investigate novel splicing mutations in PTPRQ,clarify their molecular mechanisms,and provide new insights into the genetic factors associated with hearing loss,ultimately enhancing diagnostic accuracy.MethodClinical data and peripheral blood samples were obtained from members of a family with congenital hearing loss.Variants were identified through high-throughput sequencing and confirmed by Sanger sequencing to ensure genealogical co-segregation.The splicing effects of PTPRQ variants were evaluated using bioinformatics tools and minigene assays.ResultsWe used whole exome sequencing to identify novel double compound heterozygous splice-altering variants(c.5426+1 G>A and c.6603-3 T>G)in the PTPRQ gene with DFNB84A.We molecularly characterized these variants,and they were found to co-segregate with the disease within the family.Minigene assays and Sanger sequencing confirmed that the c.6603-3 T>G variant caused exon 43 skipping,resulting in a frameshift mutation(p.Ser2201ArgfsTer112).Further bioinformatic analysis supported these findings.ConclusionsThis study identifies a novel compound heterozygous splicing variant in the PTPRQ gene in a Chinese family with DFNB84A,expanding the known spectrum of PTPRQ mutations.These findings enhance the understanding of PTPRQ-related hearing loss and may aid in early diagnosis,prevention,and therapeutic strategies.
基金supported by the Science and Technology Program of Hebei Province, China (236Z2903G)the Innovative Research Group Project of Hebei Natural Science Foundation, China (C2024204246)+1 种基金the Hebei International Joint Research Center of Vegetable Functional Genomicsthe International Joint R&D Center of Hebei Province in Modern Agricultural Biotechnology for supporting this work。
文摘The plant circadian clock temporally drives gene expression throughout the day and coordinates various physiological processes with diurnal environmental changes. It is essential for conferring plant fitness and competitive advantages to survive and thrive under natural conditions through the circadian control of gene transcription. Chinese cabbage(Brassica rapa ssp. pekinensis) is an economically important vegetable crop worldwide, although there is little information concerning its circadian clock system. Here we found that gene expression patterns are affected bycircadian oscillators at both the transcriptional and post-transcriptional levels in Chinese cabbage. Time-course RNA-seq analyses were conducted on two short-period lines(SPcc-1 and SPcc-2) and two long-period lines(LPcc-1 and LPcc-2) under constant light. The results showed that 32.7–50.5% of the genes were regulated bythe circadian oscillator and the expression peaks of cycling genes appeared earlier in short-period lines than long-period lines. In addition, approximately 250 splicing events exhibited circadian regulation, with intron retention(IR) accounting for a large proportion. Rhythmically spliced genes included the clock genes LATE ELONGATEDHYPOCOTYL(BrLHY), REVEILLE 2(BrRVE2) and EARLY FLOWERING 3(BrELF3). We also found that thecircadian oscillator could notably influence the diurnal expression patterns of genes that are associated with glucose metabolism via photosynthesis, the Calvin cycle and the tricarboxylic acid(TCA) cycle at both the transcriptional andpost-transcriptional levels. The collective results of this study demonstrate that circadian-regulated physiological processes contribute to Chinese cabbage growth and development.
基金supported by the National Natural Science Foundation of China(Nos.81972771,82173062)the Key Areas Project of Education Department of Guangdong Province(No.2021ZDZX2017)+3 种基金the Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau(No.202235387)the Guangzhou Science and Technology Project of Guangzhou Municipal Science and Technology Bureau(No.2023A03J0428)the Natural Science Foundation of Guangdong Province,China(No.2024A1515013082)the Guangdong Basic and Applied Basic Research 21 Foundation(No.2021A1515010403).
文摘Background:Alterations in splicing factors contribute to aberrant alternative splicing(AS),which subsequently promotes tumor progression.The splicing factor polypyrimidine tract binding protein 1(PTBP1)has been shown to facilitate cancer progression by modulating oncogenic variants.However,its specific role and underlying mechanisms in hepatocellular carcinoma(HCC)remain to be elucidated.Methods:PTBP1 expression was evaluated in HCC tissues and cell lines.Subsequently,cells were transfected with vectors designed for PTBP1 overexpression or downregulation.The biological function of PTBP1 was assessed in vitro and in vivo using MTS assays,colony formation assays,transwell assays,xenograft formation,tail vein injection,and orthotopic models.Transcriptome analysis was conducted to elucidate the underlying molecular mechanisms.Results:Our findings demonstrated that PTBP1 exhibited elevated expression in HCC cell lines and tissues.Furthermore,its expression positively correlated with overall and disease-free survival rates,as well as tumor grade and stage.PTBP1 knockdown reduced HCC cell proliferation,migration,and invasion in vitro and suppressed hepatocarcinoma xenograft growth and infiltration in vivo.RNA sequencing(RNA-Seq)analysis identified the AS events associated with PTBP1.PTBP1 functionally enhanced cell proliferation,invasion,and migration by modulating the AS of the microtubule-associated protein tau(MAPT)gene and promoting oncogene expression.Notably,the dysregulation of MAPT splicing coincided with increased PTBP1 expression in HCC.Conclusions:PTBP1-guided AS of the MAPT gene enhances tumorigenicity in HCC through activation of the MAPK/ERK pathways.