Spatio-temporal variation of sound speed,in seafloor geodetic precise positioning,can always be attributed to the time error.Firstly,this paper analyzes the existing error compensation model,i.e.,the time ratio model,...Spatio-temporal variation of sound speed,in seafloor geodetic precise positioning,can always be attributed to the time error.Firstly,this paper analyzes the existing error compensation model,i.e.,the time ratio model,which is expressed by the recorded time multiplying a ratio coefficient.And then a time split model is proposed by expressing the acoustic ray traveling time as the recorded time pluses a perturbation time error.The theoretical differences between the proposed time bias compensation model and the time ratio model are analyzed.Under the new framework,sound speed perturbation models with optimal single-layer spatial gradient and multi-layer spatial gradients are developed to compensate for sound speed error in the complex cases.Numerical computation shows that the simple time split model keeps the same accuracy as some complicated models while considering the distribution of random error.Furthermore,multi-layer model can improve the positioning accuracy without putting the pressure on parametrization.展开更多
Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-pa...Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.展开更多
基金The National Natural Science Foundation of China under contract No.41931076the National Center for Basic Sciences Project under contract No.42388102the Laoshan Laboratory under contract No.LSKJ202205100.
文摘Spatio-temporal variation of sound speed,in seafloor geodetic precise positioning,can always be attributed to the time error.Firstly,this paper analyzes the existing error compensation model,i.e.,the time ratio model,which is expressed by the recorded time multiplying a ratio coefficient.And then a time split model is proposed by expressing the acoustic ray traveling time as the recorded time pluses a perturbation time error.The theoretical differences between the proposed time bias compensation model and the time ratio model are analyzed.Under the new framework,sound speed perturbation models with optimal single-layer spatial gradient and multi-layer spatial gradients are developed to compensate for sound speed error in the complex cases.Numerical computation shows that the simple time split model keeps the same accuracy as some complicated models while considering the distribution of random error.Furthermore,multi-layer model can improve the positioning accuracy without putting the pressure on parametrization.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575087,51205041)Science Fund for Creative Research Groups(Grant No.51321004)+1 种基金Basic Research Foundation of Key Laboratory of Liaoning Educational Committee,China(Grant No.LZ2014003)Research Project of Ministry of Education of China(Grant No.113018A)
文摘Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.