In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniq...In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniques. These techniques involve speeded up robust features(SURF), K-means clustering and visual dictionaries(VD). Three databases are mixed to test the working of the system when the sources are dissimilar. When experiments were performed an area under the curve(AUC) of 0.9343 was attained. The results acquired from the system are promising.展开更多
This article presents a good robust and real-time system scheme of the mobile robot obstacle detection and navigation, which principle of work is based on the feature descriptor SURF. In this scheme, firstly, the imag...This article presents a good robust and real-time system scheme of the mobile robot obstacle detection and navigation, which principle of work is based on the feature descriptor SURF. In this scheme, firstly, the image information of the mobile robot path was captured by the binocular camera; then the feature points were extracted and corresponding matched using SURF to the binocular images as the undetected obstacles; finally fixed the position of the objective by the parallax between the matching points combining with the binocular vision calibration model. Theoretical derivation and experimental results show that this scheme is more accurate for the detection and navigation of the interest points. It has fast matching speed and high accuracy and low error. So, it has certain practical effect and popularizing value for the mobile robot real-time obstacle avoidance and navigation.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
To reveal the rock burst mechanism,the stress and failure characteristics of coal-rock strata under different advancing speeds of mining working face were explored by theoretical analysis,simulation,and engineering mo...To reveal the rock burst mechanism,the stress and failure characteristics of coal-rock strata under different advancing speeds of mining working face were explored by theoretical analysis,simulation,and engineering monitoring.The relationship between energy accumulation and release was analyzed,and a reasonable mining speed according to specific projects was recommended.The theoretical analysis shows that as the mining speed increases from 4 to 15 m/d,the rheological coefficient of coal mass ranges from 0.9 to 0.4,and the elastic energy of coal mass accumulation varies from 100 to 900 kJ.Based on the simulation,there is a critical advancing speed,the iteration numbers of simulation are less than 15,000 per mining 10 m coal seam,the overburden structure is obvious,the abutment pressure in coal mass is large,and the accumulated energy is large,which is easy to cause strong rock burst.When the iteration number is greater than 15,000,the static force of coal mass increases slightly,but there is no obvious rock burst.Based on engineering monitoring,the mining speed of a mine is less than 8 m/d,and the periodic weighting distance is about 17 m;as the mining speed is greater than 10 m/d,and the periodic weighting distance is greater than 20 m;as the mining speed is 3-8 m/d,and the range of high stress in surrounding rock is 48 m;as the advancing speed is 8-12 m/d,and the high-stress range in surrounding rock is 80 m.Moreover,as the mining speed is less than 8 cut cycles,the micro seismic energy is less than 10,000 J;as the mining speed is 12 cut cycles,the microseismic energy is about 20,000 J.In summary,the advancing speed is positively correlated with the micro seismic event;as the mining speed increases,the accumulated elastic energy of surrounding rock is greater,which is easy to cause rock burst.The comprehensive analysis indicates the daily advance speed of the mine is not more than 12 cut cycles.展开更多
Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford...Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
When you go somewhere,do you like to be the driver or a passenger?When you are the driver,you are in control.You can go fast or slow.You can pick the route.When and where do you stop?You decide.You enjoy the feeling o...When you go somewhere,do you like to be the driver or a passenger?When you are the driver,you are in control.You can go fast or slow.You can pick the route.When and where do you stop?You decide.You enjoy the feeling of driving.Ifs fun!展开更多
I.请根据录音,填写单词或把单词补充完整。II.听对话,选择正确的答案。1.What is Emily’s favorite animal?A.Dolphins.B.Lions.C.Elephants.D.Tigers.2.How fast can dolphins swim?A.10 miles per hour.B.20 miles per hour.C.30 mil...I.请根据录音,填写单词或把单词补充完整。II.听对话,选择正确的答案。1.What is Emily’s favorite animal?A.Dolphins.B.Lions.C.Elephants.D.Tigers.2.How fast can dolphins swim?A.10 miles per hour.B.20 miles per hour.C.30 miles per hour.D.40 miles per hour.展开更多
The embankment and bridge are the basic forms of railway lines.To date,no reports have addressed the optimal form to adopt when passing through sandy areas.Therefore,models of railway embankment and bridge were create...The embankment and bridge are the basic forms of railway lines.To date,no reports have addressed the optimal form to adopt when passing through sandy areas.Therefore,models of railway embankment and bridge were created,and wind tunnel experiments were conducted to compare the differences in wind speed,flow field,sand transport rate,and other wind–sand environmental effects of railway embankment and bridge.Results show that wind speed reduction areas in the upwind and downwind directions were observed for the railway embankment and bridge.In these areas,the extent and degree of wind speed reduction on the embankment were greater than those on the bridge.At the top of the embankment,especially on the windward slope shoulder,an obvious area of wind speed increase was observed.Similarly,a distinct area of wind speed increase was found between the top of the windward side slope shoulder and 3H downwind of the bridge.Within these regions,the range of wind speed increase on the embankment was smaller than that on the bridge,but the degree of increase was greater than that on the bridge.The range of variation in wind speed on the embankment was generally greater than that on the bridge.The wind–sand flow field around the embankment exhibited greater variability than that around the bridge.Moreover,higher wind–sand flow passage rates on the embankment than on the bridge.This study aims to offer recommendations to assist in the route selection,surveying,and design of railways in sandy regions.展开更多
Application of variable speed limits(VSL)is gradually increasingly implemented especially on highways.As a result of conducted studies and implementations,it is observed that the variable speed limits have reduced the...Application of variable speed limits(VSL)is gradually increasingly implemented especially on highways.As a result of conducted studies and implementations,it is observed that the variable speed limits have reduced the number of car accidents as well as proved positive results in terms of delays and environmental factors.Purpose of this study is to develop an algorithm for VSL application that is considered to be applied on Istanbul D100 highway and to assess the effects of application.Algorithm that is developed for VSL is a different VSL algorithm and compared with the constant speed system.According to obtained results,when the proposed system is compared to current system,it is observed that the number of delays and average stops are reduced%30 and%40 respectively and also emissions reduced at the rate of%12.展开更多
Enhancing the mining speed of a working face has become the primary approach to achieve high production and efficiency in coal mines,thereby further improving the production capacity.However,the problem of rock bursts...Enhancing the mining speed of a working face has become the primary approach to achieve high production and efficiency in coal mines,thereby further improving the production capacity.However,the problem of rock bursts resulting from this approach has become increasingly serious.Therefore,to implement coal mine safety and efficient extraction,the impact of deformation pressure caused by different mining speeds should be considered,and a reasonable mining speed of the working face should be determined.The influence of mining speed on overlying rock breaking in the stope is analyzed by establishing a key layer block rotation and subsidence model.Results show that with the increasing mining speed,the compression amount of gangue in the goaf decreases,and the rotation and subsidence amount of rock block B above goaf decreases,forcing the rotation and subsidence amount of rock block A above roadway to increase.Consequently,the contact mode between rock block A and rock block B changes from line contact to point contact,and the horizontal thrust and shear force between blocks increase.The increase in rotation and subsidence of rock block A intensifies the compression degree of coal and rock mass below the key layer,thereby increasing the stress concentration degree of coal and rock mass as well as the total energy accumulation.In addition,due to the insufficient compression of gangue in the goaf,the bending and subsidence space of the far-field key layer are limited,the length of the suspended roof increases,and the influence range of mining stress and the energy accumulation range expand.Numerical test results and underground microseismic monitoring results verify the correlation between mining speed and stope energy,and high-energy events generally appear 1-2 d after the change in mining speed.On this basis,the statistical principle confirms that the maximum mining speed of the working face at 6 m/d is reasonable.展开更多
Commonly,the standards for the geometric design of roads refer to a given set of values for the friction coefficient(longitudinal and transverse friction).These"reference"values imply corresponding visibilit...Commonly,the standards for the geometric design of roads refer to a given set of values for the friction coefficient(longitudinal and transverse friction).These"reference"values imply corresponding visibility sights,curvature radii,and speed limits.Unfortunately,not only do these reference values not correspond to a given standard to measure them,but nothing is said about the decrease of the posted speed limit(variable speed limits)when roads become slippery and lanes for autonomous vehicle(AV)are concerned.Furthermore,the same assessment of the friction coefficient has plenty of uncertainties due to measurement device,temperature,location,time passed from the construction,alignment-related variables(e.g.,curve,tangent,transition curve,convexity/crests or concavity/sags,longitudinal slope,superelevation,and ruling gradient),and supplementary singularities such as joints and bridge approaches.All the issues above may harm road safety and the complexity of forensic investigations of pavements.Consequently,this study's objectives were confined to(1)carrying out friction measurements and analyzing the problem of friction decay over time;(2)setting up a method to lower the speed limits where friction decays are detected;(3)setting up a method to handle friction decays for autonomous vehicles.Results demonstrate that:(1)a power law describes how the speed limits are affected by friction;(2)for speeds up to 170 km/h,due to the lower reaction time,AV reaction distance is lower,which benefits AV traffic(lower stopping distance);(3)on the contrary,for higher values of friction and higher speeds,under the hypothesis of having the same reaction time law for non-AV(NAV)(i.e.,decreasing with the initial speed),AV speed limits become lower than NAV speed limits;(4)not only do comfort-based speed profiles for AVs bring higher braking distances,but also,in the median part(of the deceleration process),this could pose safety issues and reduce the distance between the available and the needed friction.展开更多
This study focuses on coupled vibrations of rotating thin-walled composite beams subjected to hygrothermal effects.In the existing literature,many studies have been conducted on coupled bending-torsional vibration and...This study focuses on coupled vibrations of rotating thin-walled composite beams subjected to hygrothermal effects.In the existing literature,many studies have been conducted on coupled bending-torsional vibration and resonance in hygrothermal environments.Few studies considered the coupled flapwise-edgewise and resonances of composite thin-walled beams.Considering this,the flapwise-edgewise coupling effects and resonant characteristics of rotating thin-walled composite beams in a hygrothermal environment are studied.The Rayleigh–Ritz method is used to solve the equations of the beam.Results indicate that flapwise-edgewise coupling factors are essential for the vibration analysis of rectangular thin-walled beams.The ply angle and setting angle strongly affect the internal and external resonances.Large ply angles can significantly reduce the chances of primary internal and external resonances occurring when the permitted rotational speed is lower.展开更多
During flight operations,quadrotor UAVs are susceptible to interference from environmental factors such as wind gusts,battery depletion,and obstacles,which may compromise flight stability.This study proposes a fuzzy a...During flight operations,quadrotor UAVs are susceptible to interference from environmental factors such as wind gusts,battery depletion,and obstacles,which may compromise flight stability.This study proposes a fuzzy adaptive PID controller(Fuzzy PID)combining PID control with fuzzy logic to achieve self-adaptive adjustment of PID parameters in UAV flight control systems,thereby enhancing system robustness.A quadrotor UAV control model was developed in Simulink,and a Fuzzy PID control system was constructed by integrating fuzzy control logic for simulation and experimental validation.Test results demonstrate that UAVs governed by Fuzzy PID control exhibit faster regulation speed and improved stability when subjected to disturbances.展开更多
Locomotion is thermally sensitive in ectotherms and therefore it is typically expressed differently among thermally heterogenous environments.Locomotion is a complex function,and whereas physiological and behavioral t...Locomotion is thermally sensitive in ectotherms and therefore it is typically expressed differently among thermally heterogenous environments.Locomotion is a complex function,and whereas physiological and behavioral traits that infuence locomotor performance may respond to thermal variation throughout life,other contributing traits,like body shape,may have more restricted responses.How morphology affects locomotorperformance under variable temperature conditions is unknown.Here,we investigated 3 genetically distinct strains of zebrafsh,Danio rerio(AB,WIK,and Tu)with a shared multi-generational history at 28℃.After rearing fsh at 28℃,we measured prolonged swimming speed(Ucrit)at each of 6 temperatures(between 16℃ and 34℃).Speed was strongly positively correlated among temperatures,resulting in most amongindividual variation being temperature-independent(i.e.,fsh were relatively fast or slow across all temperatures).However,we also detectedsignifcant variation along 2 axes refecting temperature-dependent variation.Although strains differed in mean swimming performance,withinstrain(among-individual)patterns of speed variation were markedly consistent.Body shape and size explained signifcant variation amongindividuals in both temperature-independent and temperature-dependent axes of swimming speed variation.Notably,morphological traits thatwere most strongly associated with temperature-independent performance variation(i.e.,faster-slower)differed from those associated withtemperature-dependent(i.e.,hotter-colder)variation.Further,there were signifcant differences among strains in both the direction and strengthof association for specifc morphological traits.Our results suggest that thermally heterogenous environments could have complex effects onthe evolution of traits that contribute to whole organism performance traits.展开更多
As drivers age, roadway conditions may become more challenging, particularly when normal aging is coupled with cognitive decline. Driving during lower visibility conditions, such as inclement weather, is especially ch...As drivers age, roadway conditions may become more challenging, particularly when normal aging is coupled with cognitive decline. Driving during lower visibility conditions, such as inclement weather, is especially challenging for older drivers due to their sensitivity to glare and reduced visibility. As a result, older drivers may adjust their behavior during adverse weather. This paper explores the differential impacts of weather on older drivers with cognitive decline compared to older drivers with normal cognitive function. Data were from a naturalistic driving study of older drivers in Omaha, Nebraska. Driver speed and weather data were extracted and the correlation between speed compliance, road weather conditions, and the cognitive/neurological status of the drivers was examined. Speed compliance was used as the surrogate safety measure since driving at lower speeds can indicate that the driver is challenged by roadway or environmental conditions and can therefore indicate a risk. The percentage of time during a trip when drivers were 16.1 kph under the speed limit was modeled as the dependent variable using beta regression. The variables that resulted in the best fit model were mild cognitive impairment (MCI), age group, traffic density, and weather. Results indicated that the youngest group of older drivers (young-old) spent less time driving at impeding speeds and had the least variability compared to the other two age groups. The middle group of older drivers (middle-old) had the highest amount of time driving at impeding speeds and had more variability than young-old drivers. The oldest group of older drivers (old-old) were the most likely to drive at impeding speeds and had the most variability. In general, older drivers were more likely to drive at impeding speeds during peak hours than during non-peak hours. Additionally, in most cases, older drivers spent less time below the speed limit when the weather was clear than in adverse conditions. Results indicate that older drivers are impacted by weather conditions, and distinct patterns were noted between older drivers who were cognitively impaired compared to drivers with normal cognition.展开更多
Surface wind speed(SWS)not only plays a crucial role in regulating the Earth's energy and hydrological cycle,but also is an important source of sustainable renewable energy.This study assesses the credibility of s...Surface wind speed(SWS)not only plays a crucial role in regulating the Earth's energy and hydrological cycle,but also is an important source of sustainable renewable energy.This study assesses the credibility of sws in three reanalyses(ERA5,MERRA2,and JRA-55)in East Asia using both satellite and in-situ observations.Results show all three reanalyses can capture the spatial pattern of swS as in observations,yet there are notable differences in magnitude.On land,ERA5 and MERRA2 overestimate the SWS by about 0.6 and 1.5 m s^(-1),respectively,whereas JRA-55 underestimates it.The biases over the oceans are opposite to those on land and are relatively small due to the assimilation of observations of oceanic surface winds.Overall,JRA-55 and ERA5 offer better estimates of seasonal means and variances of SWS than MERRA2.The observed SWS shows a negative trend of-0.08 m s^(-1)/10 yr on land and a positive trend of 0.09 m s^(-1)/10 yr in the western North Pacific.Only JRA-55 shows similar trends to observations over both land and ocean,while ERA5 and MERRA2 show varying degrees of deviation from the observations.Further investigation shows that there is a strong link between the trend of SWS and that of the large-scale circulation,and that a large part of the SwS trend can be attributed to changes in large-scale circulations.展开更多
The pressure wave generated by an urban-rail vehicle when passing through a tunnel affects the comfort of passengersand may even cause damage to the train and related tunnel structures.Therefore,controlling the trains...The pressure wave generated by an urban-rail vehicle when passing through a tunnel affects the comfort of passengersand may even cause damage to the train and related tunnel structures.Therefore,controlling the trainspeed in the tunnel is extremely important.In this study,this problem is investigated numerically in the frameworkof the standard k-εtwo-equation turbulence model.In particular,an eight-car urban rail train passingthrough a tunnel at different speeds(140,160,180 and 200 km/h)is considered.The results show that the maximumaerodynamic drag of the head and tail cars is most affected by the running speed.The pressure at selectedmeasuring points on the windward side of the head car is very high,and the negative pressure at the side windowof the driver’s cab of the tail car is also very large.From the head car to the tail car,the pressure at the same heightgradually decreases.The positive pressure peak at the head car and the negative pressure peak at the tail car aregreatly affected by the speed.展开更多
As the proportion of newenergy increases,the traditional cumulant method(CM)produces significant errorswhen performing probabilistic load flow(PLF)calculations with large-scale wind power integrated.Considering the wi...As the proportion of newenergy increases,the traditional cumulant method(CM)produces significant errorswhen performing probabilistic load flow(PLF)calculations with large-scale wind power integrated.Considering the wind speed correlation,a multi-scenario PLF calculation method that combines random sampling and segmented discrete wind farm power was proposed.Firstly,based on constructing discrete scenes of wind farms,the Nataf transform is used to handle the correlation between wind speeds.Then,the random sampling method determines the output probability of discrete wind power scenarios when wind speed exhibits correlation.Finally,the PLF calculation results of each scenario areweighted and superimposed following the total probability formula to obtain the final power flow calculation result.Verified in the IEEE standard node system,the absolute percent error(APE)for the mean and standard deviation(SD)of the node voltages and branch active power are all within 1%,and the average root mean square(AMSR)values of the probability curves are all less than 1%.展开更多
Previous studies have indicated a global reversal of near-surface wind speeds from a declining trend to an increasing trend around 2010;however,it remains unclear whether upper-air wind speeds exhibit a similar revers...Previous studies have indicated a global reversal of near-surface wind speeds from a declining trend to an increasing trend around 2010;however,it remains unclear whether upper-air wind speeds exhibit a similar reversal.This study evaluates reanalysis products using surface and radiosonde observations to analyze upper-air wind speed variations in the Northern Hemisphere,focusing on their seasonal and latitudinal differences.Results demonstrate that JRA-55 effectively captures wind speed variations in the Northern Hemisphere.Notably,upper-air wind speeds over land experienced a reversal in winter 2010 with significant latitudinal differences.The trend reversal of upper wind speed between the midlatitudes and subtropics presents a dipole pattern.From 1990 to 2010,upper-air wind speeds in the midlatitudes(40°-70°N)significantly declined,while the subtropical zone(20°-40°N)displayed an opposite trend.However,during 2010-2020,wind speeds in the midlatitudes shifted to a significant positive trend,whereas the subtropics experienced a significant negative trend.The variations in Northern Hemisphere winter wind speeds can be attributed to changes in low-level baroclinicity driven by tropical diabatic heating and midlatitude transient eddy feedback.Enhanced diabatic heating and weakened eddy feedback during 1990-2010 contributed to reduced wind speeds in the midlatitudes and increased speeds in the subtropics,while reduced diabatic heating and strengthened eddy feedback during 2010-2020 resulted in increased wind speeds in the midlatitudes and decreased speeds in the subtropics.The reversal of upper-air wind speeds could affect surface wind speeds by downward momentum transfer,which could contribute to the reversal of surface wind speeds.展开更多
文摘In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniques. These techniques involve speeded up robust features(SURF), K-means clustering and visual dictionaries(VD). Three databases are mixed to test the working of the system when the sources are dissimilar. When experiments were performed an area under the curve(AUC) of 0.9343 was attained. The results acquired from the system are promising.
文摘This article presents a good robust and real-time system scheme of the mobile robot obstacle detection and navigation, which principle of work is based on the feature descriptor SURF. In this scheme, firstly, the image information of the mobile robot path was captured by the binocular camera; then the feature points were extracted and corresponding matched using SURF to the binocular images as the undetected obstacles; finally fixed the position of the objective by the parallax between the matching points combining with the binocular vision calibration model. Theoretical derivation and experimental results show that this scheme is more accurate for the detection and navigation of the interest points. It has fast matching speed and high accuracy and low error. So, it has certain practical effect and popularizing value for the mobile robot real-time obstacle avoidance and navigation.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金supported by the National Natural Science Foundation of China(52174109)Program for Innovative Research Team(in Science and Technology)in University of Henan Province(22IRTSTHN005)+1 种基金Key Research and Development Project of Henan Province(242102240029)Key Research Project of Institutions of Higher Education in Henan Province(24A580001).
文摘To reveal the rock burst mechanism,the stress and failure characteristics of coal-rock strata under different advancing speeds of mining working face were explored by theoretical analysis,simulation,and engineering monitoring.The relationship between energy accumulation and release was analyzed,and a reasonable mining speed according to specific projects was recommended.The theoretical analysis shows that as the mining speed increases from 4 to 15 m/d,the rheological coefficient of coal mass ranges from 0.9 to 0.4,and the elastic energy of coal mass accumulation varies from 100 to 900 kJ.Based on the simulation,there is a critical advancing speed,the iteration numbers of simulation are less than 15,000 per mining 10 m coal seam,the overburden structure is obvious,the abutment pressure in coal mass is large,and the accumulated energy is large,which is easy to cause strong rock burst.When the iteration number is greater than 15,000,the static force of coal mass increases slightly,but there is no obvious rock burst.Based on engineering monitoring,the mining speed of a mine is less than 8 m/d,and the periodic weighting distance is about 17 m;as the mining speed is greater than 10 m/d,and the periodic weighting distance is greater than 20 m;as the mining speed is 3-8 m/d,and the range of high stress in surrounding rock is 48 m;as the advancing speed is 8-12 m/d,and the high-stress range in surrounding rock is 80 m.Moreover,as the mining speed is less than 8 cut cycles,the micro seismic energy is less than 10,000 J;as the mining speed is 12 cut cycles,the microseismic energy is about 20,000 J.In summary,the advancing speed is positively correlated with the micro seismic event;as the mining speed increases,the accumulated elastic energy of surrounding rock is greater,which is easy to cause rock burst.The comprehensive analysis indicates the daily advance speed of the mine is not more than 12 cut cycles.
基金supported in part by the Universitat Politècnica de València under grant PAID-10-21supported through AMRITA Seed Grant(Proposal ID:ASG2022188)。
文摘Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
文摘When you go somewhere,do you like to be the driver or a passenger?When you are the driver,you are in control.You can go fast or slow.You can pick the route.When and where do you stop?You decide.You enjoy the feeling of driving.Ifs fun!
文摘I.请根据录音,填写单词或把单词补充完整。II.听对话,选择正确的答案。1.What is Emily’s favorite animal?A.Dolphins.B.Lions.C.Elephants.D.Tigers.2.How fast can dolphins swim?A.10 miles per hour.B.20 miles per hour.C.30 miles per hour.D.40 miles per hour.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077448 and 42477505)the Western Young Scholars project of the Chinese Academy of Sciences of China(Grant No.xbzglzb2022024)+2 种基金the Natural Science Foundation of Gansu Province for Distinguished Young Scholars(Grant No.22JR5RA049)the Ordos Science and Technology Plan(Grant No.2021EEDSCXQDFZ013)the Longyuan Youth Talent Project of Gansu Province(Grant No.E339020101)。
文摘The embankment and bridge are the basic forms of railway lines.To date,no reports have addressed the optimal form to adopt when passing through sandy areas.Therefore,models of railway embankment and bridge were created,and wind tunnel experiments were conducted to compare the differences in wind speed,flow field,sand transport rate,and other wind–sand environmental effects of railway embankment and bridge.Results show that wind speed reduction areas in the upwind and downwind directions were observed for the railway embankment and bridge.In these areas,the extent and degree of wind speed reduction on the embankment were greater than those on the bridge.At the top of the embankment,especially on the windward slope shoulder,an obvious area of wind speed increase was observed.Similarly,a distinct area of wind speed increase was found between the top of the windward side slope shoulder and 3H downwind of the bridge.Within these regions,the range of wind speed increase on the embankment was smaller than that on the bridge,but the degree of increase was greater than that on the bridge.The range of variation in wind speed on the embankment was generally greater than that on the bridge.The wind–sand flow field around the embankment exhibited greater variability than that around the bridge.Moreover,higher wind–sand flow passage rates on the embankment than on the bridge.This study aims to offer recommendations to assist in the route selection,surveying,and design of railways in sandy regions.
文摘Application of variable speed limits(VSL)is gradually increasingly implemented especially on highways.As a result of conducted studies and implementations,it is observed that the variable speed limits have reduced the number of car accidents as well as proved positive results in terms of delays and environmental factors.Purpose of this study is to develop an algorithm for VSL application that is considered to be applied on Istanbul D100 highway and to assess the effects of application.Algorithm that is developed for VSL is a different VSL algorithm and compared with the constant speed system.According to obtained results,when the proposed system is compared to current system,it is observed that the number of delays and average stops are reduced%30 and%40 respectively and also emissions reduced at the rate of%12.
基金supported by Technology Innovation Fund of China Coal Research Institute(2022CX-I-04)Science and Technology Innovation Venture Capital Project of China Coal Technology Engineering Group(2020-2-TD-CXY005)。
文摘Enhancing the mining speed of a working face has become the primary approach to achieve high production and efficiency in coal mines,thereby further improving the production capacity.However,the problem of rock bursts resulting from this approach has become increasingly serious.Therefore,to implement coal mine safety and efficient extraction,the impact of deformation pressure caused by different mining speeds should be considered,and a reasonable mining speed of the working face should be determined.The influence of mining speed on overlying rock breaking in the stope is analyzed by establishing a key layer block rotation and subsidence model.Results show that with the increasing mining speed,the compression amount of gangue in the goaf decreases,and the rotation and subsidence amount of rock block B above goaf decreases,forcing the rotation and subsidence amount of rock block A above roadway to increase.Consequently,the contact mode between rock block A and rock block B changes from line contact to point contact,and the horizontal thrust and shear force between blocks increase.The increase in rotation and subsidence of rock block A intensifies the compression degree of coal and rock mass below the key layer,thereby increasing the stress concentration degree of coal and rock mass as well as the total energy accumulation.In addition,due to the insufficient compression of gangue in the goaf,the bending and subsidence space of the far-field key layer are limited,the length of the suspended roof increases,and the influence range of mining stress and the energy accumulation range expand.Numerical test results and underground microseismic monitoring results verify the correlation between mining speed and stope energy,and high-energy events generally appear 1-2 d after the change in mining speed.On this basis,the statistical principle confirms that the maximum mining speed of the working face at 6 m/d is reasonable.
文摘Commonly,the standards for the geometric design of roads refer to a given set of values for the friction coefficient(longitudinal and transverse friction).These"reference"values imply corresponding visibility sights,curvature radii,and speed limits.Unfortunately,not only do these reference values not correspond to a given standard to measure them,but nothing is said about the decrease of the posted speed limit(variable speed limits)when roads become slippery and lanes for autonomous vehicle(AV)are concerned.Furthermore,the same assessment of the friction coefficient has plenty of uncertainties due to measurement device,temperature,location,time passed from the construction,alignment-related variables(e.g.,curve,tangent,transition curve,convexity/crests or concavity/sags,longitudinal slope,superelevation,and ruling gradient),and supplementary singularities such as joints and bridge approaches.All the issues above may harm road safety and the complexity of forensic investigations of pavements.Consequently,this study's objectives were confined to(1)carrying out friction measurements and analyzing the problem of friction decay over time;(2)setting up a method to lower the speed limits where friction decays are detected;(3)setting up a method to handle friction decays for autonomous vehicles.Results demonstrate that:(1)a power law describes how the speed limits are affected by friction;(2)for speeds up to 170 km/h,due to the lower reaction time,AV reaction distance is lower,which benefits AV traffic(lower stopping distance);(3)on the contrary,for higher values of friction and higher speeds,under the hypothesis of having the same reaction time law for non-AV(NAV)(i.e.,decreasing with the initial speed),AV speed limits become lower than NAV speed limits;(4)not only do comfort-based speed profiles for AVs bring higher braking distances,but also,in the median part(of the deceleration process),this could pose safety issues and reduce the distance between the available and the needed friction.
基金supported by the National Natural Science Foundation of China(Grant Nos.11902002 and 51705002)the Sichuan Provincial Natural Science Foundation(Grant No.2022NSFSC0275)the University Outstanding Youth Researcher Support Program of the Education Department of Anhui Province,and the Teaching Project of the Education Department of Anhui Province(Grant No.2022xxsfkc023).
文摘This study focuses on coupled vibrations of rotating thin-walled composite beams subjected to hygrothermal effects.In the existing literature,many studies have been conducted on coupled bending-torsional vibration and resonance in hygrothermal environments.Few studies considered the coupled flapwise-edgewise and resonances of composite thin-walled beams.Considering this,the flapwise-edgewise coupling effects and resonant characteristics of rotating thin-walled composite beams in a hygrothermal environment are studied.The Rayleigh–Ritz method is used to solve the equations of the beam.Results indicate that flapwise-edgewise coupling factors are essential for the vibration analysis of rectangular thin-walled beams.The ply angle and setting angle strongly affect the internal and external resonances.Large ply angles can significantly reduce the chances of primary internal and external resonances occurring when the permitted rotational speed is lower.
基金The 2023 Scientific and Technological Project in Henan Province of China(232102220098)。
文摘During flight operations,quadrotor UAVs are susceptible to interference from environmental factors such as wind gusts,battery depletion,and obstacles,which may compromise flight stability.This study proposes a fuzzy adaptive PID controller(Fuzzy PID)combining PID control with fuzzy logic to achieve self-adaptive adjustment of PID parameters in UAV flight control systems,thereby enhancing system robustness.A quadrotor UAV control model was developed in Simulink,and a Fuzzy PID control system was constructed by integrating fuzzy control logic for simulation and experimental validation.Test results demonstrate that UAVs governed by Fuzzy PID control exhibit faster regulation speed and improved stability when subjected to disturbances.
基金funded by the Australian Research Council(DP180101801 awarded to K.M.)and The University of Queensland.
文摘Locomotion is thermally sensitive in ectotherms and therefore it is typically expressed differently among thermally heterogenous environments.Locomotion is a complex function,and whereas physiological and behavioral traits that infuence locomotor performance may respond to thermal variation throughout life,other contributing traits,like body shape,may have more restricted responses.How morphology affects locomotorperformance under variable temperature conditions is unknown.Here,we investigated 3 genetically distinct strains of zebrafsh,Danio rerio(AB,WIK,and Tu)with a shared multi-generational history at 28℃.After rearing fsh at 28℃,we measured prolonged swimming speed(Ucrit)at each of 6 temperatures(between 16℃ and 34℃).Speed was strongly positively correlated among temperatures,resulting in most amongindividual variation being temperature-independent(i.e.,fsh were relatively fast or slow across all temperatures).However,we also detectedsignifcant variation along 2 axes refecting temperature-dependent variation.Although strains differed in mean swimming performance,withinstrain(among-individual)patterns of speed variation were markedly consistent.Body shape and size explained signifcant variation amongindividuals in both temperature-independent and temperature-dependent axes of swimming speed variation.Notably,morphological traits thatwere most strongly associated with temperature-independent performance variation(i.e.,faster-slower)differed from those associated withtemperature-dependent(i.e.,hotter-colder)variation.Further,there were signifcant differences among strains in both the direction and strengthof association for specifc morphological traits.Our results suggest that thermally heterogenous environments could have complex effects onthe evolution of traits that contribute to whole organism performance traits.
文摘As drivers age, roadway conditions may become more challenging, particularly when normal aging is coupled with cognitive decline. Driving during lower visibility conditions, such as inclement weather, is especially challenging for older drivers due to their sensitivity to glare and reduced visibility. As a result, older drivers may adjust their behavior during adverse weather. This paper explores the differential impacts of weather on older drivers with cognitive decline compared to older drivers with normal cognitive function. Data were from a naturalistic driving study of older drivers in Omaha, Nebraska. Driver speed and weather data were extracted and the correlation between speed compliance, road weather conditions, and the cognitive/neurological status of the drivers was examined. Speed compliance was used as the surrogate safety measure since driving at lower speeds can indicate that the driver is challenged by roadway or environmental conditions and can therefore indicate a risk. The percentage of time during a trip when drivers were 16.1 kph under the speed limit was modeled as the dependent variable using beta regression. The variables that resulted in the best fit model were mild cognitive impairment (MCI), age group, traffic density, and weather. Results indicated that the youngest group of older drivers (young-old) spent less time driving at impeding speeds and had the least variability compared to the other two age groups. The middle group of older drivers (middle-old) had the highest amount of time driving at impeding speeds and had more variability than young-old drivers. The oldest group of older drivers (old-old) were the most likely to drive at impeding speeds and had the most variability. In general, older drivers were more likely to drive at impeding speeds during peak hours than during non-peak hours. Additionally, in most cases, older drivers spent less time below the speed limit when the weather was clear than in adverse conditions. Results indicate that older drivers are impacted by weather conditions, and distinct patterns were noted between older drivers who were cognitively impaired compared to drivers with normal cognition.
基金supported by the National Natural Science Foundation of China[grant numbers 42361144708,42205041,and 42175165]a scientific research project of the Shanghai Investigation,Design and Research Institute Co.,Ltd.[grant number 2023CN(83)-001]the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘Surface wind speed(SWS)not only plays a crucial role in regulating the Earth's energy and hydrological cycle,but also is an important source of sustainable renewable energy.This study assesses the credibility of sws in three reanalyses(ERA5,MERRA2,and JRA-55)in East Asia using both satellite and in-situ observations.Results show all three reanalyses can capture the spatial pattern of swS as in observations,yet there are notable differences in magnitude.On land,ERA5 and MERRA2 overestimate the SWS by about 0.6 and 1.5 m s^(-1),respectively,whereas JRA-55 underestimates it.The biases over the oceans are opposite to those on land and are relatively small due to the assimilation of observations of oceanic surface winds.Overall,JRA-55 and ERA5 offer better estimates of seasonal means and variances of SWS than MERRA2.The observed SWS shows a negative trend of-0.08 m s^(-1)/10 yr on land and a positive trend of 0.09 m s^(-1)/10 yr in the western North Pacific.Only JRA-55 shows similar trends to observations over both land and ocean,while ERA5 and MERRA2 show varying degrees of deviation from the observations.Further investigation shows that there is a strong link between the trend of SWS and that of the large-scale circulation,and that a large part of the SwS trend can be attributed to changes in large-scale circulations.
基金supported by the Beijing Postdoctoral Research Foundation(No.2023-ZZ-133)Scientific Research Foundation of Beijing Infrastructure Investment Co.,Ltd.(No.2023-ZB-03)Fundamental Research Funds for the Central Universities(No.2682023ZTPY036).
文摘The pressure wave generated by an urban-rail vehicle when passing through a tunnel affects the comfort of passengersand may even cause damage to the train and related tunnel structures.Therefore,controlling the trainspeed in the tunnel is extremely important.In this study,this problem is investigated numerically in the frameworkof the standard k-εtwo-equation turbulence model.In particular,an eight-car urban rail train passingthrough a tunnel at different speeds(140,160,180 and 200 km/h)is considered.The results show that the maximumaerodynamic drag of the head and tail cars is most affected by the running speed.The pressure at selectedmeasuring points on the windward side of the head car is very high,and the negative pressure at the side windowof the driver’s cab of the tail car is also very large.From the head car to the tail car,the pressure at the same heightgradually decreases.The positive pressure peak at the head car and the negative pressure peak at the tail car aregreatly affected by the speed.
基金supported by Basic Science Research Program through the National Natural Science Foundation of China(Grant No.61867003).
文摘As the proportion of newenergy increases,the traditional cumulant method(CM)produces significant errorswhen performing probabilistic load flow(PLF)calculations with large-scale wind power integrated.Considering the wind speed correlation,a multi-scenario PLF calculation method that combines random sampling and segmented discrete wind farm power was proposed.Firstly,based on constructing discrete scenes of wind farms,the Nataf transform is used to handle the correlation between wind speeds.Then,the random sampling method determines the output probability of discrete wind power scenarios when wind speed exhibits correlation.Finally,the PLF calculation results of each scenario areweighted and superimposed following the total probability formula to obtain the final power flow calculation result.Verified in the IEEE standard node system,the absolute percent error(APE)for the mean and standard deviation(SD)of the node voltages and branch active power are all within 1%,and the average root mean square(AMSR)values of the probability curves are all less than 1%.
基金supported by the National Natural Science Foundation of China[grant numbers U2442207,42122034,42075043,and 42330609]the Youth Innovation Promotion Association[grant number 2021427]+2 种基金the West Light Foundation[grant number xbzgzdsys-202409]of the Chinese Academy of Sciencesthe Key Talent Projects in Gansu Provincethe Central Guidance Fund for Local Science and Technology Development Projects in Gansu Province[grant number 24ZYQA031].
文摘Previous studies have indicated a global reversal of near-surface wind speeds from a declining trend to an increasing trend around 2010;however,it remains unclear whether upper-air wind speeds exhibit a similar reversal.This study evaluates reanalysis products using surface and radiosonde observations to analyze upper-air wind speed variations in the Northern Hemisphere,focusing on their seasonal and latitudinal differences.Results demonstrate that JRA-55 effectively captures wind speed variations in the Northern Hemisphere.Notably,upper-air wind speeds over land experienced a reversal in winter 2010 with significant latitudinal differences.The trend reversal of upper wind speed between the midlatitudes and subtropics presents a dipole pattern.From 1990 to 2010,upper-air wind speeds in the midlatitudes(40°-70°N)significantly declined,while the subtropical zone(20°-40°N)displayed an opposite trend.However,during 2010-2020,wind speeds in the midlatitudes shifted to a significant positive trend,whereas the subtropics experienced a significant negative trend.The variations in Northern Hemisphere winter wind speeds can be attributed to changes in low-level baroclinicity driven by tropical diabatic heating and midlatitude transient eddy feedback.Enhanced diabatic heating and weakened eddy feedback during 1990-2010 contributed to reduced wind speeds in the midlatitudes and increased speeds in the subtropics,while reduced diabatic heating and strengthened eddy feedback during 2010-2020 resulted in increased wind speeds in the midlatitudes and decreased speeds in the subtropics.The reversal of upper-air wind speeds could affect surface wind speeds by downward momentum transfer,which could contribute to the reversal of surface wind speeds.