The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the reg...The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.展开更多
Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many s...Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.展开更多
This paper presents a new sensorless method, the so-called harmonic impedance / admittance, for detecting speed of induction motors, which is based on the impedance measurement, harmonic analysis and digital signal p...This paper presents a new sensorless method, the so-called harmonic impedance / admittance, for detecting speed of induction motors, which is based on the impedance measurement, harmonic analysis and digital signal processing. The method improves theperformance of conventional voltage-based and current-based techniques, because the impedance or admittance harmonics is independent of input or output of motor system due to the system-inherent nature of impedance. It has been used successfully in detecting the rotor speed of three-phase induction motors. A comparison between the proposed method and the conventionalcurrent-based method is also demonstrated.展开更多
The high speed maglev is mainly characterized by propulsion using linear synchronous motor (LSM) and vehicle levitation from the guideway surface. In LSM propulsion control, the position detection sensor is used to de...The high speed maglev is mainly characterized by propulsion using linear synchronous motor (LSM) and vehicle levitation from the guideway surface. In LSM propulsion control, the position detection sensor is used to detect running vehicle position for synchronized current generation. To maintain the stable levitating condition during vehicle running, the irregularity of guideway surface should be monitored by sensors measuring the displacement and acceleration between vehicle and guideway. In this study, the application methods of these sensors in the high speed maglev are investigated and through the experiments by using the small-scale test bed, the validity of examined methods is confirmed.展开更多
Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes...Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes a you only look once(YOLO)algorithm for speed bump detection(SPD-YOLO),a lightweight model based on YOLO11s that integrates three core innova-tive modules to balance detection precision and computational efficiency:it replaces YOLO11s’original backbone with StarNet,which uses‘star operations’to map features into high-dimensional nonlinear spaces for enhanced feature representation while maintaining computational efficiency;its neck incorporates context feature calibration(CFC)and spatial feature calibration(SFC)to improve detection performance without significant computational overhead;and its detection head adopts a lightweight shared convolutional detection(LSCD)structure combined with GroupNorm,minimizing computational complexity while preserving multi-scale feature fusion efficacy.Experi-ments on a custom speed bump dataset show SPD-YOLO achieves a mean average precision(mAP)of 79.9%,surpassing YOLO11s by 1.3%and YOLO12s by 1.2%while reducing parameters by 26.3%and floating-point operations per second(FLOPs)by 29.5%,enabling real-time deploy-ment on resource-constrained platforms.展开更多
The paper first discusses shortcomings of classical adjacent-frame difference. Sec ondly, based on the image energy and high order statistic(HOS) theory, background reconstruction constraints are setup. Under the help...The paper first discusses shortcomings of classical adjacent-frame difference. Sec ondly, based on the image energy and high order statistic(HOS) theory, background reconstruction constraints are setup. Under the help of block-processing technology, background is reconstructed quickly. Finally, background difference is used to detect motion regions instead of adjacent frame difference. The DSP based platform tests indicate the background can be recovered losslessly in about one second, and moving regions are not influenced by moving target speeds. The algorithm has important usage both in theory and applications.展开更多
The perovskite photodetectors can be used for image sensing, environmental monitoring, optical communication, and chemical/biological detection. In the recent five years, the perovskite photoelectric detectors with va...The perovskite photodetectors can be used for image sensing, environmental monitoring, optical communication, and chemical/biological detection. In the recent five years, the perovskite photoelectric detectors with various devices are welldesigned and have made unprecedented progress of light detection. It is necessary to emphasize the most interesting works and summarize them to provide researchers with systematic information. In this review, we report the recent progress in perovskite photodetectors, including highly sensitive, ultrafast response speed, high gain, low noise, flexibility, and narrowband, concentrating on the photodetection performance of versatile halide perovskites(organic–inorganic hybrid and all inorganic compositions). Currently, organic–inorganic hybrid and all-inorganic halide microcrystals with polycrystalline film, nanoparticle/wire/chip, and block monocrystalline morphology control show important performance in response rate,decomposition rate, noise equivalent power, linear dynamic range, and response speed. It is expected that a comprehensive compendium of the research status of perovskite photodetectors will contribute to the development of this area.展开更多
Vehicle speed is an important parameter that finds tremendous application in traffic control identifying over speed vehicles with a view to reducing accidents. Many methods, such as using RADAR and LIDAR sensors have ...Vehicle speed is an important parameter that finds tremendous application in traffic control identifying over speed vehicles with a view to reducing accidents. Many methods, such as using RADAR and LIDAR sensors have been proposed. However, these are expensive, and their accuracy is not quite satisfactory. In this paper, a video-based vehicle speed determination method is presented. The method shows satisfactory performance on standard data sets and gives that error rate of velocity estimation is within 10%.展开更多
The interaction between the catenary and pantograph is one of the most crucial factors that determine the train operation in high-speed railway. The bad state of catenary is able to directly influence the power supply...The interaction between the catenary and pantograph is one of the most crucial factors that determine the train operation in high-speed railway. The bad state of catenary is able to directly influence the power supply safety of traction power system. In this paper, four aspects on the catenary research of high-speed railway are reviewed in detail, namely the solution methods for catenary equilibrium state, the dynamic modeling methods of catenary, the non-contact detection methods of catenary, and the static and dynamic evaluation methods of catenary. In addition, their recent advances are described. For the low solution accuracy of the initial equilibrium state of cate- nary, the structure finding method with multi-objective constraint and nonlinear finite element procedure are introduced to solve the problem. For the catenary's dynamic modeling, considering the influence of environmental wind on the catenary, environmental wind simula- tions and wind tunnel tests are used to obtain the aerodynamic coefficients and build the wind field along the catenary for analysis of its wind vibration characteristics. In order to improve the detection accuracy of non-contact detection for the catenary, the deep learning theory and real-time detection algorithms should be adopted in the future. In view of the lack of dynamic assessment method for the catenary, the modern spectrum evaluation, timefrequency analysis, big data technology and their combi- nations will be the important means for future catenary evaluation.展开更多
In measurement system by means of pulse laser, such as plasma measuring, laser ranging, the amplitude of echoed laser wave is very weak and difficult to detect by traditional analog electronic technology. A digital hi...In measurement system by means of pulse laser, such as plasma measuring, laser ranging, the amplitude of echoed laser wave is very weak and difficult to detect by traditional analog electronic technology. A digital high speed data acquisition and processing system was designed to meet the accuracy requirement. It adopted high speed AD chip and advantage FPGA chip as core unit. Experiment results have verified this system can reach to 1GHz sample rate and can catch weak echo wave effectively and the measuring accuracy is improved markedly.展开更多
Noise due to surface wind and temperature is a problem in infrasound. Efficiency of IMS network concerns scientists. It is obvious to find the causes of deficiencies of detection of infrasound station by studying back...Noise due to surface wind and temperature is a problem in infrasound. Efficiency of IMS network concerns scientists. It is obvious to find the causes of deficiencies of detection of infrasound station by studying background noise power with respect to the surface wind and the temperature. Data measured by MB2000 microbarometer of infrasound station I33MG are used for the study. Infrasound records are separated into 4 frequency bands centered respectively at: 1 Hz, 0.25 Hz, 0.0625 Hz and 0.0156 Hz. Effects of surface wind and temperature are studied by plotting the variations of the background noise power with respect to the temperature or wind speed in the four considered frequency bands and compared with the median of background noise power. The influence of temperature is manifested by a reduction in the number of low-frequency detection. The surface wind reduces the number of detection at a high frequency. An exponential function is proposed to predict the variations of the noise power in different observation frequencies and temperature and wind conditions. The views expressed herein are those of the authors and do not necessarily reflect the views of the CTBTO Preparatory Commission.展开更多
The frame rate of conventional vision systems is restricted to the video signal formats (e.g., NTSC 30 fps and PAL 25 fps) that are designed on the basis of the characteristics of the human eye, which implies that t...The frame rate of conventional vision systems is restricted to the video signal formats (e.g., NTSC 30 fps and PAL 25 fps) that are designed on the basis of the characteristics of the human eye, which implies that the processing speed of these systems is limited to the recognition speed of the human eye. However, there is a strong demand for real-time high-speed vision sensors in many application fields, such as factory automation, biomedicine, and robotics, where high-speed operations are carried out. These high-speed operations can be tracked and inspected by using high-speed vision systems with intelligent sensors that work at hundreds of Hertz or more, especially when the operation is difficult to observe with the human eye. This paper reviews advances in developing real-time high Speed vision systems and their applications in various fields, such as intelligent logging systems, vibration dynamics sensing, vision-based mechanical control, three-dimensional measurement/automated visual inspection, vision-based human interface, and biomedical applications.展开更多
文摘The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.
文摘Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.
文摘This paper presents a new sensorless method, the so-called harmonic impedance / admittance, for detecting speed of induction motors, which is based on the impedance measurement, harmonic analysis and digital signal processing. The method improves theperformance of conventional voltage-based and current-based techniques, because the impedance or admittance harmonics is independent of input or output of motor system due to the system-inherent nature of impedance. It has been used successfully in detecting the rotor speed of three-phase induction motors. A comparison between the proposed method and the conventionalcurrent-based method is also demonstrated.
文摘The high speed maglev is mainly characterized by propulsion using linear synchronous motor (LSM) and vehicle levitation from the guideway surface. In LSM propulsion control, the position detection sensor is used to detect running vehicle position for synchronized current generation. To maintain the stable levitating condition during vehicle running, the irregularity of guideway surface should be monitored by sensors measuring the displacement and acceleration between vehicle and guideway. In this study, the application methods of these sensors in the high speed maglev are investigated and through the experiments by using the small-scale test bed, the validity of examined methods is confirmed.
文摘Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes a you only look once(YOLO)algorithm for speed bump detection(SPD-YOLO),a lightweight model based on YOLO11s that integrates three core innova-tive modules to balance detection precision and computational efficiency:it replaces YOLO11s’original backbone with StarNet,which uses‘star operations’to map features into high-dimensional nonlinear spaces for enhanced feature representation while maintaining computational efficiency;its neck incorporates context feature calibration(CFC)and spatial feature calibration(SFC)to improve detection performance without significant computational overhead;and its detection head adopts a lightweight shared convolutional detection(LSCD)structure combined with GroupNorm,minimizing computational complexity while preserving multi-scale feature fusion efficacy.Experi-ments on a custom speed bump dataset show SPD-YOLO achieves a mean average precision(mAP)of 79.9%,surpassing YOLO11s by 1.3%and YOLO12s by 1.2%while reducing parameters by 26.3%and floating-point operations per second(FLOPs)by 29.5%,enabling real-time deploy-ment on resource-constrained platforms.
文摘The paper first discusses shortcomings of classical adjacent-frame difference. Sec ondly, based on the image energy and high order statistic(HOS) theory, background reconstruction constraints are setup. Under the help of block-processing technology, background is reconstructed quickly. Finally, background difference is used to detect motion regions instead of adjacent frame difference. The DSP based platform tests indicate the background can be recovered losslessly in about one second, and moving regions are not influenced by moving target speeds. The algorithm has important usage both in theory and applications.
基金Project supported by the International Cooperation and Exchange Project of Jilin Province,China(Grant Nos.20170414002GH and 20180414001GH)
文摘The perovskite photodetectors can be used for image sensing, environmental monitoring, optical communication, and chemical/biological detection. In the recent five years, the perovskite photoelectric detectors with various devices are welldesigned and have made unprecedented progress of light detection. It is necessary to emphasize the most interesting works and summarize them to provide researchers with systematic information. In this review, we report the recent progress in perovskite photodetectors, including highly sensitive, ultrafast response speed, high gain, low noise, flexibility, and narrowband, concentrating on the photodetection performance of versatile halide perovskites(organic–inorganic hybrid and all inorganic compositions). Currently, organic–inorganic hybrid and all-inorganic halide microcrystals with polycrystalline film, nanoparticle/wire/chip, and block monocrystalline morphology control show important performance in response rate,decomposition rate, noise equivalent power, linear dynamic range, and response speed. It is expected that a comprehensive compendium of the research status of perovskite photodetectors will contribute to the development of this area.
文摘Vehicle speed is an important parameter that finds tremendous application in traffic control identifying over speed vehicles with a view to reducing accidents. Many methods, such as using RADAR and LIDAR sensors have been proposed. However, these are expensive, and their accuracy is not quite satisfactory. In this paper, a video-based vehicle speed determination method is presented. The method shows satisfactory performance on standard data sets and gives that error rate of velocity estimation is within 10%.
基金supported by the National Natural Science Foundation of China(U1434203,51377136,51405401,51407147)Sichuan Province Youth Science and Technology Innovation Team Project(2016TD 0012)China Railway Corporation Science and Technology Research and Development Plan of major Projects(2013J010-B,2015J008-A)
文摘The interaction between the catenary and pantograph is one of the most crucial factors that determine the train operation in high-speed railway. The bad state of catenary is able to directly influence the power supply safety of traction power system. In this paper, four aspects on the catenary research of high-speed railway are reviewed in detail, namely the solution methods for catenary equilibrium state, the dynamic modeling methods of catenary, the non-contact detection methods of catenary, and the static and dynamic evaluation methods of catenary. In addition, their recent advances are described. For the low solution accuracy of the initial equilibrium state of cate- nary, the structure finding method with multi-objective constraint and nonlinear finite element procedure are introduced to solve the problem. For the catenary's dynamic modeling, considering the influence of environmental wind on the catenary, environmental wind simula- tions and wind tunnel tests are used to obtain the aerodynamic coefficients and build the wind field along the catenary for analysis of its wind vibration characteristics. In order to improve the detection accuracy of non-contact detection for the catenary, the deep learning theory and real-time detection algorithms should be adopted in the future. In view of the lack of dynamic assessment method for the catenary, the modern spectrum evaluation, timefrequency analysis, big data technology and their combi- nations will be the important means for future catenary evaluation.
文摘In measurement system by means of pulse laser, such as plasma measuring, laser ranging, the amplitude of echoed laser wave is very weak and difficult to detect by traditional analog electronic technology. A digital high speed data acquisition and processing system was designed to meet the accuracy requirement. It adopted high speed AD chip and advantage FPGA chip as core unit. Experiment results have verified this system can reach to 1GHz sample rate and can catch weak echo wave effectively and the measuring accuracy is improved markedly.
文摘Noise due to surface wind and temperature is a problem in infrasound. Efficiency of IMS network concerns scientists. It is obvious to find the causes of deficiencies of detection of infrasound station by studying background noise power with respect to the surface wind and the temperature. Data measured by MB2000 microbarometer of infrasound station I33MG are used for the study. Infrasound records are separated into 4 frequency bands centered respectively at: 1 Hz, 0.25 Hz, 0.0625 Hz and 0.0156 Hz. Effects of surface wind and temperature are studied by plotting the variations of the background noise power with respect to the temperature or wind speed in the four considered frequency bands and compared with the median of background noise power. The influence of temperature is manifested by a reduction in the number of low-frequency detection. The surface wind reduces the number of detection at a high frequency. An exponential function is proposed to predict the variations of the noise power in different observation frequencies and temperature and wind conditions. The views expressed herein are those of the authors and do not necessarily reflect the views of the CTBTO Preparatory Commission.
文摘The frame rate of conventional vision systems is restricted to the video signal formats (e.g., NTSC 30 fps and PAL 25 fps) that are designed on the basis of the characteristics of the human eye, which implies that the processing speed of these systems is limited to the recognition speed of the human eye. However, there is a strong demand for real-time high-speed vision sensors in many application fields, such as factory automation, biomedicine, and robotics, where high-speed operations are carried out. These high-speed operations can be tracked and inspected by using high-speed vision systems with intelligent sensors that work at hundreds of Hertz or more, especially when the operation is difficult to observe with the human eye. This paper reviews advances in developing real-time high Speed vision systems and their applications in various fields, such as intelligent logging systems, vibration dynamics sensing, vision-based mechanical control, three-dimensional measurement/automated visual inspection, vision-based human interface, and biomedical applications.