期刊文献+
共找到735篇文章
< 1 2 37 >
每页显示 20 50 100
Detection of Abnormal Cardiac Rhythms Using Feature Fusion Technique with Heart Sound Spectrograms
1
作者 Saif Ur Rehman Khan Zia Khan 《Journal of Bionic Engineering》 2025年第4期2030-2049,共20页
A heart attack disrupts the normal flow of blood to the heart muscle,potentially causing severe damage or death if not treated promptly.It can lead to long-term health complications,reduce quality of life,and signific... A heart attack disrupts the normal flow of blood to the heart muscle,potentially causing severe damage or death if not treated promptly.It can lead to long-term health complications,reduce quality of life,and significantly impact daily activities and overall well-being.Despite the growing popularity of deep learning,several drawbacks persist,such as complexity and the limitation of single-model learning.In this paper,we introduce a residual learning-based feature fusion technique to achieve high accuracy in differentiating abnormal cardiac rhythms heart sound.Combining MobileNet with DenseNet201 for feature fusion leverages MobileNet lightweight,efficient architecture with DenseNet201,dense connections,resulting in enhanced feature extraction and improved model performance with reduced computational cost.To further enhance the fusion,we employed residual learning to optimize the hierarchical features of heart abnormal sounds during training.The experimental results demonstrate that the proposed fusion method achieved an accuracy of 95.67%on the benchmark PhysioNet-2016 Spectrogram dataset.To further validate the performance,we applied it to the BreakHis dataset with a magnification level of 100X.The results indicate that the model maintains robust performance on the second dataset,achieving an accuracy of 96.55%.it highlights its consistent performance,making it a suitable for various applications. 展开更多
关键词 Cardiac rhythms Feature fusion Residual learning BreakHis spectrogram sound
在线阅读 下载PDF
Continuous frequency and phase spectrograms: a study of their 2D and 3D capabilities and application to musical signal analysis 被引量:1
2
作者 Laurent NAVARRO Guy COURBEBAISSE Jean-Charles PINOLI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第2期199-206,共8页
A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transf... A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transform (STFT). The main contribution is the construction of the 3D phase spectrogram (3DPS) and the 3D frequency spectrogram (3DFS). These new tools allow such specific test signals as small slope linear chirp, phase jump case of musical signal analysis is reported. The main objective is to and small frequency jump to be analyzed. An application detect small frequency and phase variations in order to characterize each type of sound attack without losing the amplitude information given by power spectrogram 展开更多
关键词 Frequency spectrogram (FS) Phase spectrogram (PS) Time-frequency representations Musical signals
在线阅读 下载PDF
Research on data diagnosis method of acoustic array sensor device based on spectrogram 被引量:4
3
作者 Xing Lei Hang Ji +3 位作者 Qiang Xu Ting Ye Shengfu Zhang Chengjun Huang 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期418-433,共16页
Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods su... Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods such as ultrasonic method and pulse current method.However,due to the sensitivity of the acoustic array sensor and the influence of the equipment operation site interference,the acoustic array sensor device for partial discharge type diagnosis by phase resolved partial discharge(PRPD)map might occasionally presents incorrect results,thus affecting the power equipment operation and maintenance strategy.The acoustic array sensor detection device for power equipment developed in this paper applies the array design model of equal-area multi-arm spiral with machine learning fast fourier transform clean(FFT-CLEAN)sound source localization identification algorithm to avoid the interference factors in the noise acquisition system using a single microphone and conventional beam forming algorithm,improves the spatial resolution of the acoustic array sensor device,and proposes an acoustic array sensor device based on the acoustic spectrogram.The analysis and diagnosis method of discharge type of acoustic array sensor device can effectively reduce the system misjudgment caused by factors such as the resolution of the acoustic imaging device and the time domain pulse of the digital signal,and reduce the false alarm rate of the acoustic array sensor device.The proposed method is tested by selecting power cables as the object,and its effectiveness is proved by laboratory verification and field verification. 展开更多
关键词 Acoustic array sensor device Acoustic spectrogram Partial discharge Power equipment False alarm rate
在线阅读 下载PDF
User Recognition System Based on Spectrogram Image Conversion Using EMG Signals 被引量:2
4
作者 Jae Myung Kim Gyu Ho Choi +1 位作者 Min-Gu Kim Sung Bum Pan 《Computers, Materials & Continua》 SCIE EI 2022年第7期1213-1227,共15页
Recently,user recognitionmethods to authenticate personal identity has attracted significant attention especially with increased availability of various internet of things(IoT)services through fifth-generation technol... Recently,user recognitionmethods to authenticate personal identity has attracted significant attention especially with increased availability of various internet of things(IoT)services through fifth-generation technology(5G)based mobile devices.The EMG signals generated inside the body with unique individual characteristics are being studied as a part of nextgeneration user recognition methods.However,there is a limitation when applying EMG signals to user recognition systems as the same operation needs to be repeated while maintaining a constant strength of muscle over time.Hence,it is necessary to conduct research on multidimensional feature transformation that includes changes in frequency features over time.In this paper,we propose a user recognition system that applies EMG signals to the short-time fourier transform(STFT),and converts the signals into EMG spectrogram images while adjusting the time-frequency resolution to extract multidimensional features.The proposed system is composed of a data pre-processing and normalization process,spectrogram image conversion process,and final classification process.The experimental results revealed that the proposed EMG spectrogram image-based user recognition system has a 95.4%accuracy performance,which is 13%higher than the EMGsignal-based system.Such a user recognition accuracy improvement was achieved by using multidimensional features,in the time-frequency domain. 展开更多
关键词 EMG user recognition spectrogram CNN
在线阅读 下载PDF
Health Monitoring of Milling Tool Inserts Using CNN Architectures Trained by Vibration Spectrograms 被引量:2
5
作者 Sonali S.Patil Sujit S.Pardeshi Abhishek D.Patange 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期177-199,共23页
In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)t... In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)to assist detection of failure before it extends to the worse phase.Machine Learning(ML)based TCM has been extensively explored in the last decade.However,most of the research is now directed toward Deep Learning(DL).The“Deep”formulation,hierarchical compositionality,distributed representation and end-to-end learning of Neural Nets need to be explored to create a generalized TCM framework to perform eciently in a high-noise environment of cross-domain machining.With this motivation,the design of dierent CNN(Convolutional Neural Network)architectures such as AlexNet,ResNet-50,LeNet-5,and VGG-16 is presented in this paper.Real-time spindle vibrations corresponding to healthy and various faulty con􀀀gurations of milling cutter were acquired.This data was transformed into the time-frequency domain and further processed by proposed architectures in graphical form,i.e.,spectrogram.The model is trained,tested,and validated considering dierent datasets and showcased promising results. 展开更多
关键词 Milling tool inserts health monitoring vibration spectrograms deep learning convolutional neural network
在线阅读 下载PDF
基于改进EfficientNet的煤矸音频分类方法 被引量:1
6
作者 宋庆军 焦守悦 +2 位作者 姜海燕 宋庆辉 郝文超 《工矿自动化》 北大核心 2025年第1期138-144,共7页
针对煤矸音频特征提取过程中设备运行噪声干扰严重及单一提取方法易导致信息丢失的问题,提出了一种基于改进EfficientNet的煤矸音频分类方法。采用基于Mel频谱和Gammatone倒谱系数的特征提取方法,有效捕捉矸石声音中的低频信息和细节特... 针对煤矸音频特征提取过程中设备运行噪声干扰严重及单一提取方法易导致信息丢失的问题,提出了一种基于改进EfficientNet的煤矸音频分类方法。采用基于Mel频谱和Gammatone倒谱系数的特征提取方法,有效捕捉矸石声音中的低频信息和细节特征。选择EfficientNet-B0作为骨干网络,并对其进行以下改进:将原有的多尺度通道注意力模块换成卷积块注意力模块,得到卷积注意力特征融合(CAFF)模块,通过网络自学习为不同空间位置的特征分配不同的权重信息,生成新的有效特征;在原有的MBConv模块中并行嵌入频域通道注意力(FCA)模块,加强特征图的表达能力,从而提高整个网络的性能。实验结果表明:引入CAFF模块后,模型准确率提升了0.61%,F1得分提升了0.52%,且模型收敛更快,说明CAFF模块有效提升了模型对频谱特征的捕捉能力;引入FCA模块后,准确率提升了0.45%,F1得分提升了0.62%,说明模块的叠加可以进一步提高模型的泛化能力和处理复杂特征的能力;改进EfficientNe模型的准确率为91.90%,标准差为0.108,显著优于同类对比音频分类模型。 展开更多
关键词 综放开采 煤矸识别 音频特征提取 EfficientNet Mel频谱特征 Gammatone倒谱系数 注意力机制
在线阅读 下载PDF
基于改进CBAM注意力机制的MobileNetV3风扇异常状况识别研究
7
作者 刘明 王荣燕 +3 位作者 王汝旭 武高旭 张佳宁 梁俊祥 《工业控制计算机》 2025年第3期90-92,共3页
工业风扇在生产设施中起着至关重要的作用,关键风扇的突然停机对安全生产影响巨大。通过分析在-6 dB噪声环境中的故障风扇发出的声音,提取声音样本的语谱图,采用MobileNetV3模型,针对该模型注意力模块SE(Squeeze-and-Excitation)存在的... 工业风扇在生产设施中起着至关重要的作用,关键风扇的突然停机对安全生产影响巨大。通过分析在-6 dB噪声环境中的故障风扇发出的声音,提取声音样本的语谱图,采用MobileNetV3模型,针对该模型注意力模块SE(Squeeze-and-Excitation)存在的参数化程度较低问题,采用空洞卷积(Dilated Convolution)优化的卷积块注意力模块CBAM(Convolutional Block Attention Module)予以替代,提出了改进后的MobileNetV3模型。实验结果显示,该模型的分类准确率达到了98%,相较于原MobileNetV3模型,准确率提升了2.07个百分点。 展开更多
关键词 空洞卷积 CBAM MobileNetV3 迁移学习 spectrogram
在线阅读 下载PDF
基于声纹脊线化和元学习的变压器故障诊断方法
8
作者 曲朝阳 刘谊豪 +2 位作者 曲楠 姜涛 徐晓宇 《电力系统保护与控制》 北大核心 2025年第13期163-174,共12页
针对变压器声纹检测中信号易受干扰且足量样本获取困难的问题,提出一种融合声纹脊线化与元学习的变压器声纹诊断方法。首先,基于脊线化特征处理,对优化后的变压器声纹时频谱图进行物理特征筛选与形态特征压缩。然后,搭建选择性编码器(se... 针对变压器声纹检测中信号易受干扰且足量样本获取困难的问题,提出一种融合声纹脊线化与元学习的变压器声纹诊断方法。首先,基于脊线化特征处理,对优化后的变压器声纹时频谱图进行物理特征筛选与形态特征压缩。然后,搭建选择性编码器(selective encoder, SE)加深时频与形态表征的关联度,提升模型收敛速度。最后,构造元学习网络评估变压器状态,并引入基于OD-Reptile的一阶梯度更新策略,通过内外循环优化机制增强参数泛化性,从而实现少样本、信息干扰条件下的高精度声纹诊断。相较于R-WDCNN、LSTM、CNN等传统深度学习信号诊断方法,该方法在低样本、高噪声环境下(SNR为-12 dB),收敛轮数减少10轮以上。同时,准确率分别提高6.35%,12.1%和16.93%。实验结果显示,所提方法在准确性、抗噪性、鲁棒性以及泛化性方面均有显著提升。 展开更多
关键词 声纹 小样本 脊线化 时频谱图 选择性编码 元学习 故障诊断
在线阅读 下载PDF
基于声谱图和卷积神经网络的磁暴图像识别
9
作者 李鸿宇 孙君嵩 +2 位作者 王丽 杨杰 赵雨馨 《空间科学学报》 北大核心 2025年第4期943-949,共7页
磁暴是一种重要的地磁场扰动类型,影响着通信、电力和航空航天等领域,因此对磁暴识别技术进行研究与创新有助于磁暴信息的应用.基于2010-2023年12个定点地磁观测水平分量分钟值数据,采用声谱图成像技术,运用VGG19卷积神经网络模型开展... 磁暴是一种重要的地磁场扰动类型,影响着通信、电力和航空航天等领域,因此对磁暴识别技术进行研究与创新有助于磁暴信息的应用.基于2010-2023年12个定点地磁观测水平分量分钟值数据,采用声谱图成像技术,运用VGG19卷积神经网络模型开展磁暴日和磁静日人工智能图像分类研究.实验结果显示,模型的准确率为97.41%,精确率为98.00%,召回率为96.80%,模型的预测能力较好,这表明声谱图成像技术在图像识别分类问题中具有较高的实用性,且VGG19卷积神经网络模型用于磁暴日和磁静日地磁分类的可行性较高,研究结果为磁暴预警与监测提供了新的思路. 展开更多
关键词 地磁 磁暴 声谱图 卷积神经网络 图像分类
在线阅读 下载PDF
基于WGAN-div和CNN的毫米波雷达人体动作识别方法
10
作者 李秋生 钟滢洁 《贵州师范大学学报(自然科学版)》 北大核心 2025年第5期23-33,共11页
针对基于毫米波雷达的人体动作识别数据集规模小导致的模型过拟合问题,提出一种基于Wasserstein散度生成对抗网络(WGAN-div)与卷积神经网络(CNN)的联合识别方法。首先,通过搭建毫米波雷达平台采集人体动作的雷达回波数据,经预处理生成... 针对基于毫米波雷达的人体动作识别数据集规模小导致的模型过拟合问题,提出一种基于Wasserstein散度生成对抗网络(WGAN-div)与卷积神经网络(CNN)的联合识别方法。首先,通过搭建毫米波雷达平台采集人体动作的雷达回波数据,经预处理生成微多普勒时频谱图;其次,利用WGAN-div模型学习时频谱图特征分布,生成高质量扩充数据以缓解数据不足;最后,构建浅层CNN模型实现动作分类。实验结果表明,所提方法在6类人体动作识别任务中准确率达98.17%,较深度卷积生成对抗网络(DCGAN)和带梯度惩罚的Wasserstein生成对抗网络(WGAN-gp)分别提升1.67%和0.87%。该方法通过取消Lipschitz约束优化生成质量,有效解决了小样本场景下的识别性能下降问题,为雷达数据增强与动作识别提供了一种新思路。 展开更多
关键词 毫米波雷达 人体动作识别 Wasserstein散度生成对抗网络 卷积神经网络 小样本学习 微多普勒时频谱 雷达数据增强
在线阅读 下载PDF
Cardiovascular Sound Classification Using Neural Architectures and Deep Learning for Advancing Cardiac Wellness
11
作者 Deepak Mahto Sudhakar Kumar +6 位作者 Sunil KSingh Amit Chhabra Irfan Ahmad Khan Varsha Arya Wadee Alhalabi Brij B.Gupta Bassma Saleh Alsulami 《Computer Modeling in Engineering & Sciences》 2025年第6期3743-3767,共25页
Cardiovascular diseases(CVDs)remain one of the foremost causes of death globally;hence,the need for several must-have,advanced automated diagnostic solutions towards early detection and intervention.Traditional auscul... Cardiovascular diseases(CVDs)remain one of the foremost causes of death globally;hence,the need for several must-have,advanced automated diagnostic solutions towards early detection and intervention.Traditional auscultation of cardiovascular sounds is heavily reliant on clinical expertise and subject to high variability.To counter this limitation,this study proposes an AI-driven classification system for cardiovascular sounds whereby deep learning techniques are engaged to automate the detection of an abnormal heartbeat.We employ FastAI vision-learner-based convolutional neural networks(CNNs)that include ResNet,DenseNet,VGG,ConvNeXt,SqueezeNet,and AlexNet to classify heart sound recordings.Instead of raw waveform analysis,the proposed approach transforms preprocessed cardiovascular audio signals into spectrograms,which are suited for capturing temporal and frequency-wise patterns.The models are trained on the PASCAL Cardiovascular Challenge dataset while taking into consideration the recording variations,noise levels,and acoustic distortions.To demonstrate generalization,external validation using Google’s Audio set Heartbeat Sound dataset was performed using a dataset rich in cardiovascular sounds.Comparative analysis revealed that DenseNet-201,ConvNext Large,and ResNet-152 could deliver superior performance to the other architectures,achieving an accuracy of 81.50%,a precision of 85.50%,and an F1-score of 84.50%.In the process,we performed statistical significance testing,such as the Wilcoxon signed-rank test,to validate performance improvements over traditional classification methods.Beyond the technical contributions,the research underscores clinical integration,outlining a pathway in which the proposed system can augment conventional electronic stethoscopes and telemedicine platforms in the AI-assisted diagnostic workflows.We also discuss in detail issues of computational efficiency,model interpretability,and ethical considerations,particularly concerning algorithmic bias stemming from imbalanced datasets and the need for real-time processing in clinical settings.The study describes a scalable,automated system combining deep learning,feature extraction using spectrograms,and external validation that can assist healthcare providers in the early and accurate detection of cardiovascular disease.AI-driven solutions can be viable in improving access,reducing delays in diagnosis,and ultimately even the continued global burden of heart disease. 展开更多
关键词 Healthy society cardiovascular system spectrogram FastAI audio signals computer vision neural network
在线阅读 下载PDF
基于VGGish-BiGRU的戏曲流派分类模型
12
作者 龚谊承 王晓雨 《电子设计工程》 2025年第17期7-11,17,共6页
音乐类型分类(MGC)任务有助于提升音乐产业的效益和用户体验,为了弘扬戏曲文化,戏曲流派的识别与分类是一项具有挑战性的任务。传统的音频分类算法依赖于手动提取特征,导致特征表达能力较弱,从而产生一定误差。该文将迁移学习与深度学... 音乐类型分类(MGC)任务有助于提升音乐产业的效益和用户体验,为了弘扬戏曲文化,戏曲流派的识别与分类是一项具有挑战性的任务。传统的音频分类算法依赖于手动提取特征,导致特征表达能力较弱,从而产生一定误差。该文将迁移学习与深度学习相结合,利用预训练VGGish模型提取戏曲特征结合BiGRU模型对所建立的戏曲数据集进行自动分类。实验结果表明,该方法在自建的包含8个剧种共1500首音乐的戏曲数据集上获得0.78的分类精度。为了验证模型的泛化能力,将所搭建的方法用于公共数据集GTZAN上,同样展现出较好的分类效果。与现有的基准模型相比,该方法在性能上提升3.5%~15%。 展开更多
关键词 戏曲分类 深度学习 频谱分析 VGGish网络 双向门控循环单元 迁移学习
在线阅读 下载PDF
Evaluation of cabin noise of various subway systems
13
作者 Hsiao Mun Lee Heow Pueh Lee 《Acta Mechanica Sinica》 2025年第7期319-331,共13页
This study examines the variations in noise levels across various subway lines in Singapore and three other cities,and provides a detailed overview of the trends and factors influencing subway noise.Most of the equiva... This study examines the variations in noise levels across various subway lines in Singapore and three other cities,and provides a detailed overview of the trends and factors influencing subway noise.Most of the equivalent sound pressure level(Leq)in typical subway cabins across the Singapore subway lines are below 85 dBA,with some notable exceptions.These variations in noise levels are influenced by several factors,including rolling stock structure,track conditions and environmental and aerodynamic factors.The spectrogram analysis indicates that the cabin noise is mostly concentrated below the frequency of 1,000 Hz.This study also analyzes cabin noise in subway systems in Suzhou,Seoul,and Tokyo to allow for broader comparisons.It studies the impact of factors such as stock materials,track conditions including the quality of the rails,the presence of curves or irregularities,and maintenance frequency on cabin noise. 展开更多
关键词 Cabin noise SUBWAY spectrogram
原文传递
Omnidirectional Human Behavior Recognition Method Based on Frequency-Modulated Continuous-Wave Radar
14
作者 SUN Chang WANG Shaohong LIN Yanping 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期637-645,共9页
Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship be... Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship between human posture and the radar.To address the issue of low accuracy in behavior recognition when the human body is not directly facing the radar,a method combining local outlier factor with Doppler information is proposed for the correction of multi-classifier recognition results.Initially,the information such as distance,velocity,and micro-Doppler spectrogram of the target is obtained using the fast Fourier transform and histogram of oriented gradients-support vector machine methods,followed by preliminary recognition.Subsequently,Platt scaling is employed to transform recognition results into confidence scores,and finally,the Doppler-local outlier factor method is utilized to calibrate the confidence scores,with the highest confidence classifier result considered as the recognition outcome.Experimental results demonstrate that this approach achieves an average recognition accuracy of 96.23%for comprehensive human behavior recognition in various orientations. 展开更多
关键词 frequency-modulated continuous-wave radar omnidirectional human behavior recognition histogram of oriented gradients support vector machine micro-Doppler spectrogram Doppler-local outlier factor
原文传递
基于超声信号的金属化膜电容器老化状态评估方法 被引量:1
15
作者 许馨愉 汲胜昌 +2 位作者 郑琳子 闫昕旖 祝令瑜 《电工技术学报》 北大核心 2025年第5期1652-1661,共10页
金属化膜电容器(MFC)是模块化多电平变流器(MMC)中较为薄弱的部件之一,准确地评估其健康状态对柔性直流输电系统的安全稳定运行意义重大。该文对MFC超声信号的局部放电相位分布(PRPD)谱图进行分析,提出一种基于健康指数公式的老化状态... 金属化膜电容器(MFC)是模块化多电平变流器(MMC)中较为薄弱的部件之一,准确地评估其健康状态对柔性直流输电系统的安全稳定运行意义重大。该文对MFC超声信号的局部放电相位分布(PRPD)谱图进行分析,提出一种基于健康指数公式的老化状态评估方法。首先,通过搭建超声监测试验平台采集声信号,分析MFC在老化过程中的失效机理;其次,基于自愈放电和局部放电比例的显著变化,探讨老化对PRPD谱图中放电信号分布的影响;最后在此基础上,构建基于健康指数公式的线性回归模型进行老化状态评估,并通过试验验证所提方法与模型的可行性和有效性。结果表明,与现有方法相比,该方法只需采集超声信号的PRPD谱图信息即可评估MFC当前的老化程度,解决了传统方法会对系统回路造成影响、抗干扰能力弱且监测精度较低的问题,为MMC的状态监测和寿命评估提供了新的手段,并为MFC非电量状态监测方法的研究奠定了基础。 展开更多
关键词 金属化膜电容器 超声法 局部放电相位分布(PRPD)谱图 老化状态评估
在线阅读 下载PDF
基于改进MobileNetV3的笼养蛋鸡声音分类识别方法 被引量:2
16
作者 衡一帆 盛哲雅 +3 位作者 严煜 谷月 周昊博 王树才 《农业机械学报》 北大核心 2025年第4期427-435,共9页
为实现笼养蛋鸡声音的准确分类,实现蛋鸡健康、情绪、生产状态等信息的智能化、非接触式检测,提出了一种基于改进MobileNetV3的笼养蛋鸡声音分类识别方法。以欣华二号蛋鸡为研究对象,采集蛋鸡在笼养条件下发出的热应激声、惊吓声、产蛋... 为实现笼养蛋鸡声音的准确分类,实现蛋鸡健康、情绪、生产状态等信息的智能化、非接触式检测,提出了一种基于改进MobileNetV3的笼养蛋鸡声音分类识别方法。以欣华二号蛋鸡为研究对象,采集蛋鸡在笼养条件下发出的热应激声、惊吓声、产蛋声以及鸣唱声,经过声音预处理将一维声音信号转化为三维梅尔频谱图,建立了包括8541幅梅尔频谱图的蛋鸡声音数据集。通过在MobileNetV3中引入高效通道注意力(Efficient channel attention,ECA)模块,提高了笼养蛋鸡声音分类准确率。试验结果表明,MobileNetV3-ECA模型准确率、召回率、精确率以及F1分数分别达到95.25%、95.16%、95.02%、95.08%,相比原始模型分别提高1.99、2.08、2.00、2.04个百分点。通过与分别引入坐标注意力(Coordinate attention,CA)、卷积块注意力模块(Convolutional block attention module,CBAM)的模型对比,引入ECA模块后模型准确率分别提高2.11、2.03个百分点,其他指标同样有更明显的提高。与ShuffleNetV2、DesNet121和EfficientNetV2模型相比,MobileNetV3-ECA准确率分别提高1.99、2.03、2.50个百分点。本文提出的基于MobileNetV3-ECA的蛋鸡声音分类识别方法,能够有效且准确地实现对包括热应激声在内的不同种类蛋鸡声音分类识别,为蛋鸡规模化养殖中的自动化、智能化声音检测提供了算法支持,为禽舍巡检机器人功能优化提供了参考,同时为规模化笼养蛋鸡热应激预警开辟了思路。 展开更多
关键词 笼养蛋鸡 声音分类 MobileNetV3 高效通道注意力 梅尔频谱图 卷积神经网络
在线阅读 下载PDF
基于ASP-SERes2Net的说话人识别算法 被引量:1
17
作者 令晓明 陈鸿雁 +1 位作者 张小玉 张真 《北京工业大学学报》 CAS 北大核心 2025年第1期42-50,共9页
为提升说话人识别的特征提取能力,解决在噪声环境下识别率低的问题,提出一种基于残差网络的说话人识别算法——ASP-SERes2Net。首先,采用梅尔语谱图作为神经网络的输入;其次,改进Res2Net网络的残差块,并且在每个残差块后引入压缩激活(sq... 为提升说话人识别的特征提取能力,解决在噪声环境下识别率低的问题,提出一种基于残差网络的说话人识别算法——ASP-SERes2Net。首先,采用梅尔语谱图作为神经网络的输入;其次,改进Res2Net网络的残差块,并且在每个残差块后引入压缩激活(squeeze-and-excitation,SE)注意力模块;然后,用注意力统计池化(attention statistics pooling,ASP)代替原来的平均池化;最后,采用附加角裕度的Softmax(additive angular margin Softmax,AAM-Softmax)对说话人身份进行分类。通过实验,将ASP-SERes2Net算法与时延神经网络(time delay neural network,TDNN)、ResNet34和Res2Net进行对比,ASP-SERes2Net算法的最小检测代价函数(minimum detection cost function,MinDCF)值为0.0401,等误率(equal error rate,EER)为0.52%,明显优于其他3个模型。结果表明,ASP-SERes2Net算法性能更优,适合应用于噪声环境下的说话人识别。 展开更多
关键词 说话人识别 梅尔语谱图 Res2Net 压缩激活(squeeze-and-excitation SE)注意力模块 注意力统计池化(attention statistics pooling ASP) 附加角裕度的Softmax(additive angular margin Softmax AAM-Softmax)
在线阅读 下载PDF
基于改进残差网络的罗氏沼虾发声信号分类方法 被引量:1
18
作者 曹正良 蒋千庆 +4 位作者 姜珊 王子贤 李钊丞 靳雨雪 胡庆松 《水产学报》 北大核心 2025年第7期204-214,共11页
【目的】水产养殖中虾类行为的精准识别对饲料投喂优化和疾病预防管理具有重要意义。针对传统光学监测方法在复杂养殖环境中的局限性,从被动声学监测角度,针对虾类在复杂养殖环境中传统光学监测方法的局限性。【方法】本研究结合被动声... 【目的】水产养殖中虾类行为的精准识别对饲料投喂优化和疾病预防管理具有重要意义。针对传统光学监测方法在复杂养殖环境中的局限性,从被动声学监测角度,针对虾类在复杂养殖环境中传统光学监测方法的局限性。【方法】本研究结合被动声学技术获取罗氏沼虾的不同行为发声信息,提出了一种基于深度学习的罗氏沼虾行为分类方法。通过采集摄食、移动及打斗三种行为的发声信号,将其转换为Mel频谱图作为数据集,并比较了CNN、ResNet18和VGG16神经网络模型分类效果。【结果】ResNet18的识别准确率(97.67%)优于VGG16和CNN;在引入批量归一化(Batch Normalization,BN)算法后,BN-ResNet18的识别准确率提升至99.00%,较原始ResNet18提高了1.33%。此外,BNResNet18在14.0~44.1 kHz频段内表现出最优的分类性能,进一步证明了残差连接与BN模块的协同优化能够有效提升模型性能。【结论】BN-ResNet18在复杂行为发声信号特征建模分类中展现出较高的准确性和稳健性。本研究为基于虾类行为发声信号的监测识别提供了技术支持,对水产养殖的智能化研发具有潜在应用价值。 展开更多
关键词 罗氏沼虾 Mel频谱图 神经网络 批量归一化 发声信号
原文传递
基于声音信号的转辙机故障诊断研究 被引量:1
19
作者 梁续继 戴胜华 《铁道标准设计》 北大核心 2025年第2期183-190,共8页
铁路信号系统中转辙机的故障率较高,需要采用智能化解决方案对故障进行诊断。传统的解决方案基于电信号,未能充分利用机械电子设备的物理特征。针对这一问题,基于转辙机动作时的声音进行故障诊断。首先,根据转辙机的动作特性提出6种会... 铁路信号系统中转辙机的故障率较高,需要采用智能化解决方案对故障进行诊断。传统的解决方案基于电信号,未能充分利用机械电子设备的物理特征。针对这一问题,基于转辙机动作时的声音进行故障诊断。首先,根据转辙机的动作特性提出6种会影响声音信号的常见机械故障。然后,根据声音诊断在特征提取方面的不同路线,采用3种技术方案。端到端方案通过wav2vec2.0语音识别框架直接进行训练和识别;特征矩阵方案提取声音信号的梅尔倒谱系数(MFCC),通过主成分分析(PCA)得到固定尺寸的特征矩阵,由多分类支持向量机(SVM)进行故障分类;声音图像化方案生成声音信号的语谱图,同时建立卷积神经网络VGG16的轻量化改进模型,将语谱图输入至该模型中进行训练和识别。实验结果表明,3种技术方案均能有效地对包括正常工作和6种故障类型的7种工作状态实现诊断,准确率分别为99.8%、94.2%和96.6%。验证了基于声音进行转辙机故障诊断的3种技术方案的可行性,并体现了语音领域技术在转辙机故障诊断中的应用价值。 展开更多
关键词 转辙机 故障诊断 声音信号 特征提取 wav2vec2.0 MFCC 语谱图
在线阅读 下载PDF
融合动态卷积和注意力机制的多层感知机语音情感识别 被引量:1
20
作者 张雨萌 张欣 +1 位作者 高谋 赵虎林 《计算机科学与探索》 北大核心 2025年第4期1065-1075,共11页
语音情感识别技术通过分析语音信号推断说话者情绪,增强人机交互的自然性和智能性。然而,现有模型往往忽视时频语义信息,影响识别准确性。为此,提出了一种融合动态卷积与注意力机制的多层感知机模型,显著提高了情感识别的准确度及信息... 语音情感识别技术通过分析语音信号推断说话者情绪,增强人机交互的自然性和智能性。然而,现有模型往往忽视时频语义信息,影响识别准确性。为此,提出了一种融合动态卷积与注意力机制的多层感知机模型,显著提高了情感识别的准确度及信息利用效率。将输入的语音信号转化为梅尔频谱图,捕捉信号细节变化,更贴切地反映人类对声音的感知,为后续特征提取奠定了基础。通过词元化处理将梅尔频谱图转化为词元,降低了数据的复杂性。借助动态卷积与分离注意力机制高效提取关键的时频特征。一方面,动态卷积能够适应不同时间和频率上的尺度变化,优化了特征捕捉效率;另一方面,分离注意力机制增强了模型对关键信息的聚焦能力,有效提升了模型对特征的表达能力。结合动态卷积与分离注意力机制的优势,该模型能够更加充分地提取关键声学特征,从而实现了更高效、更精准的情感识别。在RAVDESS、EmoDB和CASIA三个语音情感数据库上的测试显示,模型识别准确率显著优于现有技术,达到86.11%、95.33%和82.92%。这验证了模型在复杂情感识别任务的高效性和准确性,以及动态卷积和注意力机制的有效性。 展开更多
关键词 语音情感识别 梅尔频谱图 多层感知机 动态卷积 注意力机制
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部