Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic C...Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting.展开更多
Matter-wave interferometers with spin quantum states are attractive in quantum manipulation and precision measurements. Here, five spatial interference patterns corresponding to the full spin states are observed in ea...Matter-wave interferometers with spin quantum states are attractive in quantum manipulation and precision measurements. Here, five spatial interference patterns corresponding to the full spin states are observed in each run of the experiment, by the combination of the Majorana transition according to the exponential modulation of the magnetic field pulse decline curve and radio frequency coupling among multiple magnetic sub-states.Compared to the realization of two Majorana transitions, the interference fringe for the magnetic field insensitive state also has a higher contrast. After spatially overlapping the full magnetic sub-state interference patterns dozens of times in consecutive experimental measurements, clear fringes are still observed, indicating the great stability of the relative phases of different components. This indicates the potential to achieve an interferometer with multiple spin clocks.展开更多
The effect of rare earth ion Er 3+ on myoglobin(Mb) was studied by using Resonance Raman spectroscopy. The results show that with the variation of Er 3+ concentrations, both the oxidation state and spin state of Mb ar...The effect of rare earth ion Er 3+ on myoglobin(Mb) was studied by using Resonance Raman spectroscopy. The results show that with the variation of Er 3+ concentrations, both the oxidation state and spin state of Mb are sensitive to the perturbation of Er 3+ . Er 3+ added to Mb affects the oxidation and spin state synchronously. The structure sensitive groups of Mb are more accessible to the Er 3+ than other groups. According to the fluorometry and CD spectra studied and our results as mentioned above, we considered that Er 3+ does not interact with heme directly, and Er 3+ probably leads to the conformational changes of Mb due to the change of oxidation and spin state of Heme. [WT5HZ]展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52002294 and 52202111)the Key Research and Development Program of Hubei Province(No.2021BAA208)+3 种基金the Knowledge Innovation Program of Wuhan-Shuguang Project(No.2022010801020364)City University of Hong Kong Donation Research Grant(No.DON-RMG 9229021)City University of Hong Kong Donation Grant(No.9220061)City University of Hong Kong Strategic Research Grant(SRG)(No.7005505)。
文摘Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301501the National Natural Science Foundation of China under Grant Nos 61727819 and 91736208
文摘Matter-wave interferometers with spin quantum states are attractive in quantum manipulation and precision measurements. Here, five spatial interference patterns corresponding to the full spin states are observed in each run of the experiment, by the combination of the Majorana transition according to the exponential modulation of the magnetic field pulse decline curve and radio frequency coupling among multiple magnetic sub-states.Compared to the realization of two Majorana transitions, the interference fringe for the magnetic field insensitive state also has a higher contrast. After spatially overlapping the full magnetic sub-state interference patterns dozens of times in consecutive experimental measurements, clear fringes are still observed, indicating the great stability of the relative phases of different components. This indicates the potential to achieve an interferometer with multiple spin clocks.
文摘The effect of rare earth ion Er 3+ on myoglobin(Mb) was studied by using Resonance Raman spectroscopy. The results show that with the variation of Er 3+ concentrations, both the oxidation state and spin state of Mb are sensitive to the perturbation of Er 3+ . Er 3+ added to Mb affects the oxidation and spin state synchronously. The structure sensitive groups of Mb are more accessible to the Er 3+ than other groups. According to the fluorometry and CD spectra studied and our results as mentioned above, we considered that Er 3+ does not interact with heme directly, and Er 3+ probably leads to the conformational changes of Mb due to the change of oxidation and spin state of Heme. [WT5HZ]