We theoretically study the effect of a uniform orbital magnetic field on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator without spin–orbit coupling. Through symmetry analysis and microscop...We theoretically study the effect of a uniform orbital magnetic field on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator without spin–orbit coupling. Through symmetry analysis and microscopic calculation, we show that the optical spin wave mode at the Brillouin zone center can acquire a small orbital magnetic moment, although it exhibits no magnetic moment from the Zeeman coupling. Our results are potentially applicable to intercalated van der Waals materials and twisted double-bilayer graphene.展开更多
Considering the attractive interaction between ferromagnet, we propose the model of magnon-pairs, which two magnons with opposite wave vectors in a Heisenberg is suitable for low-temperature environment. A dressed mag...Considering the attractive interaction between ferromagnet, we propose the model of magnon-pairs, which two magnons with opposite wave vectors in a Heisenberg is suitable for low-temperature environment. A dressed magnon is an energy quantum of the magnon-pairs whose energy is a monotonically increasing function of absolute temperature. Based on the model, we re-investigate the excitation mechanism and thermodynamic properties of the Heisenberg ferromagnet. The correction factor e(O) plays an important role in studying the low-temperature properties of a ferromagnet.展开更多
Based on the uniform,helical and spiral domain-wall magnetic configurations,the excited spin waves are studied with emphasis on the role of damping.We find that the damping closes the gap of dispersion,and greatly inf...Based on the uniform,helical and spiral domain-wall magnetic configurations,the excited spin waves are studied with emphasis on the role of damping.We find that the damping closes the gap of dispersion,and greatly influences the dispersion in the long-wave region for the spin waves of spiral wall and helical structure.For the uniform configuration,the Dzyaloshinskii-Moriya interaction determines the modification of dispersion by the damping.Furthermore,we investigate the interaction between spin waves and a moving spiral domain wall.In the presence of damping,the amplitude of spin wave can increase after running across the wall for small wave numbers.Driving by the spin waves,the wall propagates towards the spin-wave source with an increasing velocity.Unlike the case without damping,the relation between the wall velocity and the spin-wave frequency depends on the position of wall.展开更多
Ferromagnetic resonance is introduced to examine the microwave frequency response of Ni Fe/Ir Mn bilayers, patterned as antidot arrays. In the experiment, field direction dependence on mode is obtained by rotating the...Ferromagnetic resonance is introduced to examine the microwave frequency response of Ni Fe/Ir Mn bilayers, patterned as antidot arrays. In the experiment, field direction dependence on mode is obtained by rotating the applied magnetic field. We find that at a given resonance frequency, the dependence of the resonance field on the angle has a tendency of sinusoid/cosine variation in the experiment. From micromagnetic simulation it can be seen that spin waves are localized between dots from a given mode profile. This is caused by a demagnetization distribution with a larger value in the center of the two nearest dots than that of the next-nearest dots.展开更多
The voltage control of magnetism has attracted intensive attention owing to the abundant physical phenomena associated with magnetoelectric coupling. More importantly, the techniques to electrically manipulate spin dy...The voltage control of magnetism has attracted intensive attention owing to the abundant physical phenomena associated with magnetoelectric coupling. More importantly, the techniques to electrically manipulate spin dynamics, such as magnetic anisotropy and ferromagnetic resonance, are of great significance because of their potential applications in high-density memory devices, microwave signal processors, and magnetic sensors. Recently, voltage control of spin waves has also been demonstrated in several multiferroic heterostructures. This development provides new platforms for energyefficient, tunable magnonic devices. In this review, we focus on the most recent advances in voltage control of ferromagnetic resonance and spin waves in magnetoelectric materials and discuss the physical mechanisms and prospects for practical device applications.展开更多
Motivated by the discovery of a new family of 122 iron-based superconductors, we present the theoretical results on the ground state phase diagram, spin wave, and dynamic structure factor obtained from the extended J1...Motivated by the discovery of a new family of 122 iron-based superconductors, we present the theoretical results on the ground state phase diagram, spin wave, and dynamic structure factor obtained from the extended J1-J2 Heisenberg model. In the reasonable physical parameter region of K2Fe4Se5, we find that the block checkerboard antiferromagnetic order phase is stable. There are two acoustic spin wave branches and six optical spin wave branches in the block checker- board antiferromagnetic phase, which have analytic expressions at the high-symmetry points. To further compare the experimental data on neutron scattering, we investigate the saddlepoint structure of the magnetic excitation spectrum and the inelastic neutron scattering pattern based on linear spin wave theory.展开更多
The recent discovery of superconductivity in La_(3)Ni_(2)O_(7-δ)with a transition temperature Tc close to 80 K at high pressures has attracted significant attention,due particularly to a possible density wave(DW)tran...The recent discovery of superconductivity in La_(3)Ni_(2)O_(7-δ)with a transition temperature Tc close to 80 K at high pressures has attracted significant attention,due particularly to a possible density wave(DW)transition occurring near the superconducting dome.Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system.However,owing to the presence of La4Ni3O10 and other intergrowth phases in La_(3)Ni_(2)O_(7-δ)samples,extracting the intrinsic information from the La_(3)Ni_(2)O_(7) phase is challenging.In this study,we employed ^(139)La nuclear quadrupole resonance(NQR)measurements to eliminate the influence of other structural phases in the sample and obtain microscopic insights into the DW transition in La_(3)Ni_(2)O_(7-δ).Below the DW transition temperature T_(DW)∼153 K,we observe a distinct splitting in the±5/2↔±7/2 transition of the NQR resonance peak at the La(2)site,while only a line broadening is seen in the±3/2↔±5/2 transition peak.Through further analysis of the spectra,we show that the line splitting is due to a unidirectional charge modulation.A magnetic line broadening is also observed below T_(DW),accompanied by a large enhancement of the spin-lattice relaxation rate,indicating the formation of magnetically ordered moments in the DW state.Our results suggest a simultaneous formation of charge-and spin-density wave orders in La_(3)Ni_(2)O_(7-δ),thereby offering critical insights into the electronic correlations in Ni-based superconductors.展开更多
In antiferromagnets,dipolar coupling is often disregarded due to the cancellation of magnetic moments between the two sublattices,so that the spin-wave dispersion is predominantly determined by exchange interactions.H...In antiferromagnets,dipolar coupling is often disregarded due to the cancellation of magnetic moments between the two sublattices,so that the spin-wave dispersion is predominantly determined by exchange interactions.However,antiferromagnetic spin waves typically involve a slight misalignment of the magnetic moments on the sublattices,which gives rise to a small net magnetization enabling long-range dipolar coupling.In this paper,we investigate the role of dipolar coupling in spin-wave excitations and its influence on the resulting dispersion.Our findings show that:(i)when the Néel vector is perpendicular to the film plane or lies within the film plane and parallel to the wave vector,the dispersion branches can be divided into two groups:those unaffected by the dipolar field and those influenced by it.In these cases,the total magnetic moment remains linearly polarized,but the polarization directions differ between the two types of branches;(ii)when the Néel vector lies in the film plane and is perpendicular to the wave vector,the dipolar interactions affect both types of dispersion branches,leading to their hybridization.This hybridization alters the polarization of the magnetic moment,resulting in elliptical polarization.展开更多
Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices.In this work,we investigated the strain-manipulated dispersion characte...Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices.In this work,we investigated the strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii–Moriya interaction(DMI)and discussed the potential applications in spin-wave devices.Here,the ground states and stabilities of the magnonic crystals were investigated.Then,the strain-manipulated dispersion characteristics of the magnonic crystals based on domains and skyrmions were studied.The simulation results indicated that,the applied strain could manipulate the band widths and the positions of the allowed frequency bands.Finally,the realization of magnonic crystal heterojunctions and potential applications in spin-wave devices,such as filters,diodes,and transistors based on strain-manipulated magnonic crystals were proposed.Our research provides a theoretical foundation for designing tunable spin-wave devices based on strain-manipulated magnonic crystals with DMI.展开更多
Scalar fields should have no spin angular momentum according to conventional textbook understandings inclassical field theory.Yet,recent studies demonstrate the undoubted existence of wave spin endowed by acousticand ...Scalar fields should have no spin angular momentum according to conventional textbook understandings inclassical field theory.Yet,recent studies demonstrate the undoubted existence of wave spin endowed by acousticand elastic longitudinal waves,which are of irrotational curl-free nature without vorticity and can be describedby scalar fields.Moreover,the conventional theory cannot even answer the question of whether wave spin existsin dissipative fields,given the ubiquitous dissipation in reality.Here,to resolve the seeming paradox and answerthe challenging question,we uncover the origin of wave spin in scalar fields beyond traditional formalism byclarifying that the presence of higher-order derivatives in scalar field Lagrangians can give rise to non-vanishingwave spin.For“spinless”scalar fields of only first-order derivatives,we can make the hidden wave spin emergeby revealing a latent field that leads to the original field through a time derivative,thus giving higher-order termsin Lagrangian.Based on the standard Noether theorem approach,we exemplify the wave spin for unconventionaldrifted acoustic fields,and even for dissipative media,in scalar fields with higher-order derivative Lagrangian.The results would prompt people to build more comprehensive and fundamental understandings of structuralwave spin in classical fields.展开更多
Nanomagnets are widely used to store information in non-volatile spintronic devices.Spin waves can transfer information with low-power consumption as their propagations are independent of charge transport.However,to d...Nanomagnets are widely used to store information in non-volatile spintronic devices.Spin waves can transfer information with low-power consumption as their propagations are independent of charge transport.However,to dynamically couple two distant nanomagnets via spin waves remains a major challenge for magnonics.Here we experimentally demonstrate coherent coupling of two distant Co nanowires by fast propagating spin waves in an yttrium iron garnet thin film with sub-50 nm wavelengths.Magnons in two nanomagnets are unidirectionally phase-locked with phase shifts controlled by magnon spin torque and spin-wave propagation.The coupled system is finally formulated by an analytical theory in terms of an effective non-Hermitian Hamiltonian.Our results are attractive for analog neuromorphic computing that requires unidirectional information transmission.展开更多
In this study,we investigated the micromagnetic dynamics of kπ-state skyrmions in a magnetic nanodot under a circular spinpolarized current and found an excited spin wave that can propagate persistently along the dir...In this study,we investigated the micromagnetic dynamics of kπ-state skyrmions in a magnetic nanodot under a circular spinpolarized current and found an excited spin wave that can propagate persistently along the direction of the radius toward the center.This dynamic process is associated with two energetically favorable states in an oscillating period of spin waves.In this case,the spin-polarized current plays a role similar to effective perpendicular magnetic anisotropy and decreases the minimum energy in the magnetic system.Our findings provide insight into understanding the dynamic behaviors of topological magnetic textures.展开更多
In a Weyl semimetal(WSM),the conduction and valence bands cross each other near the Fermi energy,and the crossing points,called Weyl points,exhibit a monopole-like distribution of the Berry curvature.The Berry curvatu...In a Weyl semimetal(WSM),the conduction and valence bands cross each other near the Fermi energy,and the crossing points,called Weyl points,exhibit a monopole-like distribution of the Berry curvature.The Berry curvature is a fictitious magnetic field in the momentum-space and induces the anomalous velocity to the real-space electron motion.Therefore,Weyl monopoles play essential roles in the charge transport,for example,the anomalous Hall effect(AHE).The anomalous Hall conductivity(AHC)is nearly proportional to the distance between the Weyl point pairs with opposite chirality.The magnetic order and spin structure sensitively modify Weyl point positions and energies.展开更多
We investigate the effects of long-range interactions on the spin wave spectra and the competition between magnetic phases on a frustrated square lattice with large spin S.Applying the spin wave theory and assisted wi...We investigate the effects of long-range interactions on the spin wave spectra and the competition between magnetic phases on a frustrated square lattice with large spin S.Applying the spin wave theory and assisted with symmetry analysis,we obtain analytical expressions for spin wave spectra of competing Neel and(π,0)stripe states of systems containing anyorder long-range interactions.In the specific case of long-range interactions with power-law decay,we find surprisingly that the staggered long-range interaction suppresses quantum fluctuation and enlarges the ordered moment,especially in the Neel state,and thus extends its phase boundary to the stripe state.Our findings illustrate the rich possibilities of the roles of long-range interactions,and advocate future investigations in other magnetic systems with different structures of interactions.展开更多
In this Letter,we report an Airy-like beam of magnetostatic surface spin wave(Ai BMSSW)supported on the ferromagnetic film,which is transferred from the optical field.The propagation properties of Ai BMSSW were verifi...In this Letter,we report an Airy-like beam of magnetostatic surface spin wave(Ai BMSSW)supported on the ferromagnetic film,which is transferred from the optical field.The propagation properties of Ai BMSSW were verified with micromagnetic simulation.From simulation results,the typical parabolic trajectory of the Airy-type beam was observed with an exciting source encoding 3/2 phase pattern.The simulation results coincide well with design parameters.Furthermore,simulated results showed that the trajectories of the Ai BMSSW could be tuned readily with varied external magnetic fields.This work can extend the application scenario of spin waves.展开更多
The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ...The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.展开更多
Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the freq...Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.展开更多
Nowadays the yttrium iron garnet(Y3Fe5O12, YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, e...Nowadays the yttrium iron garnet(Y3Fe5O12, YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, especially the frequency stability, are seriously affected by the relaxation of the interface magnetic moments. In this study, the effect of out-of-plane magnetization depinning on the resonance frequency shift(△ fr) was investigated for 3-μm YIG films grown on Gd3Ga5O12(GGG)(111) substrates by liquid-phase epitaxy. It is revealed that the ferromagnetic resonance(FMR) and spin wave propagation exhibit a very slow relaxation with relaxation time τ even longer than one hour under an out-of-plane external magnetic bias field. The △ fr span of 15.15–24.70 MHz is observed in out-of-plane FMR and forward volume spin waves. Moreover, the △ fr and τ depend on the magnetic field. The △ fr can be attributed to that the magnetic moments break away from the pinning layer at the YIG/GGG interface. The thickness of the pinning layer is estimated to be about9.48 nm to 15.46 nm according to the frequency shifting. These results indicate that △ fr caused by the pinning layer should be addressed in the design of microwave and spin wave devices, especially in the transverse magnetic components.展开更多
We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation.When the fi...We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation.When the field is obliquely applied to the ring,local resonance mode can be observed in different parts of the rings.And the resonance mode will change to perpendicular spin standing waves if the magnetic field is applied along the perpendicular direction.The simulation results demonstrated this evolution and implied more resonance modes that maybe exist.And the mathematical fitting results based on the Kittel equation further proved the existence of local resonance mode.展开更多
An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting[Pt/Co/Ta]_(10) multilayer by measuring the time-resolved magneto-optical Kerr effect.The observed interlayer mode depends on the ...An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting[Pt/Co/Ta]_(10) multilayer by measuring the time-resolved magneto-optical Kerr effect.The observed interlayer mode depends on the interlayer spin-pumping and spin transfer torque among the neighboring Co layers.This mode shows monotonically increasing frequency-field dependence which is similar to the ferromagnetic resonance mode,but within higher frequency range.Besides,the damping of the interlayer mode is found to be a relatively low constant value of 0.027 which is independent of the external field.This work expounds the potential application of the[heavy-metal/ferromagnetic-metal]_(n) multilayers to skyrmion-based magnonic devices which can provide multiple magnon modes,relatively low damping,and skyrmion states,simultaneously.展开更多
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403800)the National Natural Science Foundation of China (Grant Nos. 12250008 and 12188101)+1 种基金the Project for Young Scientists in Basic Research (Grant No. YSBR-059)performed in part at the Aspen Center for Physics, supported by the National Natural Science Foundation of China (Grant No. PHY2210452)。
文摘We theoretically study the effect of a uniform orbital magnetic field on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator without spin–orbit coupling. Through symmetry analysis and microscopic calculation, we show that the optical spin wave mode at the Brillouin zone center can acquire a small orbital magnetic moment, although it exhibits no magnetic moment from the Zeeman coupling. Our results are potentially applicable to intercalated van der Waals materials and twisted double-bilayer graphene.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10174024 and 10474025
文摘Considering the attractive interaction between ferromagnet, we propose the model of magnon-pairs, which two magnons with opposite wave vectors in a Heisenberg is suitable for low-temperature environment. A dressed magnon is an energy quantum of the magnon-pairs whose energy is a monotonically increasing function of absolute temperature. Based on the model, we re-investigate the excitation mechanism and thermodynamic properties of the Heisenberg ferromagnet. The correction factor e(O) plays an important role in studying the low-temperature properties of a ferromagnet.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774001 and 51972103)the Natural Science Foundation of Hebei Province of China(Grant No.F2019202141)the Fund of the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,China(Grant No.KF201906).
文摘Based on the uniform,helical and spiral domain-wall magnetic configurations,the excited spin waves are studied with emphasis on the role of damping.We find that the damping closes the gap of dispersion,and greatly influences the dispersion in the long-wave region for the spin waves of spiral wall and helical structure.For the uniform configuration,the Dzyaloshinskii-Moriya interaction determines the modification of dispersion by the damping.Furthermore,we investigate the interaction between spin waves and a moving spiral domain wall.In the presence of damping,the amplitude of spin wave can increase after running across the wall for small wave numbers.Driving by the spin waves,the wall propagates towards the spin-wave source with an increasing velocity.Unlike the case without damping,the relation between the wall velocity and the spin-wave frequency depends on the position of wall.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304407)the Scientific Research Foundation for Returned Scholars,Ministry of Education of China(Grant No.47)
文摘Ferromagnetic resonance is introduced to examine the microwave frequency response of Ni Fe/Ir Mn bilayers, patterned as antidot arrays. In the experiment, field direction dependence on mode is obtained by rotating the applied magnetic field. We find that at a given resonance frequency, the dependence of the resonance field on the angle has a tendency of sinusoid/cosine variation in the experiment. From micromagnetic simulation it can be seen that spin waves are localized between dots from a given mode profile. This is caused by a demagnetization distribution with a larger value in the center of the two nearest dots than that of the next-nearest dots.
基金Project supported by the National Natural Science Foundation of China(Grant No.51602244)the National 111 Project of China(Grant No.B14040)the Fundamental Research Funds for the Central Universities,China(Grant No.xjj2018207)
文摘The voltage control of magnetism has attracted intensive attention owing to the abundant physical phenomena associated with magnetoelectric coupling. More importantly, the techniques to electrically manipulate spin dynamics, such as magnetic anisotropy and ferromagnetic resonance, are of great significance because of their potential applications in high-density memory devices, microwave signal processors, and magnetic sensors. Recently, voltage control of spin waves has also been demonstrated in several multiferroic heterostructures. This development provides new platforms for energyefficient, tunable magnonic devices. In this review, we focus on the most recent advances in voltage control of ferromagnetic resonance and spin waves in magnetoelectric materials and discuss the physical mechanisms and prospects for practical device applications.
基金supported by the Science Foundation for Post-Doctorate Research from the Ministry of Science and Technology of China (Grant No.20100470589)the National Basic Research Program of China (Grant No.2007CB925000)the National Natural Science Foundation of China (Grant No.51071032)
文摘Motivated by the discovery of a new family of 122 iron-based superconductors, we present the theoretical results on the ground state phase diagram, spin wave, and dynamic structure factor obtained from the extended J1-J2 Heisenberg model. In the reasonable physical parameter region of K2Fe4Se5, we find that the block checkerboard antiferromagnetic order phase is stable. There are two acoustic spin wave branches and six optical spin wave branches in the block checker- board antiferromagnetic phase, which have analytic expressions at the high-symmetry points. To further compare the experimental data on neutron scattering, we investigate the saddlepoint structure of the magnetic excitation spectrum and the inelastic neutron scattering pattern based on linear spin wave theory.
基金supported by the National Key Research and Development Projects of China(Grant Nos.2023YFA1406103,2024YFA1611302,2024YFA1409200,and 2022YFA1403402)the National Natural Science Foundation of China(Grant Nos.12374142,12304170,12025408,12404179,and U23A6003)+2 种基金Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF005)the Chinese Academy of Sciences President’s International Fellowship Initiative(Grant No.2024PG0003)supported by the Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘The recent discovery of superconductivity in La_(3)Ni_(2)O_(7-δ)with a transition temperature Tc close to 80 K at high pressures has attracted significant attention,due particularly to a possible density wave(DW)transition occurring near the superconducting dome.Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system.However,owing to the presence of La4Ni3O10 and other intergrowth phases in La_(3)Ni_(2)O_(7-δ)samples,extracting the intrinsic information from the La_(3)Ni_(2)O_(7) phase is challenging.In this study,we employed ^(139)La nuclear quadrupole resonance(NQR)measurements to eliminate the influence of other structural phases in the sample and obtain microscopic insights into the DW transition in La_(3)Ni_(2)O_(7-δ).Below the DW transition temperature T_(DW)∼153 K,we observe a distinct splitting in the±5/2↔±7/2 transition of the NQR resonance peak at the La(2)site,while only a line broadening is seen in the±3/2↔±5/2 transition peak.Through further analysis of the spectra,we show that the line splitting is due to a unidirectional charge modulation.A magnetic line broadening is also observed below T_(DW),accompanied by a large enhancement of the spin-lattice relaxation rate,indicating the formation of magnetically ordered moments in the DW state.Our results suggest a simultaneous formation of charge-and spin-density wave orders in La_(3)Ni_(2)O_(7-δ),thereby offering critical insights into the electronic correlations in Ni-based superconductors.
基金supported by the National Natural Science Foundation of China(Grant No.12474110)the National Key Research and Development Program of China(Grant No.2022YFA1403300)+1 种基金the Innovation Program for Quantum Science and Technology(Grant No.2024ZD0300103)the Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)。
文摘In antiferromagnets,dipolar coupling is often disregarded due to the cancellation of magnetic moments between the two sublattices,so that the spin-wave dispersion is predominantly determined by exchange interactions.However,antiferromagnetic spin waves typically involve a slight misalignment of the magnetic moments on the sublattices,which gives rise to a small net magnetization enabling long-range dipolar coupling.In this paper,we investigate the role of dipolar coupling in spin-wave excitations and its influence on the resulting dispersion.Our findings show that:(i)when the Néel vector is perpendicular to the film plane or lies within the film plane and parallel to the wave vector,the dispersion branches can be divided into two groups:those unaffected by the dipolar field and those influenced by it.In these cases,the total magnetic moment remains linearly polarized,but the polarization directions differ between the two types of branches;(ii)when the Néel vector lies in the film plane and is perpendicular to the wave vector,the dipolar interactions affect both types of dispersion branches,leading to their hybridization.This hybridization alters the polarization of the magnetic moment,resulting in elliptical polarization.
文摘Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices.In this work,we investigated the strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii–Moriya interaction(DMI)and discussed the potential applications in spin-wave devices.Here,the ground states and stabilities of the magnonic crystals were investigated.Then,the strain-manipulated dispersion characteristics of the magnonic crystals based on domains and skyrmions were studied.The simulation results indicated that,the applied strain could manipulate the band widths and the positions of the allowed frequency bands.Finally,the realization of magnonic crystal heterojunctions and potential applications in spin-wave devices,such as filters,diodes,and transistors based on strain-manipulated magnonic crystals were proposed.Our research provides a theoretical foundation for designing tunable spin-wave devices based on strain-manipulated magnonic crystals with DMI.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1404400 and 2023YFA1406900)the Natural Science Foundation of Shanghai(Grant No.23ZR1481200)the Program of Shanghai Academic Research Leader(Grant No.23XD1423800)。
文摘Scalar fields should have no spin angular momentum according to conventional textbook understandings inclassical field theory.Yet,recent studies demonstrate the undoubted existence of wave spin endowed by acousticand elastic longitudinal waves,which are of irrotational curl-free nature without vorticity and can be describedby scalar fields.Moreover,the conventional theory cannot even answer the question of whether wave spin existsin dissipative fields,given the ubiquitous dissipation in reality.Here,to resolve the seeming paradox and answerthe challenging question,we uncover the origin of wave spin in scalar fields beyond traditional formalism byclarifying that the presence of higher-order derivatives in scalar field Lagrangians can give rise to non-vanishingwave spin.For“spinless”scalar fields of only first-order derivatives,we can make the hidden wave spin emergeby revealing a latent field that leads to the original field through a time derivative,thus giving higher-order termsin Lagrangian.Based on the standard Noether theorem approach,we exemplify the wave spin for unconventionaldrifted acoustic fields,and even for dissipative media,in scalar fields with higher-order derivative Lagrangian.The results would prompt people to build more comprehensive and fundamental understandings of structuralwave spin in classical fields.
基金We wish to acknowledge the support by the National Key Research and Development Program of China(Nos.2016YFA0300802 and 2017YFA0206200)the National Natural Science Foundation of China(NSFC)(Nos.11674020,12074026 and U1801661)+6 种基金the 111 talent program B16001G.B.was supported by the Netherlands Organization for Scientific Research(NWO)and Japan Society for the Promotion of Science Kakenhi Grants-in-Aid for Scientific Research(No.19H006450)T.Y.was funded through the Emmy Noether Program of Deutsche Forschungsgemeinschaft(SE 2558/2-1)K.X.thanks the National Key Research and Development Program of China(Nos.2017YFA0303304 and 2018YFB0407601)the National Natural Science Foundation of China(Nos.61774017 and 11734004)K.S.was supported by the Fundamental Research Funds for the Central Universities(No.2018EYT02)M.Z.W.were supported by the US National Science Foundation(No.EFMA-1641989).
文摘Nanomagnets are widely used to store information in non-volatile spintronic devices.Spin waves can transfer information with low-power consumption as their propagations are independent of charge transport.However,to dynamically couple two distant nanomagnets via spin waves remains a major challenge for magnonics.Here we experimentally demonstrate coherent coupling of two distant Co nanowires by fast propagating spin waves in an yttrium iron garnet thin film with sub-50 nm wavelengths.Magnons in two nanomagnets are unidirectionally phase-locked with phase shifts controlled by magnon spin torque and spin-wave propagation.The coupled system is finally formulated by an analytical theory in terms of an effective non-Hermitian Hamiltonian.Our results are attractive for analog neuromorphic computing that requires unidirectional information transmission.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR18E010001)the National Natural Science Foundation of China(Grant Nos.U1704253,and 51471045)the Fundamental Research Funds for the Central Universities(Grant No.N160208001)。
文摘In this study,we investigated the micromagnetic dynamics of kπ-state skyrmions in a magnetic nanodot under a circular spinpolarized current and found an excited spin wave that can propagate persistently along the direction of the radius toward the center.This dynamic process is associated with two energetically favorable states in an oscillating period of spin waves.In this case,the spin-polarized current plays a role similar to effective perpendicular magnetic anisotropy and decreases the minimum energy in the magnetic system.Our findings provide insight into understanding the dynamic behaviors of topological magnetic textures.
文摘In a Weyl semimetal(WSM),the conduction and valence bands cross each other near the Fermi energy,and the crossing points,called Weyl points,exhibit a monopole-like distribution of the Berry curvature.The Berry curvature is a fictitious magnetic field in the momentum-space and induces the anomalous velocity to the real-space electron motion.Therefore,Weyl monopoles play essential roles in the charge transport,for example,the anomalous Hall effect(AHE).The anomalous Hall conductivity(AHC)is nearly proportional to the distance between the Weyl point pairs with opposite chirality.The magnetic order and spin structure sensitively modify Weyl point positions and energies.
基金supported by NKRDPC2018YFA0306001,NKRDPC-2022YFA1402802,NSFC-92165204,NSFC-11974432,GBABRF-2019A1515011337,Shenzhen International Quantum Academy(Grant No.SIQA202102)Leading Talent Program of Guangdong Special Projects(No.201626003).
文摘We investigate the effects of long-range interactions on the spin wave spectra and the competition between magnetic phases on a frustrated square lattice with large spin S.Applying the spin wave theory and assisted with symmetry analysis,we obtain analytical expressions for spin wave spectra of competing Neel and(π,0)stripe states of systems containing anyorder long-range interactions.In the specific case of long-range interactions with power-law decay,we find surprisingly that the staggered long-range interaction suppresses quantum fluctuation and enlarges the ordered moment,especially in the Neel state,and thus extends its phase boundary to the stripe state.Our findings illustrate the rich possibilities of the roles of long-range interactions,and advocate future investigations in other magnetic systems with different structures of interactions.
基金supported in part by the National Natural Science Foundation of China(Nos.61975148 and 11535008)。
文摘In this Letter,we report an Airy-like beam of magnetostatic surface spin wave(Ai BMSSW)supported on the ferromagnetic film,which is transferred from the optical field.The propagation properties of Ai BMSSW were verified with micromagnetic simulation.From simulation results,the typical parabolic trajectory of the Airy-type beam was observed with an exciting source encoding 3/2 phase pattern.The simulation results coincide well with design parameters.Furthermore,simulated results showed that the trajectories of the Ai BMSSW could be tuned readily with varied external magnetic fields.This work can extend the application scenario of spin waves.
基金the Natural Science Foundation of Inner Mongolia of China(Grant No.2019MS01021)the Research Program of Science and Technology at Universi-ties of Inner Mongolia Autonomous Region,China(Grant No.NJZY21454)the Theoretical Physics Discipline De-velopment and Communication Platform of Inner Mongolia University(Grant No.12147216).
文摘The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 20720210030)the National Natural Science Foundation of China (Grant No. 11204255)。
文摘Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.
基金National Natural Science Foundation of China(Grant Nos.11674187 and 51871127)Technology on Electronic Test&Measurement Laboratory(Grant No.6142001180103).
文摘Nowadays the yttrium iron garnet(Y3Fe5O12, YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, especially the frequency stability, are seriously affected by the relaxation of the interface magnetic moments. In this study, the effect of out-of-plane magnetization depinning on the resonance frequency shift(△ fr) was investigated for 3-μm YIG films grown on Gd3Ga5O12(GGG)(111) substrates by liquid-phase epitaxy. It is revealed that the ferromagnetic resonance(FMR) and spin wave propagation exhibit a very slow relaxation with relaxation time τ even longer than one hour under an out-of-plane external magnetic bias field. The △ fr span of 15.15–24.70 MHz is observed in out-of-plane FMR and forward volume spin waves. Moreover, the △ fr and τ depend on the magnetic field. The △ fr can be attributed to that the magnetic moments break away from the pinning layer at the YIG/GGG interface. The thickness of the pinning layer is estimated to be about9.48 nm to 15.46 nm according to the frequency shifting. These results indicate that △ fr caused by the pinning layer should be addressed in the design of microwave and spin wave devices, especially in the transverse magnetic components.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074158,12174166,and 12104197)。
文摘We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation.When the field is obliquely applied to the ring,local resonance mode can be observed in different parts of the rings.And the resonance mode will change to perpendicular spin standing waves if the magnetic field is applied along the perpendicular direction.The simulation results demonstrated this evolution and implied more resonance modes that maybe exist.And the mathematical fitting results based on the Kittel equation further proved the existence of local resonance mode.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074189,11704191,11774160,and 61427812)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20192006 and BK20211144)the Postdoctoral Research Funding Program of Jiangsu Province,China(Grant No.2021K503C)。
文摘An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting[Pt/Co/Ta]_(10) multilayer by measuring the time-resolved magneto-optical Kerr effect.The observed interlayer mode depends on the interlayer spin-pumping and spin transfer torque among the neighboring Co layers.This mode shows monotonically increasing frequency-field dependence which is similar to the ferromagnetic resonance mode,but within higher frequency range.Besides,the damping of the interlayer mode is found to be a relatively low constant value of 0.027 which is independent of the external field.This work expounds the potential application of the[heavy-metal/ferromagnetic-metal]_(n) multilayers to skyrmion-based magnonic devices which can provide multiple magnon modes,relatively low damping,and skyrmion states,simultaneously.