期刊文献+
共找到916篇文章
< 1 2 46 >
每页显示 20 50 100
Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy 被引量:3
1
作者 孔海洋 孙兰香 +2 位作者 胡静涛 辛勇 丛智博 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第11期964-970,共7页
Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data se... Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm. 展开更多
关键词 laser-induced breakdown spectroscopy classification of steel samples principal component analysis artificial neural networks selection of spectral data
在线阅读 下载PDF
Predicting Nitrogen Status of Rice Using Multispectral Data at Canopy Scale 被引量:26
2
作者 ZHANG Jin-Heng WANG Ke +1 位作者 J. S. BAILEY WANG Ren-Chao 《Pedosphere》 SCIE CAS CSCD 2006年第1期108-117,共10页
Two field experiments were conducted in Jiashan and Yuhang towns of Zhejiang Province, China, to study the feasibility of predicting N status of rice using canopy spectral reflectance. The canopy spectral reflectance ... Two field experiments were conducted in Jiashan and Yuhang towns of Zhejiang Province, China, to study the feasibility of predicting N status of rice using canopy spectral reflectance. The canopy spectral reflectance of rice grown with different levels of N inputs was determined at several important growth stages. Statistical analyses showed that as a result of the different levels of N supply, there were significant differences in the N concentrations of canopy leaves at different growth stages. Since spectral reflectance measurements showed that the N status of rice was related to reflectance in the visible and NIR (near-infrared) ranges, observations for rice in 1 nm bandwidths were then converted to bandwidths in the visible and NIR spectral regions with IKONOS (space imaging) bandwidths and vegetation indices being used to predict the N status of rice. The results indicated that canopy reflectance measurements converted to ratio vegetation index (RVI) and normalized difference vegetation index (NDVI) for simulated IKONOS bands provided a better prediction of rice N status than the reflectance measurements in the simulated IKONOS bands themselves. The precision of the developed regression models using RVI and NDVI proved to be very high with R2 ranging from 0.82 to 0.94, and when validated with experimental data from a different site, the results were satisfactory with R2 ranging from 0.55 to 0.70. Thus, the results showed that theoretically it should be possible to monitor N status using remotely sensed data. 展开更多
关键词 canopy spectral reflectance multispectral data nitrogen status RICE vegetation indices
在线阅读 下载PDF
Spectral-spatial target detection based on data field modeling for hyperspectral data 被引量:4
3
作者 Da LIU Jianxun LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期795-805,共11页
Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spec... Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spectral feature were unified based on the data filed theory and extracted by weighted manifold embedding. The novelties of the proposed method lie in two aspects. One is the way in which the spatial features and spectral features were fused as a new feature based on the data field theory, and the other is that local information was introduced to describe the decision boundary and explore the discriminative features for target detection. The extracted features based on data field modeling and manifold embedding techniques were considered for a target detection task.Three standard hyperspectral datasets were considered in the analysis. The effectiveness of the proposed target detection algorithm based on data field theory was proved by the higher detection rates with lower False Alarm Rates(FARs) with respect to those achieved by conventional hyperspectral target detectors. 展开更多
关键词 data field modeling Feature extraction Hyperspectral data spectral-spatial Target detection
原文传递
Monitoring Soil Salt Content Using HJ-1A Hyperspectral Data: A Case Study of Coastal Areas in Rudong County, Eastern China 被引量:5
4
作者 LI Jianguo PU Lijie +5 位作者 ZHU Ming DAI Xiaoqing XU Yan CHEN Xinjian ZHANG Lifang ZHANG Runsen 《Chinese Geographical Science》 SCIE CSCD 2015年第2期213-223,共11页
Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of m... Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale. 展开更多
关键词 soil salt content normalized differential vegetation index(NDVI) hyperspectral data Huan Jing-Hyper spectral Imager(HJ-HSI) coastal area eastern China
在线阅读 下载PDF
Some Peculiarities of the Preprocessing of Spectral Data and Images
5
作者 Valentin Atanassov Georgi Jelev Lubomira Kraleva 《Journal of Shipping and Ocean Engineering》 2013年第1期55-60,共6页
Remotely sensed spectral data and images are acquired under significant additional effects accompanying their major formation process, which greatly determine measurement accuracy. In order to be used in subsequent qu... Remotely sensed spectral data and images are acquired under significant additional effects accompanying their major formation process, which greatly determine measurement accuracy. In order to be used in subsequent quantitative analysis and assessment, this data should be subject to preliminary processing aiming to improve its accuracy and credibility. The paper considers some major problems related with preliminary processing of remotely sensed spectral data and images. The major factors are analyzed, which affect the occurrence of data noise or uncertainties and the methods for reduction or removal thereof. Assessment is made of the extent to which available equipment and technologies may help reduce measurement errors. 展开更多
关键词 SPECTROMETRY spectral data and images preliminary processing.
在线阅读 下载PDF
Lithological mapping with multispectral data–setup and application of a spectral database for rocks in the Balakot area, Northern Pakistan
6
作者 Michael FUCHS Adnan A.AWAN +4 位作者 Sardar S.AKHTAR Ijaz AHMAD Simon SADIQ Asif RAZZAK Naghmah HAIDER 《Journal of Mountain Science》 SCIE CSCD 2017年第5期948-963,共16页
In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan... In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan spectral library(pklib) version 0.1, contains the analysis data of sixty rock samples taken in the Balakot region in Northern Pakistan.The spectral library is implemented as SQLite database. Structure and naming are inspired by the convention system of the ASTER Spectral Library. Usability, application and benefit of the pklib were evaluated and depicted taking two approaches, the multivariate and the spectral based. The spectral information were used to create indices. The indices were applied to Landsat and ASTER data tosupportthespatial delineation of outcropping rock sequences instratigraphic formations. The application of the indices introduced in this paper helps to identify spots where specific lithological characteristics occur. Especially in areas with sparse or missing detailed geological mapping, the spectral discrimination via remote sensing data can speed up the survey. The library can be used not only to support the improvement of factor maps for landslide susceptibility analysis, but also to provide a geoscientific basisto further analyze the lithological spotin numerous regions in the Hindu Kush. 展开更多
关键词 Lithological mapping Multispectral data spectral library Normalized difference index Northern Pakistan
原文传递
Research on Estimation Models of Chlorophyll Content in Apple Leaves Based on Imaging Hyperspectral Data
7
作者 Luyan NIU Xiaoyan ZHANG +2 位作者 Jiabo SUN Jiye ZHENG Fengyun WANG 《Agricultural Biotechnology》 CAS 2018年第5期215-218,231,共5页
In view of the shortage of using traditional methods to monitor chlorophyll content, hyperspectral technology was used to estimate the chlorophyll content of apple leaves rapidly, accurately and non-destructively. Bas... In view of the shortage of using traditional methods to monitor chlorophyll content, hyperspectral technology was used to estimate the chlorophyll content of apple leaves rapidly, accurately and non-destructively. Based on the data of hyperspectral reflectivity and SPAD value of normal apple leaves and the leaves under the stress of red spiders collected from the Wanjishan base in Tai an, the correlations of SPAD value with the original spectral reflectivity of apple leaves and its first derivative and between SPAD value and high spectral value were analyzed to select sensitive bands, and the estimation models of chlorophyll content in apple leaves based on hyperspectral reflectivity were established. The sensitive bands of chlorophyll content in normal apple leaves were 513-539, 564-585, 694, 699 and 720 nm , and the best estimation model of chlorophyll content was SPAD =152.450-1 884.851 R 377 . The sensitive bands of chlorophyll content in the leaves under the stress of red spiders were 961, 972 and 720 nm, and the best estimation model of chlorophyll content was SPAD =49.371-46 428.473 R 972. 展开更多
关键词 Hyperspectral data APPLE CHLOROPHYLL spectral features CORRELATION
在线阅读 下载PDF
Study on shallow groundwater information extraction technology based on multi-spectral data and spatial data 被引量:10
8
作者 YU DeHao DENG ZhengDong +3 位作者 LONG Fan GUAN HongJun WANG DaQing GOU YiZheng 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第5期1420-1428,共9页
Aimed at solving the difficulties,such as low efficiency and limited exploration range encountered in finding groundwater with the traditional methods,a new method was presented by using remote sensing technology in t... Aimed at solving the difficulties,such as low efficiency and limited exploration range encountered in finding groundwater with the traditional methods,a new method was presented by using remote sensing technology in this paper.Based on multi-spectral data(ETM data) and spatial data(SRTM data),a forecasting model was built to produce a probability rating map for finding shallow groundwater in the arid and semi-arid areas.According to investigations,a conclusion is drawn that the results of the model are satisfied,which have been testified by the later geophysical exploration and drilling.Thus,the model can serve as a guide for finding groundwater in the arid and semi-arid regions. 展开更多
关键词 REMOTE SENSING SHALLOW GROUNDWATER forecasting model MULTI-spectral data spatial data
原文传递
Study on the biomass change derived from the hyperspectral data of cotton leaves in canopy under moisture stress 被引量:1
9
作者 SUN Li CHEN Xi +4 位作者 WU Jianjun FENG Xianwei BAO Anming MA Yaqin WANG Dengwei 《Chinese Science Bulletin》 SCIE EI CAS 2006年第A01期173-178,共6页
在这研究,在美国做的一个 ASD 分光计被用来在北方 Xinjiang 在华盖导出棉花叶子的 hyperspectral 数据。红边的不可分的区域变量被用来在华盖在棉花叶子估计全部的氮(TN ) 内容。反射系列微分的第一份订单被执行。分析方法基于光谱位... 在这研究,在美国做的一个 ASD 分光计被用来在北方 Xinjiang 在华盖导出棉花叶子的 hyperspectral 数据。红边的不可分的区域变量被用来在华盖在棉花叶子估计全部的氮(TN ) 内容。反射系列微分的第一份订单被执行。分析方法基于光谱位置变量从第一份订单被导出微分光谱数据。在红边的不可分的区域之间的关联上的分析( SDr ,认为是独立变量)并且 TN 内容(认为是功能)被执行,并且在在棉花变化的华盖叶子的红边和 TN 内容的不可分的区域之间的数学模型作为 Xinluzao 说出 No.6 的关联被开发。在在单个棉花的叶绿素内容和 TN 内容之间的关联上的分析在华盖与不同的水体积在灌溉下面成长离开被执行。结果证明在叶绿素内容和 TN 内容之间有重要积极关联(R = 0.8723, n = 39 ) ,并且叶绿素内容的数据能被用来在单个棉花叶子估计 TN 内容;在在在华盖的棉花叶子的红边和 TN 内容的不可分的区域变量之间的关联是重要的,他们的关联系数是 0.7394 ( n = 40 ),在作为 Xinluzao 号码 6 和号码 8 罐头说出的棉花变化的华盖叶子的 TN 内容被使用发达模型精确地估计,并且他们的 RMSE 价值分别地是 0.3859 和 0.4272 。在研究以后,有一个适用的潜力使用红边的不可分的区域变量在华盖在棉花叶子估计 TN 内容,这被考虑,并且数学模型与第三方面的区域变量发展了让高适用在在庄稼华盖导出 TN 内容珍视。认出应力由研究移动和红边的变化程度由棉花植物承受了的潮湿是可行的,这也被考虑,并且钥匙是开发相应合理识别索引系统。 展开更多
关键词 水应力 棉花 光谱数据 生物量
在线阅读 下载PDF
Crop Discrimination Using Field Hyper Spectral Remotely Sensed Data
10
作者 Sayed M. Arafat Mohamed A. Aboelghar Eslam F. Ahmed 《Advances in Remote Sensing》 2013年第2期63-70,共8页
Crop discrimination through satellite imagery is still problematic. Accuracy of crop classification for high spatial resolution satellite imagery in the intensively cultivated lands of the Egyptian Nile delta is still... Crop discrimination through satellite imagery is still problematic. Accuracy of crop classification for high spatial resolution satellite imagery in the intensively cultivated lands of the Egyptian Nile delta is still low. Therefore, the main objective of this research is to determine the optimal hyperspectral wavebands in the spectral range of (400 - 2500 nm) to discriminate between two winter crops (Wheat and Clover) and two summer crops (Maize and Rice). This is considered as a first step to improve crop classification through satellite imagery in the intensively cultivated areas in Egypt. Hyperspectral ground measurements of ASD field Spec3 spectroradiometer was used to monitor the spectral reflectance profile during the period of the maximum growth stage of the four crops. 1-nm-wide was aggregated to 10-nm-wide bandwidths. After accounting for atmospheric windows and/or areas of significant noise, a total of 2150 narrow bands in 400 - 2500 nm were used in the analysis. Spectral reflectance was divided into six spectral zones: blue, green, red, near-infrared, shortwave infrared-I and shortwave infrared-II. One Way ANOVA and Tukey’s HSD post hoc analysis was performed to choose the optimal spectral zone that could be used to differentiate the different crops. Then, linear regression discrimination (LDA) was used to identify the specific optimal wavebands in the spectral zones in which each crop could be spectrally identified. The results of Tukey’s HSD showed that blue, NIR, SWIR-1 and SWIR-2 spectral zones are more sufficient in the discrimination between wheat and clover than green and red spectral zones. At the same time, all spectral zones were quite sufficient to discriminate between rice and maize. The results of (LDA) showed that the wavelength zone (727:1299 nm) was the optimal to identify clover crop while three zones (350:712, 1451:1562, 1951:2349 nm) could be used to identify wheat crop. The spectral zone (730:1299 nm) was the optimal to identify maize crop while three spectral zones were the best to identify rice crop (350:713, 1451:1532, 1951:2349 nm). An average of thirty measurements for each crop was considered in the process. These results will be used in machine learning process to improve the performance of the existing remote sensing software’s to isolate the different crops in intensive cultivated lands. The study was carried out in Damietta governorate of Egypt. 展开更多
关键词 HYPER spectral data CROP DISCRIMINATION
暂未订购
Use of Linear Spectral Mixture Model to Estimate Rice Planted Area Based on MODIS Data 被引量:2
11
作者 WANG Lei Satoshi UCHID 《Rice science》 SCIE 2008年第2期131-136,共6页
MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classi... MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale. 展开更多
关键词 RICE planted area Moderate Resolution Imaging Spectroradiometer Thematic Mapper data mixed pixel linear spectral mixture model
在线阅读 下载PDF
孤立森林算法下电力负荷异常数据辨识方法
12
作者 杨雪 陈巍 +1 位作者 刘静 李昌利 《计算机仿真》 2025年第3期140-144,共5页
为了提高电力企业管理水平,保证数据计量的准确性,提出了孤立森林算法下电力负荷异常数据辨识方法。利用拉格朗日插值方法插补电力负荷数据缺失值,标准化处理插补后的数据,获得标准化处理后的数据。根据随机解耦特征分解方法分解标准的... 为了提高电力企业管理水平,保证数据计量的准确性,提出了孤立森林算法下电力负荷异常数据辨识方法。利用拉格朗日插值方法插补电力负荷数据缺失值,标准化处理插补后的数据,获得标准化处理后的数据。根据随机解耦特征分解方法分解标准的电力负荷数据的谱特征,得到数据稀疏异质特征点集合。基于数据特征运用孤立森林算法划分电力负荷数据,构造iTree,运用异常分值完成异常数据辨识。通过实验证明所提方法能够精准辨识电力负荷异常数据,辅助相关人员及时作出修复决策,保证电力系统安全性。 展开更多
关键词 孤立森林算法 电力负荷 异常数据辨识 频谱特征 数据标准化处理
在线阅读 下载PDF
基于一维卷积神经网络与自编码算法的松属物种鉴别机制
13
作者 陈冬英 翁伟雄 +1 位作者 陈培亮 魏建崇 《生态学报》 北大核心 2025年第5期2401-2411,共11页
松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并... 松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并结合一维连续型卷积神经网络(1D⁃CS⁃CNN)与自编码技术的松属物种检测机制。使用更高效率的连续型结构替代传统1D⁃CNN模型中隐含层结构,并针对松属NIRS数据适应性改进为1D⁃CS⁃CNN模型,使其可直接应用于一维NIRS数据。结合自编码器的重构误差设计一种考虑未知类别的松属物种鉴别方法,通过待测样本的自编码重构误差来解决卷积神经网络置信度过高的问题,将修正的置信度与预先设定的阈值进行比较,判断该样本是否为未知品种。实验结果表明,1D⁃CS⁃CNN训练集与测试集准确率均达到近100%,损失值收敛为0.015,改进后的1D⁃CS⁃CNN模型识别速度更快;同时,自编码模型对未知类别松属检测机制识别率为99%。实验结果证明,该模型可快速高效分类出不同松属物种,同时检测出松属新物种。 展开更多
关键词 松属物种 近红外光谱(NIRS) 自编码器 一维连续卷积神经网络(1D⁃CS⁃CNN) 鉴别
在线阅读 下载PDF
结合深度时空谱特征的高光谱数据融合方法
14
作者 潘琛 汪晓楚 王志威 《测绘通报》 北大核心 2025年第8期118-122,共5页
为提升星载高光谱遥感影像的空间分辨率,克服单一数据源在时空和光谱信息表达上的局限性,本文提出了一种基于深度时空谱特征的高光谱数据融合方法。该方法融合了高光谱影像的丰富光谱信息与多光谱影像的高空间细节,实现了星载高光谱数... 为提升星载高光谱遥感影像的空间分辨率,克服单一数据源在时空和光谱信息表达上的局限性,本文提出了一种基于深度时空谱特征的高光谱数据融合方法。该方法融合了高光谱影像的丰富光谱信息与多光谱影像的高空间细节,实现了星载高光谱数据空间分辨率的提升。根据生成对抗网络思想设计了高光谱数据融合网络,优化了特征融合策略,有效增强了模型对不同分辨率影像的处理能力。试验结果表明,相比传统方法,本文所提的数据融合方法在保持空间结构与光谱一致性方面均具有更优的表现,多项定量评价指标验证了该方法的有效性与稳健性。本文方法为高光谱遥感影像的增强与应用提供了技术支撑,具有重要的理论意义和实践价值。 展开更多
关键词 高光谱影像 多光谱影像 数据级融合 生成对抗网络 高光谱数据融合
原文传递
水中卤代消毒副产物质谱数据库的设计与实现
15
作者 刘瓅璠 吴庆丰 +3 位作者 毛瑞士 李敏 张雨樵 张登红 《质谱学报》 北大核心 2025年第5期615-626,I0004,共13页
在饮用水消毒过程中,含氯消毒剂与水中有机物反应会生成具有毒性的卤代消毒副产物(halogenated disinfection by-products,HDBPs),对人体健康构成威胁。为实现复杂水样中HDBPs的非靶向筛查,本研究基于中国科学院近代物理研究所公共技术... 在饮用水消毒过程中,含氯消毒剂与水中有机物反应会生成具有毒性的卤代消毒副产物(halogenated disinfection by-products,HDBPs),对人体健康构成威胁。为实现复杂水样中HDBPs的非靶向筛查,本研究基于中国科学院近代物理研究所公共技术中心的高分辨四极杆飞行时间质谱仪(Q-TOF MS),开发了一款综合性的质谱数据管理系统。该系统采用Python开发,使用MySQL构建数据库,并通过PyQt实现图形界面,具备质谱数据的存储、管理、查询和分析功能,且设计了高效的质谱匹配算法,能够快速鉴别目标化合物,并支持多种卤代乙酸质谱数据的录入与管理。本实验通过对水样中卤代乙酸的非靶向筛查,表明所构建的数据管理系统能够实现复杂样品场景下的高效匹配(匹配相似度达93%以上),充分验证了该系统的准确性与可靠性。 展开更多
关键词 质谱仪 数据管理系统 质谱数据存储 质谱数据可视化 匹配算法
在线阅读 下载PDF
基于多光谱的涡轮叶片表面温度场测量系统
16
作者 张学聪 董磊 +2 位作者 胡玮宸 蔡静 李源 《计测技术》 2025年第1期88-95,共8页
由于航空发动机内部背景辐射较强,利用常规辐射测温系统测量涡轮叶片表面得到的温度值与实际温度值存在较大偏差,针对此问题,基于多光谱测温原理研制了新一代涡轮叶片表面温度测量系统。该系统采用可动镜探针及固定镜探针实现高可靠性扫... 由于航空发动机内部背景辐射较强,利用常规辐射测温系统测量涡轮叶片表面得到的温度值与实际温度值存在较大偏差,针对此问题,基于多光谱测温原理研制了新一代涡轮叶片表面温度测量系统。该系统采用可动镜探针及固定镜探针实现高可靠性扫描,通过高速多通道同步信号采集与控制系统实现信号的高效采集和设备的精准控制,利用复杂热环境多光谱测温建模、多视角三维温度场重建等技术实现叶片表面三维温度场在线测量与重建。使用黑体辐射源和动态校准装置对基于多光谱的涡轮叶片表面温度场测量系统的性能指标进行测试,结果显示:该系统能够实现550~1500℃涡轮叶片表面温度的实时在线测量,最大允许误差不超过±7.5℃,满足涡轮叶片温度测量需求。研究成果为促进高温复杂环境下航空发动机涡轮叶片热学参数测试技术发展提供了有力支撑。 展开更多
关键词 辐射测温 多光谱测温 高速数据采集 三维温度场 融合重建
在线阅读 下载PDF
基于改进E-DWT算法和深度学习模型的红小豆锈病诊断方法
17
作者 付强 关海鸥 李嘉琪 《光谱学与光谱分析》 北大核心 2025年第9期2648-2657,共10页
红小豆锈病是一种由真菌引起的常见植物病害,主要通过感染叶片影响光合作用,导致作物产量显著下降。本文提出了一种基于改进经验模态分解-小波变换(E-DWT)算法和深度学习模型的新型红小豆锈病诊断方法。选用“宝清红”红小豆作为实验对... 红小豆锈病是一种由真菌引起的常见植物病害,主要通过感染叶片影响光合作用,导致作物产量显著下降。本文提出了一种基于改进经验模态分解-小波变换(E-DWT)算法和深度学习模型的新型红小豆锈病诊断方法。选用“宝清红”红小豆作为实验对象,使用手持可见/近红外光谱仪对960例红小豆叶片进行为期10天的连续光谱数据采集,获取波长范围为326~1075 nm的红小豆叶片反射率数据。首先,采用改进的E-DWT算法对采集的光谱数据进行去噪处理。该算法结合了经验模态分解(EMD)和小波阈值去噪技术,能够在去除噪声的同时最大限度保留信号的有效信息。通过对比RMSE和SNR指标确定了最佳的小波基函数(sym5)和分解层数(4层)。为了进一步降低高维数据中的冗余信息,采用连续投影算法(SPA)从750个初始波长中筛选出了12个具有代表性的特征波长,实现了数据降维,将特征波长数量减少了98.4%。接着,结合格拉姆角场(GAF)方法,将一维波长序列转换为二维光谱图像,增强了不同波段之间的相关性,便于后续的模型训练。在模型设计上,采用了结合卷积神经网络(CNN)和卷积块注意力机制(CBAM)的深度学习模型。CBAM模块通过引入通道和空间注意力机制,能够有效区分光谱数据中不同特征波长和时间节点的权重,使模型更加关注影响红小豆锈病识别的关键特征。实验结果表明,基于CBAM的CNN模型在训练集中的识别率为99.31%,而在测试集中的识别率为98.33%,召回率达到98.89%,明显高于传统CNN模型的表现。与现有的其他方法相比,本文提出的模型在识别准确性、稳定性以及训练收敛速度上均具有显著优势。总体而言,本文所提出的基于改进E-DWT算法与CBAM-CNN模型的红小豆锈病诊断方法,不仅实现了高效、精准的病害检测,还为未来数据驱动型作物病害诊断系统的构建提供了理论依据与技术支持。 展开更多
关键词 红小豆锈病 光谱数据处理 E-DWT算法 深度学习模型 诊断模型
在线阅读 下载PDF
中国数值天气预报业务系统70年发展
18
作者 张卫民 沈学顺 +10 位作者 曹小群 孙健 吴建平 彭军 宋君强 朱小谦 王建捷 李泽椿 陈德辉 龚建东 赵延来 《气象学报》 北大核心 2025年第3期435-463,共29页
数值天气预报是天气预报业务和防灾减灾的核心科技。中国数值天气预报研究和业务应用一直受到高度重视,在基础理论研究、关键技术突破和业务系统研制方面取得了有广泛国际影响力的研究成果。在回顾中国数值天气预报技术及业务系统发展... 数值天气预报是天气预报业务和防灾减灾的核心科技。中国数值天气预报研究和业务应用一直受到高度重视,在基础理论研究、关键技术突破和业务系统研制方面取得了有广泛国际影响力的研究成果。在回顾中国数值天气预报技术及业务系统发展基础上,重点综述中国自主发展的GRAPES(Global Regional Assimilation and PrEdiction System)和YHGSM(YinHe Global Spectral Model)两大业务预报系统的重要科技进展。GRAPES在模式动力框架、四维变分资料同化、卫星资料同化技术、雷达资料同化应用、集合预报和云物理过程等方面实现了技术突破,建立了无缝隙的、包含确定性预报和集合预报系统的中国气象局数值天气预报业务体系。YHGSM持续走谱模式发展路线,突破了干空气质量守恒全球大气谱模式、集合四维变分资料同化、海-陆-气耦合集合预报等技术,建立了以高分辨率全球中期和月延伸数值预报系统为核心的数值预报体系。军队和地方自主研发的数值天气预报系统是长期坚持既定科学技术方向、学术研究和业务研制紧密结合的结果。 展开更多
关键词 数值天气预报 GRAPES YHGSM 半隐式半拉格朗日平流 格点模式 谱模式 物理过程 卫星资料同化 四维变 分资料同化 集合四维变分资料同化
在线阅读 下载PDF
基于多元散射校正的光谱共焦位移测量方法分析与研究 被引量:1
19
作者 李春艳 王泞淋 +3 位作者 刘继红 武少杰 付雯雯 任凯利 《红外与激光工程》 北大核心 2025年第1期221-230,共10页
为提高光谱共焦位移测量系统精度,对样品表面散射特性的影响进行了研究。首先,介绍了光谱共焦位移测量系统的原理,基于标量散射理论,推导了表面散射特性影响下的光谱共焦轴向响应,建立了散射对位移测量影响的关系模型。然后,对散射引起... 为提高光谱共焦位移测量系统精度,对样品表面散射特性的影响进行了研究。首先,介绍了光谱共焦位移测量系统的原理,基于标量散射理论,推导了表面散射特性影响下的光谱共焦轴向响应,建立了散射对位移测量影响的关系模型。然后,对散射引起的峰值波长曲线偏移导致的位移测量误差进行了理论研究和仿真分析;结果表明:在样品表面粗糙度较大时,会产生较大的散射效应,导致测量精度明显下降;同时,在进行光谱共焦位移测量时受各波长入射特性的影响。为校正散射的影响,提出采用多元散射校正方法结合广义回归神经网络(General Regression Neural Network, GRNN)对光谱数据进行处理,建立了散射校正算法模型。最后,搭建实验平台,选取样品进行了位移测量实验;实验结果表明,系统的测量性能随粗糙度的增大而降低,对于粗糙度为20 nm的样品散射误差校正后测量结果的最大位移测量误差从12.6μm降为1.9μm,平均位移测量误差从8.1μm降为0.86μm,提高了位移测量精度,验证了理论分析的正确性以及提出的散射校正方法的有效性。文中研究结果对提高光谱共焦位移测量系统的精度具有一定的参考意义。 展开更多
关键词 光谱共焦 表面散射特性 位移测量 光谱数据处理 多元散射校正
原文传递
基于Landsat 8卫星时序影像的森林病虫灾害时空监测
20
作者 张浩芫 李世明 +3 位作者 齐志勇 刘晴 庞勇 李增元 《遥感学报》 北大核心 2025年第9期2748-2764,共17页
由于气候变化和人类活动等多种因素的共同作用,森林受病虫灾害干扰的频率和规模不断增加,严重影响了森林生态系统的结构和服务。准确识别区域性森林病虫灾害干扰,分析其爆发的时空特征,对于森林生态系统的保护具有重要意义。本研究基于L... 由于气候变化和人类活动等多种因素的共同作用,森林受病虫灾害干扰的频率和规模不断增加,严重影响了森林生态系统的结构和服务。准确识别区域性森林病虫灾害干扰,分析其爆发的时空特征,对于森林生态系统的保护具有重要意义。本研究基于Landsat 8卫星年度时序数据,以辽宁省朝阳市为研究区域,全面分析了森林冠层时序光谱特征对火灾、砍伐和森林病虫灾害的可分离性,并调整LandTrendr算法的控制参数提升森林弱扰动信息提取的“敏感性”,精准提取了森林扰动发生的时空和光谱信息,结合随机森林算法提取2013—2023年的森林病虫灾害扰动时空信息,分析了朝阳市森林病虫灾害的时空特征。结果表明:(1)Landsat 8卫星影像的森林冠层光谱时序特征能够有效区分健康森林、火灾、砍伐和病虫灾害,作为区域性森林病虫灾害识别依据。(2)参数调整后的LandTrendr算法可以精准提取森林扰动的光谱变化信息并用于森林病虫灾害识别;森林扰动识别和病虫灾害监测总体精度(OA)分别为89.3%和86.6%,Kappa系数分别为0.785和0.812。(3)朝阳市森林扰动以病虫灾害为主,森林病虫灾害主要发生在西部的建平县和凌源市,发生面积占全市病虫灾害发生面积的67.97%;朝阳市森林病虫灾害在时间维度上存在“间歇性”爆发现象。综上,本研究可为森林经营管理提供数据支持,为不同森林扰动的分类以及森林病虫灾害时空监测提供方法借鉴。 展开更多
关键词 森林病虫灾害 时间序列数据 光谱分析 LandTrendr算法 随机森林算法
原文传递
上一页 1 2 46 下一页 到第
使用帮助 返回顶部