期刊文献+
共找到921篇文章
< 1 2 47 >
每页显示 20 50 100
Spin-orbit-controlled metal-insulator transition in metastable SrIrO_(3)stabilized by physical and chemical pressures
1
作者 Jinjin Yang Chuanhui Zhu +6 位作者 Shuang Zhao Tao Xia Pengfei Tan Yutian Zhang Mei-Huan Zhao Yijie Zeng Man-Rong Li 《Chinese Chemical Letters》 2025年第6期693-698,共6页
Spin-orbit coupling(SOC)plays a vital role in determining the ground state and forming novel electronic states of matter where heavy elements are involved.Here,the prototypical perovskite iridate oxide SrIrO_(3)is inv... Spin-orbit coupling(SOC)plays a vital role in determining the ground state and forming novel electronic states of matter where heavy elements are involved.Here,the prototypical perovskite iridate oxide SrIrO_(3)is investigated to gain more insights into the SOC effect in the modification of electronic structure and corresponding magnetic and electrical properties.The high pressure metastable orthorhombic SrIrO_(3)is successfully stabilized by physical and chemical pressures,in which the chemical pressure is induced by Ru doping in Ir site and Mg substitution of Sr position.Detailed structural,magnetic,electrical characterizations and density functional theory(DFT)calculations reveal that the substitution of Ru for Ir renders an enhanced metallic characteristic,while the introduction of Mg into Sr site results in an insulating state with 10.1%negative magnetoresistance at 10 K under 7 T.Theoretical calculations indicate that Ru doping can weaken the SOC effect,leading to the decrease of orbital energy difference between J_(1/2)and J_(3/2),which is favorable for electron transport.On the contrary,Mg doping can enhance the SOC effect,inducing a metal-insulator-transition(MIT).The electronic phase transition is further revealed by DFT calculations,confirming that the strong SOC and electron-electron interactions can lead to the emergence of insulating state.These findings underline the intricate correlations between lattice degrees of freedom and SOC in determining the ground state,which effectively stimulate the physical pressure between like structures by chemical compression. 展开更多
关键词 Chemical pressure spin-orbit coupling METAL-INSULATOR-TRANSITION MAGNETORESISTANCE Iridate
原文传递
Three-body physics under dissipative spin-orbit coupling
2
作者 Xi Zhao 《Chinese Physics B》 2025年第3期332-338,共7页
We study the trimer state in a three-body system,where two of the atoms are subject to Rashba-type spin-orbit coupling and spin-dependent loss while interacting spin-selectively with the third atom.The short-time cond... We study the trimer state in a three-body system,where two of the atoms are subject to Rashba-type spin-orbit coupling and spin-dependent loss while interacting spin-selectively with the third atom.The short-time conditional dynamics of the three-body system is effectively governed by a non-Hermitian Hamiltonian with an imaginary Zeeman field.Remarkably,the interplay of non-Hermitian single particle dispersion and the spin-selective interaction results in a Borromean state and an enlarged trimer phase.The stability of trimer state can be reflected by the imaginary part of trimer energy and the momentum distribution of trimer wave function.We also show the phase diagram of the three-body system under both real and imaginary Zeeman fields.Our results illustrate the interesting consequence of non-Hermitian spectral symmetry on the few-body level,which may be readily observable in current cold-atom experiments. 展开更多
关键词 few-body physics non-Hermitian physics spin-orbit coupling Borromean state
原文传递
Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
3
作者 Zhuangzhuang Qu Zhihao Chen +9 位作者 Xiangyan Han Zhiyu Wang Zhuoxian Li Qianling Liu Wenjun Zhao Kenji Watanabe Takashi Taniguchi Zhi-Gang Cheng Zizhao Gan Jianming Lu 《Chinese Physics B》 2025年第3期177-181,共5页
Spin-orbit interaction(SOI)can be introduced by the proximity effect to modulate the electronic properties of graphene-based heterostructures.In this work,we stack trilayer WSe_(2) on Bernal tetralayer graphene to inv... Spin-orbit interaction(SOI)can be introduced by the proximity effect to modulate the electronic properties of graphene-based heterostructures.In this work,we stack trilayer WSe_(2) on Bernal tetralayer graphene to investigate the influence of SOI on the anomalous Hall effect(AHE).In this structurally asymmetric device,by comparing the magnitude of AHE at positive and negative displacement fields,we find that AHE is strongly enhanced by bringing electrons in proximity to the WSe_(2) layer.Meanwhile,the enhanced AHE signal persists up to 80 K,providing important routes for topological device applications at high temperatures. 展开更多
关键词 anomalous Hall effect proximity effect Bernal tetralayer graphene spin-orbit interaction
原文传递
Spin-Orbit State-Resolved Differential Cross Sections of S(^(1)D)+HD Reaction
4
作者 Yu Li Heilong Wang +3 位作者 Zhirun Jiao Hongtao Zhang Chunlei Xiao Xueming Yang 《Chinese Journal of Chemical Physics》 2025年第5期582-586,I0147,共6页
Here,we report the spin-orbit state-resolved differential cross sections(DCSs)for the prototype barrierless reaction S(^(1)D)+HD.Both product channels,namely H+SD(^(2)Π_(3/2,1/2))and D+SH(^(2)Π_(3/2,1/2)),were measu... Here,we report the spin-orbit state-resolved differential cross sections(DCSs)for the prototype barrierless reaction S(^(1)D)+HD.Both product channels,namely H+SD(^(2)Π_(3/2,1/2))and D+SH(^(2)Π_(3/2,1/2)),were measured by high-resolution crossed molecular beam experiments.The DCSs of the two product channels show an overall forward-backward symmetry,in accordance with statistical model predictions.However,the DCSs for different spin-orbit manifolds show different preferences in forward or backward scattering directions at the same collision energies.This study reveals that,even though the title reaction proceeds via the long-lived complex mechanism,the spin-orbit coupling effects in the product channels play an important role in the reaction process. 展开更多
关键词 Barrierless reaction spin-orbit effects Crossed molecular beam Differential cross sections
在线阅读 下载PDF
Initialization-Free Programmable Spin-Logic Gate in a Single Spin-Orbit Torque Device
5
作者 Jie Lin Shuai Zhang +13 位作者 Shihao Li Yan Xu Xin Li Wei Duan Jincheng Hou Chenxi Zhou Wei Zhan Zhe Guo Min Song Xiaofei Yang Yufeng Tian Xuecheng Zou Dan Feng Long You 《Engineering》 2025年第8期215-220,共6页
In-memory computing(IMC)based on spin-logic devices is regarded as an advantageous way to optimize the Von Neumann bottleneck.However,performing complete Boolean logic with spintronic devices typi-cally requires an in... In-memory computing(IMC)based on spin-logic devices is regarded as an advantageous way to optimize the Von Neumann bottleneck.However,performing complete Boolean logic with spintronic devices typi-cally requires an initialization operation,which can reduce processing speed.In this work,we conceptu-alize and experimentally demonstrate a programmable and initialization-free spin-logic gate,leveraging spin-orbit torque(SOT)to effectuate magnetization switching,assisted by in-plane Oersted field gener-ated by an integrated bias-field Au line.This spin-logic gate,fabricated as a Hall bar,allows complete Boolean logic operations without initialization.A current flowing through the bias-field line,which is electrically isolated from the device by a dielectric,generates an in-plane magnetic field that can invert the SOT-induced switching chirality,enabling on-the-fly complete Boolean logic operations.Additionally,the device demonstrated good reliability,repeatability,and reproducibility during logic operations.Our work demonstrates programmable and scalable spin-logic functions in a single device,offering a new approach for spin-logic operations in an IMC architecture. 展开更多
关键词 Spin logic Complete Boolean logic spin-orbit torque Fully electrical operations Initialization-free
在线阅读 下载PDF
Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets
6
作者 Haodong Fan Zhongshu Feng +11 位作者 Tingwei Chen Xiaofeng Han Xinyu Shu Mingzhang Wei Shiqi Liu Mengxi Wang Shengru Chen Xuejian Tang Menghao Jin Yungui Ma Bo Liu Tiejun Zhou 《Chinese Physics B》 2025年第9期654-661,共8页
Interlayer exchange coupling(IEC)plays a critical role in spin-orbit torque(SOT)switching in synthetic magnets.This work establishes a fundamental correlation between IEC and SOT dynamics within Co/Pt-based synthetic ... Interlayer exchange coupling(IEC)plays a critical role in spin-orbit torque(SOT)switching in synthetic magnets.This work establishes a fundamental correlation between IEC and SOT dynamics within Co/Pt-based synthetic antiferromagnets and synthetic ferromagnets.The antiferromagnetic and ferromagnetic coupling states are precisely engineered through Ruderman-Kittel-Kasuya-Yosida(RKKY)interactions by modulating the Ir spacer thickness.Experimental results reveal that the critical switching current density exhibits a strong positive correlation with the IEC strength,regardless of the coupling type.A comprehensive theoretical framework based on the Landau-Lifshitz-Gilbert equation elucidates how IEC contributes to the effective energy barrier that must be overcome during SOT-induced magnetization switching.Significantly,the antiferromagnetically coupled samples demonstrate enhanced SOT efficiency,with the spin Hall angle being directly proportional to the antiferromagnetic exchange coupling field.These insights establish a coherent physical paradigm for understanding IEC-dependent SOT dynamics and provide strategic design principles for the development of energy-efficient next-generation spintronic devices. 展开更多
关键词 interlayer exchange coupling spin-orbit torque synthetic antiferromagnet
原文传递
Effective spin dynamics of spin-orbit coupled matter-wave solitons in optical lattices
7
作者 Kajal Krishna Dey Golam Ali Sekh 《Communications in Theoretical Physics》 2025年第1期172-178,共7页
We consider matter-wave solitons in spin-orbit coupled Bose-Einstein condensates embedded in an optical lattice and study the dynamics of the soliton within the framework of Gross-Pitaevskii equations.We express spin ... We consider matter-wave solitons in spin-orbit coupled Bose-Einstein condensates embedded in an optical lattice and study the dynamics of the soliton within the framework of Gross-Pitaevskii equations.We express spin components of the soliton pair in terms of nonlinear Bloch equations and investigate the effective spin dynamics.It is seen that the effective magnetic field that appears in the Bloch equation is affected by optical lattices,and thus the optical lattice influences the precessional frequency of the spin components.We make use of numerical approaches to investigate the dynamical behavior of density profiles and center-of-mass of the soliton pair in the presence of the optical lattice.It is shown that the spin density is periodically varying due to flipping of spinors between the two states.The amplitude of spin-flipping oscillation increases with lattice strength.We find that the system can also exhibit interesting nonlinear behavior for chosen values of parameters.We present a fixed point analysis to study the effects of optical lattices on the nonlinear dynamics of the spin components.It is seen that the optical lattice can act as a control parameter to change the dynamical behavior of the spin components from periodic to chaotic. 展开更多
关键词 spin-orbit coupled Bose-Einstein condensates effective spin dynamics regular and chaotic dynamics
原文传递
Wedge-shaped HfO_(2) buffer layer-induced field-free spin-orbit torque switching of HfO_(2)/Pt/Co structure 被引量:1
8
作者 陈建辉 梁梦凡 +4 位作者 宋衍 袁俊杰 张梦旸 骆泳铭 王宁宁 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期662-667,共6页
Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/... Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device. 展开更多
关键词 spin-orbit torque field-free switching HfO_(2) buffer layer
原文传递
Stable stripe and vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates
9
作者 Yuan Guo Muhammad Idrees +1 位作者 Ji Lin Hui-jun Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第6期26-33,共8页
We present a flexible manipulation and control of solitons via Bose-Einstein condensates.In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential,our investigation reveals t... We present a flexible manipulation and control of solitons via Bose-Einstein condensates.In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential,our investigation reveals the numerical local solutions within the system.By manipulating the strength of repulsive interactions and adjusting spin-orbit coupling while maintaining a zero-frequency rotation,diverse soliton structures emerge within the system.These include plane-wave solitons,two distinct types of stripe solitons,and odd petal solitons with both single and double layers.The stability of these solitons is intricately dependent on the varying strength of spin-orbit coupling.Specifically,stripe solitons can maintain a stable existence within regions characterized by enhanced spin-orbit coupling while petal solitons are unable to sustain a stable existence under similar conditions.When rotational frequency is introduced to the system,solitons undergo a transition from stripe solitons to a vortex array characterized by a sustained rotation.The rotational directions of clockwise and counterclockwise are non-equivalent owing to spin-orbit coupling.As a result,the properties of vortex solitons exhibit significant variation and are capable of maintaining a stable existence in the presence of repulsive interactions. 展开更多
关键词 Bose-Einstein condensate spin-orbit coupling rotation frequency stripe solitons vortex array
原文传递
XOR spin logic operated by unipolar current based on field-free spin-orbit torque switching induced by a lateral interface
10
作者 Yan-Ru Li Mei-Yin Yang +5 位作者 Guo-Qiang Yu Bao-Shan Cui Jin-Biao Liu Yong-Liang Li Qi-Ming Shao Jun Luo 《Rare Metals》 SCIE EI CAS CSCD 2024年第8期3868-3875,共8页
Spin logics have emerged as a promising avenue for the development of logic-in-memory architectures.In particular,the realization of XOR spin logic gates using a single spin-orbit torque device shows great potential f... Spin logics have emerged as a promising avenue for the development of logic-in-memory architectures.In particular,the realization of XOR spin logic gates using a single spin-orbit torque device shows great potential for low-power stateful logic circuits in the next generation.In this study,we successfully obtained the XOR logic gate by utilizing a spin-orbit torque device with a lateral interface,which was created by local ion implantation in the Ta/Pt/Co/Ta Hall device exhibiting perpendicular magnetic anisotropy.The angle of the lateral interface is set at 45°relative to the current direction,leading to the competition between symmetry breaking and current-driven Néel-type domain wall motion.Consequently,the field-free magnetic switching reversed is realized by the same sign of current amplitude at this interface.Based on this field-free magnetic switching behavior,we successfully proposed an XOR logic gate that could be implemented using only a single spin-orbit torque Hall device.This study provides a potentially viable approach toward efficient spin logics and in-memory computing architectures. 展开更多
关键词 Filed-free magnetic switching spin-orbit torque XOR logic gate Lateral interface
原文传递
Spin-orbit torque effect in silicon-based sputtered Mn_(3)Sn film
11
作者 Sha Lu Dequan Meng +3 位作者 Adnan Khan Ziao Wang Shiwei Chen Shiheng Liang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期394-399,共6页
Noncollinear antiferromagnet Mn_(3)Sn has shown remarkable efficiency in charge-spin conversion,a novel magnetic spin Hall effect,and a stable topological antiferromagnetic state,which has resulted in great interest f... Noncollinear antiferromagnet Mn_(3)Sn has shown remarkable efficiency in charge-spin conversion,a novel magnetic spin Hall effect,and a stable topological antiferromagnetic state,which has resulted in great interest from researchers in the field of spin-orbit torque.Current research has primarily focused on the spin-orbit torque effect of epitaxially grown noncollinear antiferromagnet Mn_(3)Sn films.However,this method is not suitable for large-scale industrial preparation.In this study,amorphous Mn_(3)Sn films and Mn_(3)Sn/Py heterostructures were prepared using magnetron sputtering on silicon substrates.The spin-torque ferromagnetic resonance measurement demonstrated that only the conventional spin-orbit torque effect generated by in-plane polarized spin currents existed in the Mn_(3)Sn/Py heterostructure,with a spin-orbit torque efficiency of 0.016.Additionally,we prepared the perpendicular magnetized Mn_(3)Sn/CoTb heterostructure based on amorphous Mn_(3)Sn film,where the spin-orbit torque driven perpendicular magnetization switching was achieved with a lower critical switching current density(3.9×10^(7)A/cm^(2))compared to Ta/CoTb heterostructure.This research reveals the spin-orbit torque effect of amorphous Mn_(3)Sn films and establishes a foundation for further advancement in the practical application of Mn_(3)Sn materials in spintronic devices. 展开更多
关键词 SPINTRONICS noncollinear antiferromagnetism spin-orbit torque
原文传递
Bessel vortices in spin-1 Bose-Einstein condensates with Zeeman splitting and spin-orbit coupling
12
作者 Huan-Bo Luo Xin-Feng Zhang +2 位作者 Runhua Li Yongyao Li Bin Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期159-165,共7页
We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved e... We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments. 展开更多
关键词 spin-orbit coupling Bessel vortices variational method
原文传递
Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
13
作者 Jia-Li Chen Sai-Yan Chen +2 位作者 Li Wen Xue-Li Cao Mao-Wang Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期457-461,共5页
Combining theory and computation,we explore the Goos–H¨anchen(GH)effect for electrons in a single-layered semiconductor microstructure(SLSM)modulated by Dresselhaus spin–orbit coupling(SOC).GH displacement depe... Combining theory and computation,we explore the Goos–H¨anchen(GH)effect for electrons in a single-layered semiconductor microstructure(SLSM)modulated by Dresselhaus spin–orbit coupling(SOC).GH displacement depends on electron spins thanks to Dresselhaus SOC,therefore electron spins can be separated from the space domain and spinpolarized electrons in semiconductors can be realized.Both the magnitude and sign of the spin polarization ratio change with the electron energy,in-plane wave vector,strain engineering and semiconductor layer thickness.The spin polarization ratio approaches a maximum at resonance;however,no electron-spin polarization occurs in the SLSM for a zero in-plane wave vector.More importantly,the spin polarization ratio can be manipulated by strain engineering or semiconductor layer thickness,giving rise to a controllable spatial electron-spin splitter in the field of semiconductor spintronics. 展开更多
关键词 semiconductor spintronics single-layered semiconductor microstructure(SLSM) spin-orbit coupling(SOC) Goos-Hänchen(GH)effect electron-spin polarization
原文传递
Dependence of Spin-orbit Parameters in AlxGa1-xN/GaN Quantum Wells on the Al Composition of the Barrier 被引量:1
14
作者 Li Ming 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第7期119-123,共5页
In this paper, we obtain considerable spin-orbit (SO) parameters in AlxGa1-xN/GaN quantum wells (QWs) with sheet carrier concentration N8 = 120 × 10^11/cm^2. With increasing AI content (x) of the barrier, t... In this paper, we obtain considerable spin-orbit (SO) parameters in AlxGa1-xN/GaN quantum wells (QWs) with sheet carrier concentration N8 = 120 × 10^11/cm^2. With increasing AI content (x) of the barrier, the SO parameters increase as a whole, and the two major contributions are found to be the decrease of the expansion region of the envelope functions and the increase of the polarized electric field in the well. Compared with the Rashba parameters for the first two subbands, the intersubband SO parameter is a bit smaller and varies more slowly with x. The results indicate the SO parameters, especially the Rashba parameters can be engineered by the AI composition of the barrier, which may be helpful to the spin manipulation of III-nitride low-dimensional heterostructures. 展开更多
关键词 spin-orbit coupling effect Rashba spin splitting intersubband spin-orbit coupling 2DEG
原文传递
Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films 被引量:2
15
作者 Alexey Porfirev Svetlana Khonina +2 位作者 Andrey Ustinov Nikolay Ivliev Ilya Golub 《Opto-Electronic Science》 2023年第7期12-30,共19页
Hall effect of light is a result of symmetry breaking in spin and/or orbital angular momentum(OAM)possessing optical system and is caused by e.g.refractive index gradient/interface between media or focusing of a spati... Hall effect of light is a result of symmetry breaking in spin and/or orbital angular momentum(OAM)possessing optical system and is caused by e.g.refractive index gradient/interface between media or focusing of a spatially asymmetrical beam,similar to the electric field breaking the symmetry in spin Hall effect for electrons.The angular momentum(AM)conservation law in the ensuing asymmetric system dictates redistribution of spin and orbital angular momentum,and is manifested in spin-orbit,orbit-orbit,and orbit-spin conversions and reorganization,i.e.spin-orbit and orbit-orbit interaction.This AM restructuring in turn requires shifts of the barycenter of the electric field of light.In the present study we show,both analytically and by numerical simulation,how different electric field components are displaced upon tight focusing of an asymmetric light beam having OAM and spin.The relation between field components shifts and the AM components shifts/redistribution is presented too.Moreover,we experimentally demonstrate,for the first time,to the best of our knowledge,the spin-orbit Hall effect of light upon tight focusing in free space.This is achieved using azopolymers as a media detecting longitudinal or z component of the electrical field of light.These findings elucidate the Hall effect of light and may broaden the spectrum of its applications. 展开更多
关键词 spin-orbital Hall effect of light symmetry breaking spin-orbit interaction AZOPOLYMERS optical vortex polarization
在线阅读 下载PDF
Transparently manipulating spin-orbit qubit via exact degenerate ground states
16
作者 Kuo Hai Wenhua Zhu +1 位作者 Qiong Chen Wenhua Hai 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期217-227,共11页
By investigating a harmonically confined and periodically driven particle system with spin-orbit coupling(SOC)and a specific controlled parameter,we demonstrate an exactly solvable two-level model with a complete set ... By investigating a harmonically confined and periodically driven particle system with spin-orbit coupling(SOC)and a specific controlled parameter,we demonstrate an exactly solvable two-level model with a complete set of spin-motion entangled Schrödinger kitten(or cat)states.In the undriven case,application of a modulation resonance results in the exact stationary states.We show a decoherence-averse effect of SOC and implement a transparent coherent control by exchanging positions of the probability-density wavepackets to create transitions between the different degenerate ground states.The expected energy consisting of quantum and continuous parts is derived,and the energy deviations caused by the exchange operations are much less than the quantum gap.The results could be directly extended to a weakly coupled single-particle chain for transparently encoding spin-orbit qubits via the robust spin-motion entangled degenerate ground states. 展开更多
关键词 transparent coherent control spin-orbit qubit exact degenerate ground state spin-orbit coupling spin-motion entanglement
原文传递
Giant interface spin-orbit torque in NiFe/Pt bilayers
17
作者 Shu-Fa Li Tao Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期413-417,共5页
The current-induced spin-orbit torque(SOT)plays a dominant role to manipulate the magnetization in a heavy metal/ferromagnetic metal bilayer.We separate the contributions of interfacial and bulk spin-orbit coupling(SO... The current-induced spin-orbit torque(SOT)plays a dominant role to manipulate the magnetization in a heavy metal/ferromagnetic metal bilayer.We separate the contributions of interfacial and bulk spin-orbit coupling(SOC)to the effective field of field-like SOT in a typical NiFe/Pt bilayer by planar Hall effect(PHE).The effective field from interfacial SOC is directly measured at the transverse PHE configuration.Then,at the longitudinal configuration,the effective field from bulk SOC is determined,which is much smaller than that from interfacial SOC.The giant interface SOT in NiFe/Pt bilayers suggests that further analysis of interfacial effects on the current-induced manipulation of magnetization is necessary. 展开更多
关键词 spin-orbit coupling planar Hall effect spin-orbit torques spin Hall effect
原文传递
Symmetry breaking of photonic spin-orbit interactions in metasurfaces 被引量:15
18
作者 Fei Zhang Mingbo Pu +2 位作者 Jun Luo Honglin Yu Xiangang Luo 《光电工程》 CAS CSCD 北大核心 2017年第3期319-325,共7页
Spin-orbit optical phenomena pertain to the wider class of electromagnetic effects originating from the interaction of the photon spin with the spatial structure and propagation characteristics of an optical wave,medi... Spin-orbit optical phenomena pertain to the wider class of electromagnetic effects originating from the interaction of the photon spin with the spatial structure and propagation characteristics of an optical wave,mediated by suitable optical media.There are many emerging photonic applications of spin-orbit interactions(SOI)of light,such as control of the optical wave propagation via the spin,enhanced optical manipulation,and generation of structured optical fields.Unfortunately,current applications are based on symmetric SOI,that is,the behaviours of polarized photons with two opposite spins are opposite,leading to the limit of spin-based multiplexers.The symmetry of SOI can be broken in our proposed metasurfaces,consisting of spatially varying birefringence,which can arbitrarily and independently build SOI for two opposite spins without reduction of optical energy usage.We obtain three kinds of dual-functional metasurfaces at visible and infrared wavelengths with high efficiency.Our concept of generation of asymmetric SOI for two spins,using anisotropic metasurfaces,will open new degrees of freedoms for building new types of spin-controlled multifunctional shared-aperture devices for the generation of complex structured optical fields. 展开更多
关键词 metasurfaces METAMATERIALS spin-orbit interactions
在线阅读 下载PDF
Electron Momentum Spectroscopy of Valence Orbitals of n-Propyl Iodide: Spin-Orbit Coupling Effect and Intramolecular Orbital Interaction
19
作者 王恩亮 史钰峰 +3 位作者 单旭 阳弘江 张卫 陈向军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第5期503-511,I0003,共10页
The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric ... The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule. 展开更多
关键词 n-Propyl iodide Electron momentum spectroscopy spin-orbit coupling effect Intramolecular orbital interaction
在线阅读 下载PDF
Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction 被引量:8
20
作者 LIU Jia XIAO Jing-Ling 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第4X期761-765,共5页
We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. O... We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron area/density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's. 展开更多
关键词 asymmetric heterostructures SPINTRONICS triangular potential approximation Rashba spin-orbit interaction
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部