期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reconstruction of dissolved oxygen in the tropical Pacific Ocean for past 100 years based on XGBoost
1
作者 Jingjing Shen Bin Lu +1 位作者 Lei Zhou Xiaoying Gan 《Acta Oceanologica Sinica》 2025年第8期194-206,共13页
Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has dec... Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has declined by 2%of the total over the past 50 a,and the tropical Pacific Ocean occupied the largest oxygen minimum zone(OMZ)areas.However,the sparse observation data is limited to understanding the dynamic variation and trend of ocean using traditional interpolation methods.In this study,we applied different machine learning algorithms to fit regression models between measured DO,ocean reanalysis physical variables,and spatiotemporal variables.We demonstrate that extreme gradient boosting(XGBoost)model has the best performance,hereby reconstructing a four-dimensional DO dataset of the tropical Pacific Ocean from 1920 to 2023.The results reveal that XGBoost significantly improves the reconstruction performance in the tropical Pacific Ocean,with a 35.3%reduction in root mean-squared error and a 39.5%decrease in mean absolute error.Additionally,we compare the results with three Coupled Model Intercomparison Project Phase 6(CMIP6)models data to confirm the high accuracy of the 4-dimensional reconstruction.Overall,the OMZ mainly dominates the eastern tropical Pacific Ocean,with a slow expansion.This study used XGBoost to efficiently reconstructing 4-dimensional DO enhancing the understanding of the hypoxic expansion in the tropical Pacific Ocean and we foresee that this approach would be extended to reconstruct more ocean elements. 展开更多
关键词 dissolved oxygen(DO) machine learning spatiotemporal data modeling tropical Pacific Ocean
在线阅读 下载PDF
Air Pollution Prediction Via Graph Attention Network and Gated Recurrent Unit 被引量:1
2
作者 Shun Wang Lin Qiao +3 位作者 Wei Fang Guodong Jing Victor S.Sheng Yong Zhang 《Computers, Materials & Continua》 SCIE EI 2022年第10期673-687,共15页
PM2.5 concentration prediction is of great significance to environmental protection and human health.Achieving accurate prediction of PM2.5 concentration has become an important research task.However,PM2.5 pollutants ... PM2.5 concentration prediction is of great significance to environmental protection and human health.Achieving accurate prediction of PM2.5 concentration has become an important research task.However,PM2.5 pollutants can spread in the earth’s atmosphere,causing mutual influence between different cities.To effectively capture the air pollution relationship between cities,this paper proposes a novel spatiotemporal model combining graph attention neural network(GAT)and gated recurrent unit(GRU),named GAT-GRU for PM2.5 concentration prediction.Specifically,GAT is used to learn the spatial dependence of PM2.5 concentration data in different cities,and GRU is to extract the temporal dependence of the long-term data series.The proposed model integrates the learned spatio-temporal dependencies to capture long-term complex spatio-temporal features.Considering that air pollution is related to the meteorological conditions of the city,the knowledge acquired from meteorological data is used in the model to enhance PM2.5 prediction performance.The input of the GAT-GRU model consists of PM2.5 concentration data and meteorological data.In order to verify the effectiveness of the proposed GAT-GRU prediction model,this paper designs experiments on real-world datasets compared with other baselines.Experimental results prove that our model achieves excellent performance in PM2.5 concentration prediction. 展开更多
关键词 Air pollution prediction deep learning spatiotemporal data modeling graph attention network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部