期刊文献+
共找到39,896篇文章
< 1 2 250 >
每页显示 20 50 100
Magnesium and gallium-coloaded microspheres accelerate bone repair via osteogenesis and antibiosis 被引量:1
1
作者 Jin Bai Si Shen +7 位作者 Yan Liu Shendan Xu Tianqi Li Zirou Wang Weili Liu Lingling Pu Gang Chen Xinxing Wang 《Bio-Design and Manufacturing》 2025年第1期150-165,I0056-I0059,共20页
Bone defects have serious economic and clinical impacts;however,despite improvements in bone defect management,the range of clinical outcomes remains limited.A variety of biomaterials have been used to treat complex b... Bone defects have serious economic and clinical impacts;however,despite improvements in bone defect management,the range of clinical outcomes remains limited.A variety of biomaterials have been used to treat complex bone defects.However,final bone repair outcomes may be adversely affected by poor osteogenic capacity and risk of infection.Consequently,therapeutic methods are required that reduce bacterial contamination and increase the use of osteogenic biomaterials.Herein,we report the preparation of poly(lactic acid-coglycolic acid)(PLGA)microspheres coloaded with magnesium(Mg^(2+))and gallium(Ga^(3+))ions(Mg-Ga@PLGA),which can fill irregular bone defects and show good biosafety.During in vitro testing,Mg-Ga@PLGA not only showed a synergistic effect on promoting osteogenic differentiation but also inhibited osteoclastic differentiation.Moreover,we found that Mg-Ga@PLGA demonstrated an antibacterial effect.During in vivo testing,Mg Ga@PLGA exhibited strong in situ osteogenic ability.In conclusion,Mg-Ga@PLGA has good potential for treating bone defects at risk of infection. 展开更多
关键词 MICROsphere OSTEOGENESIS ANTIBACTERIA magnesium GALLIUM
暂未订购
Synthesis of a novel carbon microsphere with multi-cavity mesoporous structure for CO_(2) adsorption
2
作者 Li Liu Qunyan Li +3 位作者 Qi Wei Yan Mei Wenjuan Chen Zuoren Nie 《Journal of Environmental Sciences》 2026年第1期199-209,共11页
Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspher... Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspheres.And modification of the pore structure is one of the effective strategies.In this study,multi-cavity mesoporous carbon microspheres were successfully synthesized by the synergistic method of soft and hard templates,during which a phenolic resin with superior thermal stability was employed as the carbon precursor and a mixture of silica sol and F108 as the mesoporous template.Carbon microspheres with multi-cavity mesoporous structures were prepared,and all the samples showed highly even mesopores,with diameters around 12 nm.The diameter of these microspheres decreased from 396.8 nm to about 182.5 nm with the increase of silica sol.After CO_(2) activation,these novel carbon microspheres(APCF0.5-S1.75)demonstrated high specific surface area(983.3 m^(2)/g)and remarkable CO_(2) uptake of 4.93 mmol/g at 0℃ and1 bar.This could be attributed to the unique multi-cavity structure,which offers uniform mesoporous pore channels,minimal CO_(2) transport of and a greater number of active sites for CO_(2) adsorption. 展开更多
关键词 Porous carbon CO_(2)adsorption Multi-cavity structure Carbon sphere
原文传递
Nanosized Anatase TiO_(2) with Exposed(001)Facet for High-Capacity Mg^(2+)Ion Storage in Magnesium Ion Batteries
3
作者 Rong Li Liuyan Xia +6 位作者 Jili Yue Junhan Wu Xuxi Teng Jun Chen Guangsheng Huang Jingfeng Wang Fusheng Pan 《Nano-Micro Letters》 2026年第1期438-457,共20页
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize... Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems. 展开更多
关键词 magnesium ion batteries High capacity Nanosized anatase TiO_(2) Crystal facet Interfacial ion storage
在线阅读 下载PDF
Oxidation behaviour of molten ZK60 and ME20 magnesium alloys with magnesium in 1,1,1,2-tetrafluoroethane/air atmospheres 被引量:1
4
作者 陈虎魁 弓赞芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2898-2905,共8页
The oxidation behaviour of molten ZK60 and ME20 magnesium alloys in 1% 1,1,1,2-tetrafluoroethane/air atmospheres at 720 °C was compared with that of molten magnesium. The oxidation kinetics of these three melts w... The oxidation behaviour of molten ZK60 and ME20 magnesium alloys in 1% 1,1,1,2-tetrafluoroethane/air atmospheres at 720 °C was compared with that of molten magnesium. The oxidation kinetics of these three melts was determined by thermograyimetric measuring instrument, and the surface films of the oxidized samples were examined by scanning electron microscope (SEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the oxidation rate of molten ZK60 or ME20 alloys is much lower than that of molten magnesium in 1% 1,1,1,2-tetrafluoroethane/air atmospheres. The surface film formed on the molten magnesium is composed of MgF2, MgO and C, while the film formed on ZK60 melt mainly consists of MgF2, MgO, C and some ZrF4, and the film on ME20 mainly consists of MgF2, MgO, C and a small amount of CeF4. The good oxidation resistances of ZK60 and ME20 alloy melts may be caused by their major alloying elements Zr and Ce, respectively. 展开更多
关键词 ZK60 alloy ME20 alloy magnesium alloy melt Mg melt 1 1 1 2-TETRAFLUOROETHANE alloying element oxidation
在线阅读 下载PDF
Low-temperatures synthesis of CuS nanospheres as cathode material for magnesium second batteries 被引量:2
5
作者 Qin Zhang Yaobo Hu +1 位作者 Jun Wang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期192-200,共9页
Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching ... Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching for suitable cathode materials with fast diffusion kinetics and exploring their magnesium storage mechanisms remains a great challenge.Cu S submicron spheres,made by a facile low-temperature synthesis strategy,were applied as the high-performance cathode for RMBs in this work,which can deliver a high specific capacity of 396mAh g^(-1)at 20 mA g^(-1) and a remarkable rate capacity of 250 m Ah g^(-1)at 1000 mA g^(-1).The excellent rate performance can be assigned to the nano needle-like particles on the surface of Cu S submicron spheres,which can facilitate the diffusion kinetics of Mg^(2+).Further storage mechanism investigations illustrate that the Cu S cathodes experience a two-step conversion reaction controlled by diffusion during the electrochemical reaction process.This work could make a contribution to the study of the enhancement of diffusion kinetics of Mg2+and the reaction mechanism of RMBs. 展开更多
关键词 magnesium second batteries Cathode material CUS Submicron spheres Low-temperature synthesis.
在线阅读 下载PDF
Characterization of the Protective Surface Films Formed on Molten AZ91D Magnesium Alloy in SO_2/Air Atmospheres in a Sealed Furnace
6
作者 Xianfei Wang Shoumei Xiong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第4期353-358,共6页
Surface films that formed on molten AZ91D magnesium alloy in S02/air cover gases at 680 ℃ in a sealed furnace were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and ... Surface films that formed on molten AZ91D magnesium alloy in S02/air cover gases at 680 ℃ in a sealed furnace were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Auger electron spectroscopy. It is revealed that the film formed on molten AZ91D alloy surface in cover gas with high air content can prevent the molten AZ91D alloy from oxidation and ignition. The surface film contained three elements, namely magnesium, oxygen and sulfur, and was mainly composed of MgO and MgS. The properties of the film depended on air content in the cover gas and holding time. Thermodynamic calculation showed that MgSO4 was the stable phase, and it was concluded that the formation of MgS04 was important for the formation of the protective surface film in S02/air atmospheres. 展开更多
关键词 magnesium alloy S02 Sealed furnace Gas protection Surface film
原文传递
Tribological behaviors of AZ91D magnesium alloy under the lubrication of oil suspended synthetic magnesium silicate hydroxide nanotubes 被引量:1
7
作者 Y.L.Yin H.L.Yu +7 位作者 H.M.Wang X.C.Ji Z.Y.Song X.Y.Zhou M.Wei P.J.Shi W.Zhang C.F.Zhao 《Journal of Magnesium and Alloys》 2025年第1期379-397,共19页
Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological b... Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological behavior of AZ91D magnesium alloy rubbed against GCr15 steel was studied under lubricating oil with surface-modified MSH nanotubes as additives.The effects of the concentration,applied load,and reciprocating frequency on the friction and wear of the AZ91D alloy were studied using an SRV-4 sliding wear tester.Results show a decrease of 18.7–68.5%in friction coefficient,and a reduction of 19.4–54.3%in wear volume of magnesium alloy can be achieved by applying the synthetic serpentine additive under different conditions.A suspension containing 0.3 wt.%MSH was most efficient in reducing wear and friction.High frequency and medium load were more conducive to improving the tribological properties of magnesium alloys.A series of beneficial physical and chemical processes occurring at the AZ91D alloy/steel interface can be used to explain friction and wear reduction based on the characterization of the morphology,chemical composition,chemical state,microstructure,and nanomechanical properties of the worn surface.The synthetic MSH,with serpentine structure and nanotube morphology,possesses excellent adsorbability,high chemical activity,and good self-lubrication and catalytic activity.Therefore,physical polishing,tribochemical reactions,and physicalchemical depositions can occur easily on the sliding contacts.A dense tribolayer with a complex composition and composite structure was formed on the worn surface.Its high hardness,good toughness and plasticity,and prominent lubricity resulted in the improvement of friction and wear,making the synthetic MSH a promising efficient oil additive for magnesium alloys under boundary and mixed lubrication. 展开更多
关键词 magnesium alloy Oil lubrication Tribological behavior magnesium silicate hydroxide SERPENTINE
在线阅读 下载PDF
A review of biodegradable biliary stents made of magnesium metals:Current progress and future trends 被引量:2
8
作者 Ling Liu Tuo En Liu Tan To Cheung 《Journal of Magnesium and Alloys》 2025年第1期30-40,共11页
Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents ca... Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method. 展开更多
关键词 Biliary stents magnesium metals DEGRADATION Biological application
暂未订购
Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects 被引量:2
9
作者 Ganesh Kumar Subham Preetam +5 位作者 Arunima Pandey Nick Birbilis Saad Al-Saadi Pooria Pasbakhsh Mikhail Zheludkevich Poovarasi Balan 《Journal of Magnesium and Alloys》 2025年第3期948-981,共34页
Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditi... Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology. 展开更多
关键词 magnesium alloy Cardiovascular stent Surface modification Corrosion BIOCOMPATIBILITY Biomedical application
暂未订购
Improving strength-ductility of Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium alloy due to bimodal LPSO and dislocations 被引量:2
10
作者 Xiaohua Zhang Yuan Shi +4 位作者 Jiaqi Li Hongyan Yue Chao Li Siming Guo Qiang Chen 《Journal of Rare Earths》 2025年第4期832-842,I0007,共12页
Rare-earth(RE) magnesium alloys have attracted lots of attention due to their excellent mechanical properties.In this work,the microstructure and mechanical properties of as-extruded 8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium a... Rare-earth(RE) magnesium alloys have attracted lots of attention due to their excellent mechanical properties.In this work,the microstructure and mechanical properties of as-extruded 8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium alloy under different solution treatment were examined with the optical microscope(OM),scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM),electron back-scattered diffraction(EBSD) and Instron testing machine.The results show that the ES12alloy(solution treatment for 12 h at 520℃) has the highest ultimate tensile strength(UTS) of 390 MPa with a fracture elongation of 24.5% at the co st of a minor drop in yielding strength(YS) compared to the asextruded alloy.During solution treatment,the block-shaped long period stacking ordered(LPSO) in asextruded alloy evolves into plate-shaped LPSO,which disperses at grain boundaries(GBs),and lamellar LPSO,which distributes in grains.The coexistence of plate-shaped and lamellar LPSO,which impedes the dislocations movement,and the activated dislocations are regarded as the primary reasons for mechanical properties improvement.Furthermore,the(11-21) <1-100> texture in as-extruded alloy transforms into the(11-20) <0001> texture in ES12 alloy.The average grain size increases from 3.45 μm in as-extruded alloy to 18.70 μm in ES12 alloy.The Schmid factors of {0001} <11-20>,{10-10} <11-20>,{10-11} <11-20>,and {11-22} <11-23> increase,which indicate that slip systems are more easily activated in plastic deformation.The dynamic recrystallization(DRX) grains fraction increase to 92.8% for ES12 alloy due to the particle-stimulated nucleation(PSN) mechanism triggered by block-shaped and plate-shaped LPSO.The freshly DRXed grains further weaken the texture,and reduce the dislocation density.All of these factors increase elongation of RE magnesium alloy. 展开更多
关键词 Rare earths magnesium alloy Solution treatment LPSO TEXTURE Mechanical properties
原文传递
Effect of hierarchical cell structure and internal pores on mechanical properties of thixomolded AZ91D magnesium alloy 被引量:2
11
作者 Li-dong GU Xiao-qing SHANG +3 位作者 Jie WANG Jun-jun DENG Zhen ZHAO Xiao-qin ZENG 《Transactions of Nonferrous Metals Society of China》 2025年第3期749-764,共16页
A comprehensive analysis of the microstructure and defects of a thixomolded AZ91D alloy was conducted to elucidate their influences on mechanical properties.Samples were made at injection temperatures ranging from 580... A comprehensive analysis of the microstructure and defects of a thixomolded AZ91D alloy was conducted to elucidate their influences on mechanical properties.Samples were made at injection temperatures ranging from 580 to 640℃.X-ray computed tomography was used to visualize pores,and crystal plasticity finite element simulation was adopted for deformation analysis.The microstructure characterizations reveal a hierarchical cell feature composed of α-Mg and eutectic phases.With the increase of injection temperature,large cell content in the material decreases,while the strength of the alloy increases.The underlying mechanism about strength change is that coarse-grained solids experience smaller stress even in hard orientations.The sample fabricated at a moderate temperature of 620℃ exhibits the highest elongation,least quantity and lower local concentration of pores.The detachment and tearing cracks formed at lower injection temperature and defect bands formed at higher injection temperature add additional crack sources and deteriorate the ductility of the materials. 展开更多
关键词 AZ91D magnesium alloy fabrication technology cell structure pores STRENGTH DUCTILITY
在线阅读 下载PDF
Mechanism and application prospect of magnesium-based materials in cancer treatment 被引量:1
12
作者 Yutong Ma Yi Wang +7 位作者 Siwei Song Xinyue Yu Can Xu Long Wang Fan Yao Ke Yang Frank Wittee Shude Yang 《Journal of Magnesium and Alloys》 2025年第3期982-1011,共30页
Magnesium-based materials,including magnesium alloys,have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties,including biocompatibility... Magnesium-based materials,including magnesium alloys,have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties,including biocompatibility,biodegradability,and the ability to modulate the tumor microenvironment.The main degradation products of magnesium alloys are magnesium ions(Mg^(2+)),hydrogen(H_(2)),and magnesium hydroxide(Mg(OH)_(2)).Magnesium ions can regulate tumor growth and metastasis by mediating the inflammatory response and oxidative stress,maintaining genomic stability,and affecting the tumor microenvironment.Similarly,hydrogen can inhibit tumorigenesis through antioxidant and anti-inflammatory properties.Moreover,Mg(OH)_(2) can alter the pH of the microenvironment,impacting tumorigenesis.Biodegradable magnesium alloys serve various functions in clinical applications,including,but not limited to,bonefixation,coronary stents,and drug carriers.Nonetheless,the anti-tumor mechanism associated with magnesium-based materials has not been thoroughly investigated.This review provides a comprehensive overview of the current state of magnesium-based therapies for cancer.It highlights the mechanisms of action,identifies the challenges that must be addressed,and discusses prospects for oncological applications. 展开更多
关键词 Cancer therapy magnesium based materials magnesium ions Hydrogen gas Mg(OH)_(2) Anti-tumor mechanism
暂未订购
Weakened in-plane anisotropy of AZ31 magnesium alloy sheet induced by pre-enhanced non-basal slips during hot rolling 被引量:1
13
作者 YANG Chao-yang WANG Li-fei +7 位作者 XUE Liang-liang HUANG Qiu-yan XIA Da-biao FU Xin-wei SONG Bo ZHENG Liu-wei WANG Hong-xia KWANG Seon-Shin 《Journal of Central South University》 2025年第3期706-726,共21页
To weaken the basal texture and in-plane anisotropy of magnesium alloy, non-basal slips are pre-enhanced by pre-rolling with a single pass larger strain reduction at elevated temperatures. Then Mg alloy sheets with th... To weaken the basal texture and in-plane anisotropy of magnesium alloy, non-basal slips are pre-enhanced by pre-rolling with a single pass larger strain reduction at elevated temperatures. Then Mg alloy sheets with the thickness of 1 mm are achieved after five passes rolling at 300 ℃. A double peak and disperse basal texture is generated after pre- rolling at higher temperatures when the non-basal slips are more active. So, the texture intensity of pre-rolled samples is reduced. Moreover, the distribution condition of in-grain misorientation axes (a method to analyze the activation of slips) shows that the pyramidal slip is quite active during deformation. After annealing on final rolled sheets, the texture distributions are changed and the intensity of texture reduces obviously due to static recrystallization. In particular, the r-value and in-plane anisotropy of pre-rolled samples are obviously lower than those of sample without pre-rolling. 展开更多
关键词 magnesium alloys MICROSTRUCTURE ANISOTROPY texture evolution
在线阅读 下载PDF
In vitro and in vivo studies on bioactive hydroxyapatite-coated magnesium for glaucoma drainage implant 被引量:1
14
作者 Huanhuan Gao Yi Chen +7 位作者 Xia Chen Liandi Huang Hao Yao Xiaomin Zhu Min Tang Yong Wang Xiangji Li Lin Xie 《Journal of Magnesium and Alloys》 2025年第1期442-455,共14页
Given the alarmingly increasing rates of glaucoma worldwide and the lack of satisfactory treatments,there is a dire need to explore more feasible treatment options.Magnesium(Mg)is an essential element in maintaining t... Given the alarmingly increasing rates of glaucoma worldwide and the lack of satisfactory treatments,there is a dire need to explore more feasible treatment options.Magnesium(Mg)is an essential element in maintaining the functional and structural integrity of vital ocular tissues,but Mg and its alloys are rarely mentioned in ophthalmic applications.Our previous research found that hydroxyapatite-coated Mg(Mg@HA)shows the best biocompatibility and bioactivity,and exhibits the effect of inhibiting fibrosis after filtration surgery in the rabbit model,which is expected to be a promising material for glaucoma drainage device.In this study,we further demonstrated the anti-fibrosis effect of Mg@HA from the molecular signal level and the efficacy of implantation in the rabbit filtration surgery model.In vitro experiments showed the surface modification of Mg affects the adhesion behavior and the reorganization of cytoskeleton of Human Western blot analysis and immunofluorescence found that Mg@HA regulates the adhesion and motility of human Tenon’s capsule fibroblasts mainly by down-regulating the phosphorylation of Smad2 and Smad3 in the canonical transforming growth factor-beta(TGF-β)signaling pathway.By observing and recording the condition of filtering blebs and intraocular pressure after surgery,the effectiveness of Mg@HA applied in the rabbit filtration surgery model was further evaluated.In conclusion,the application of hydroxyapatite-coated Mg in the eye has good biocompatibility and has the potential to resist postoperative glaucoma filtration fibrosis,which may be mediated by the regulation of the TGFβ/Smad signaling pathway. 展开更多
关键词 GLAUCOMA FIBROSIS TGF-βsignaling Coating magnesium
暂未订购
Evading efficiency-voltage trade-off in magnesium-air batteries through solute atoms and second phases synergy 被引量:1
15
作者 Hongxing Liang Liang Wu +2 位作者 Chenchen Zhao Chuantian Zhai Wenbo Du 《Journal of Magnesium and Alloys》 2025年第2期719-730,共12页
The quest for high-energy-density magnesium-air batteries is hindered by the efficiency-voltage trade-off,ultimately leading to an unsatisfactory energy density.Here,we effectively mitigate the inherent efficiency-vol... The quest for high-energy-density magnesium-air batteries is hindered by the efficiency-voltage trade-off,ultimately leading to an unsatisfactory energy density.Here,we effectively mitigate the inherent efficiency-voltage trade-off by introducing a novel anode material,specifically,Mg-0.5Sn-0.5In-0.5Ga.This anode demonstrates exceptional anodic efficiency,achieving 60.5±2.5%at 1 mA cm^(-2),65.3±2.7%at 10 mA cm^(-2),and 71.4±1.2%at 20 mA cm^(-2).Furthermore,the discharge voltage is significantly enhanced,reaching 1.76±0.01 V at 1 mA cm^(-2),1.44±0.02 V at 10 mA cm^(-2),and 1.21±0.08 V at 20 mA cm^(-2).Consequently,our newly developed anode exhibits a remarkable energy density of 2312±98 W h kg^(-1),placing it among the top-performing magnesium anodes documented in the literature.Density functional theory calculations and experimental investigations have unveiled that the exceptional performance can be attributed to the inhibition of water reduction,facilitated by the hybridization between solute atoms and neighboring Mg atoms.Furthermore,the activation of the second phase,introducing additional galvanic couples,significantly contributes to this performance.This study presents valuable insights that can guide the design of novel anodes,contributing to the advancement of high-performance magnesium-air batteries. 展开更多
关键词 magnesium anode Corrosion Discharge mechanism Theoretical calculation
在线阅读 下载PDF
The strength-ductility synergy of magnesium matrix nanocomposite achieved by a dual-heterostructure 被引量:1
16
作者 Lingling Fan Yukai Xiong +7 位作者 Ying Zeng Ran Ni Yuwenxi Zhang Lingbao Ren Hajo Dieringa Yuanding Huang Gaofeng Quan Xu Zhang 《Journal of Materials Science & Technology》 2025年第12期296-314,共19页
This study aims to achieve a synergy of strength and ductility in magnesium-based nanocomposite materials through the design of a dual-heterostructure. Utilizing ball milling and hot extrusion, a nano-TiC/AZ61 composi... This study aims to achieve a synergy of strength and ductility in magnesium-based nanocomposite materials through the design of a dual-heterostructure. Utilizing ball milling and hot extrusion, a nano-TiC/AZ61 composite featuring particle-rare coarse grain (CG) and particle-rich fine grain (FG) zones was successfully fabricated. Experimental results demonstrated that compared with the homogeneous structure, the dual-heterostructure composite achieved a significant increase in elongation by 116 % and a remarkable 165 % improvement in the strength-ductility product (SDP), while maintaining a high ultimate tensile strength (UTS) of 417±4 MPa. This substantial performance enhancement is primarily attributed to the additional strain hardening induced by hetero-deformation-induced (HDI) strain hardening and crack-blunting capabilities, as elucidated by microstructural characterization and crystal plasticity finite element modeling (CPFEM). Notably, the strain hardening contribution from the CG zones at the early stage of deformation (≤ 45 % of total plastic deformation amount) is minimal but increases significantly during the subsequent deformation stages. The dislocation increment rate in CG zones (219 %) is observed to be more than double that in FG zones (95 %), attributed to the large grain size and low dislocation density in CG zones, which provide more space for dislocation storage. In addition, the aggravated deformation inhomogeneity as deformation progresses leads to an increase in geometrically necessary dislocations (GNDs) generation near the heterogeneous interface, thereby enhancing HDI hardening. Fracture mechanism analysis indicated that the cracks mainly initiate in the FG region and are effectively blunted upon their propagation to the CG region, necessitating increased energy consumption and indicating higher fracture toughness for the dual-heterostructure composites. This study validates the effectiveness of the dual-heterostructure design in magnesium-based composites, providing a novel understanding of the deformation mechanism through both experimental analysis and CPFEM, paving the way for the development of high-performance, lightweight structural materials. 展开更多
关键词 HETEROSTRUCTURE Strengthening mechanism Strength-ductility synergy Fracture mechanism magnesium
原文传递
Recent advancements in the design of micro/nanostructured superhydrophobic surfaces on magnesium alloys 被引量:1
17
作者 Sihui Ouyang Fengyi Wang +4 位作者 Jia She Liying Qiao Ao Fu Xianhua Chen Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第2期457-485,共29页
As one of the lightest engineering materials,magnesium(Mg)alloy possesses excellent mechanical performance,meeting the needs of versatile engineering fields and holding the potential to address cutting-edge issues in ... As one of the lightest engineering materials,magnesium(Mg)alloy possesses excellent mechanical performance,meeting the needs of versatile engineering fields and holding the potential to address cutting-edge issues in aerospace,electronics,biomedicine.The design of superhydrophobic(SHB)surfaces with micro and nanostructures can endow Mg alloys with multiple functionalities,such as self-cleaning,self-healing,antibacterial,and corrosion resistance.Over the past decade,researchers have drawn inspiration from nature to implement biomimetic design principles,resulting in the rapid development of micro/nanostructured SHB surfaces on Mg alloys,which hold great promise for biomedical applications.This review comprehensively introduces the biomimetic design principles of micro/nanostructured SHB surfaces on Mg alloys,discusses the challenges along with advantages and disadvantages of current preparation methods,and explores the future perspectives for preparing these SHB surfaces,providing strategies to enhance their performance in biomedical applications. 展开更多
关键词 magnesium alloy Biomimetic design Superhydrophobic surface Biomedical application.
在线阅读 下载PDF
Regulation mechanism of active magnesium oxide on precipitation of lanthanum hydroxide 被引量:1
18
作者 Jianwei Zhao Haiqing Hao +4 位作者 Yanyan Zhao Meng Wang Xu Sun Zongyu Feng Xiaowei Huang 《Journal of Rare Earths》 2025年第6期1264-1271,I0007,共9页
Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synt... Precipitation is often used for the preparation of La(OH)_(3)with precipitants of liquid alkali and ammonia.To solve the problems of high cost and wastewater pollution caused by common precipitants,the active MgO synthesized by pyrolysis was used as the precipitant to prepare La(OH)_(3).The species distribution of LaCl_(3)and LaCl_(3)-MgCl_(2)mixed system solution was calculated,and the kinetic analysis of the precipi-tation process was carried out to confirm the key factors influencing the precipitation of La(OH)_(3).The results show that La(OH)_(3)with D_(50)of 5.57μm,a specific surface area of 25.70 m^(2)/g,a rod-like shape,and MgO content of 0.044 wt%,was successfully prepared by adding active MgO.The precipitation ratio of La reaches 99.92%.The La(OH)_(3)precipitation is controlled by the diffusion process.The activity of MgO has a significant influence on MgO content in the precipitate.The preparation of La(OH)_(3)by active MgO provides a potential way for an eco-friendly preparation method of rare earth. 展开更多
关键词 Active magnesium oxide PRECIPITATION Lanthanum hydroxide REGULATION Rare earths
原文传递
A review of anticorrosive,superhydrophobic and self-healing properties of coating-composites as corrosion barriers on magnesium alloys:Recent advances,challenges and future directions 被引量:1
19
作者 Babalola Aisosa Oni Olusegun Stanley Tomomewo +2 位作者 Solomon Evro Andrew N.Misian Samuel Eshorame Sanni 《Journal of Magnesium and Alloys》 2025年第6期2435-2469,共35页
Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical enginee... Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical engineering.Unfortunately,the poor corrosion resistance of Mg-alloys limits their wide acceptance.Advanced composite coatings which are self-healing,superhydrophobic anti corrosive,and wear resistant are new synthetic materials for abating these challenges.The superimposed superhydrophobic surfaces help in minimizing their water contact,thus slowing down the electrochemical reactions on the surface of the alloys,while their self-healing characteristics autonomously aid in the repair of any induced micro-crack,defect or damage towards ensuring the metal's long-term protection.In addition,the integration of wear-resistant materials further improves the durability of coatings under mechanical stress.The most recent research efforts have been directed towards the preparation of multifunctional composites,with an emphasis on nanomaterials,functional polymers,and state-of-the-art fabrication techniques in order to take advantage of their synergistic effects.Some of the methods that have so far exhibited promising potentials in fabricating these materials include the sol-gel method,layer-by-layer assembly,and plasma treatments.However,most of the fabricated products are still faced with significant challenges ranging from long-term stability to homogeneous adhesion of the coatings and their scalability for industrial applications.This review discusses the recent progress and the relationship between corrosion inhibition and self-healing efficiencies of wear resistant polymer nanocomposite coatings.Some challenges related to optimizing coating performance were also discussed.In addition,future directions ranging from the consideration of bioinspired designs,novel hybrid nanocomposite materials,and environmentally sustainable solutions integrated with smart protective coatings were also proposed as new wave technologies that can potentially revolutionize the corrosion protection offered by Mg alloys while opening up prospects for improved performance and sustainability. 展开更多
关键词 magnesium alloys CORROSION SUPERHYDROPHOBIC Self-healing coatings Water contact angle
在线阅读 下载PDF
Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium 被引量:1
20
作者 Lei Guo Huayi Yin +5 位作者 Wenmiao Li Shiyu Wang Kaifa Du Hao Shi Xu Wang Dihua Wang 《Journal of Magnesium and Alloys》 2025年第4期1579-1591,共13页
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car... Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg). 展开更多
关键词 Molten-salt electrolysis Inert anode Liquid metal electrodes SODIUM magnesium
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部