期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Wheeze detecting method based on spectrogram entropy analysis 被引量:5
1
作者 LI Jiarui HONG Ying 《Chinese Journal of Acoustics》 CSCD 2016年第4期508-515,共8页
In order to eliminate the subjectivity of wheeze diagnosis and improve the accuracy of objective detecting methods,this paper introduces a wheeze detecting method based on spectrogram entropy analysis.This algorithm m... In order to eliminate the subjectivity of wheeze diagnosis and improve the accuracy of objective detecting methods,this paper introduces a wheeze detecting method based on spectrogram entropy analysis.This algorithm mainly comprises three steps which are preprocessing,features extracting and wheeze detecting based on support vector machine(SVM).Herein,the preprocessing consists of the short-time Fourier transform(STFT) decomposition and detrending.The features are extracted from the entropy of spectrograms.The step of detrending makes the difference of the features between wheeze and normal lung sounds more obvious.Moreover,compared with the method whose decision is based on the empirical threshold,there is no uncertain detecting result any more.Results of two testing experiments show that the detecting accuracy(AC) are 97.1%and 95.7%,respectively,which proves that the proposed method could be an efficient way to detect wheeze. 展开更多
关键词 NLS Wheeze detecting method based on spectrogram entropy analysis STFT SVM
原文传递
Underwater Acoustic Signal Noise Reduction Based on a Fully Convolutional Encoder-Decoder Neural Network
2
作者 SONG Yongqiang CHU Qian +2 位作者 LIU Feng WANG Tao SHEN Tongsheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1487-1496,共10页
Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological an... Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively. 展开更多
关键词 deep learning convolutional encoder-decoder neural network wavelet low-frequency analysis recording spectrogram
在线阅读 下载PDF
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
3
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IoT
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部