期刊文献+
共找到64,545篇文章
< 1 2 250 >
每页显示 20 50 100
Quantifying of spatio-temporal variations in the regional gravity field and the effectiveness of earthquake prediction:A case study of M_(S)≥5.0 earthquakes in the Sichuan-Yunnan region during 2021-2024
1
作者 Weimin Xu Shi Chen +9 位作者 Yongbo Li Jiangpei Huang Bing Zheng Yufei Han Zhaohui Chen Qiuyue Zheng Hongyan Lu Linhai Wang Honglei Li Dong Liu 《Earthquake Science》 2025年第4期375-390,共16页
Since the 1975 M_(S)7.3 Haicheng earthquake,spatio-temporal variations in the gravity field have attracted much attention as potential earthquake precursors.Recent technical advances in terrestrial gravity observation... Since the 1975 M_(S)7.3 Haicheng earthquake,spatio-temporal variations in the gravity field have attracted much attention as potential earthquake precursors.Recent technical advances in terrestrial gravity observation,along with the construction of a high-precision mobile gravity network covering Chinese mainland,have positioned temporal gravity variations(GVs)as an important tool for clarifying the signal characteristics and dynamic mechanisms of crustal sources.Reportedly,crustal mass transfer,which is affected by stress state and structural environment,alters the characteristics of the regional gravity field,thus serving as an indicator for locations of moderate to strong earthquakes and a seismology-independent predictor for regions at risk for strong earthquakes.Therefore,quantitatively tracking time-varying gravity is of paramount importance to enhance the effectiveness of earthquake prediction.In this study,we divided the areas effectively covered by the terrestrial mobile gravity network in the Sichuan-Yunnan region into small grids based on the latest observational data(since 2018)from the network.Next,we calculated the 1-and 3-year GVs and gravity gradient indicators(amplitude of analytic signal,AAS;total horizontal derivative,THD;and amplitude of vertical gradient,AVG)to quantitatively characterize variations in regional time-varying gravity field.Next,we assessed the effectiveness of gravity field variations in predicting earthquakes in the Sichuan-Yunnan region using Molchan diagrams constructed for gravity signals of 13 earthquakes(M≥5.0;occurred between 2021 and 2024)within the terrestrial mobile gravity network.The results reveal a certain correspondence between gravity field variations and the locations of moderate and strong earthquakes in the Sichuan-Yunnan region.Furthermore,the 3-year AAS and AVG outperform the 3-year THD in predicting subsequent seismic events.Notably,the AAS and AVG showed large probability gains prior to the M_(S)6.8 Luding earthquake,indicating their potential for earthquake prediction. 展开更多
关键词 gravity variation sichuan-yunnan region molchan diagram method earthquake precursor prediction efficacy
在线阅读 下载PDF
Spatio-temporal variations and influencing factors of energy-related carbon emissions for Xinjiang cities in China based on time-series nighttime light data 被引量:6
2
作者 ZHANG Li LEI Jun +3 位作者 WANG Changjian WANG Fei GENG Zhifei ZHOU Xiaoli 《Journal of Geographical Sciences》 SCIE CSCD 2022年第10期1886-1910,共25页
This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic... This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic DMSP”dataset,from 1992 to 2020,to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang,China.Then,this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique.Results reveal that(1)total carbon emissions continued to grow,while the growth rate slowed down in the past five years.(2)Large regional differences exist in total carbon emissions across various regions.Total carbon emissions of these regions in descending order are the northern slope of the Tianshan(Mountains)>the southern slope of the Tianshan>the three prefectures in southern Xinjiang>the northern part of Xinjiang.(3)Economic growth,population size,and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions.The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’spatial differentiation.This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps. 展开更多
关键词 carbon emissions nighttime light data spatio-temporal variations influencing factors XINJIANG
原文传递
The spatio-temporal variations of frost-free period in China from 1951 to 2012 被引量:2
3
作者 NING Xiaoju LIU Gangjun +3 位作者 ZHANG Lijun QIN Xiaoyang ZHOU Shenghui QIN Yaochen 《Journal of Geographical Sciences》 SCIE CSCD 2017年第1期23-42,共20页
The frost-free period(FFP)first frost date(FFD) and last frost date(LFD) have been regard as the important climate variables for agricultural production. Understanding the spatio-temporal variations of the FFPFF... The frost-free period(FFP)first frost date(FFD) and last frost date(LFD) have been regard as the important climate variables for agricultural production. Understanding the spatio-temporal variations of the FFPFFD and LFD is beneficial to reduce the harmful impacts of climate change on agricultural production and enhance the agricultural adaptation. This study examined daily minimum temperatures for 823 national-level meteorological stationscalculated the values of FFDLFD and FFP for station-specific and region-specific from 1951 to 2012estimated the gradients of linear regression for station-specific moving averages of FFDLFD and FFPand assessed station-specific time series of FFP and detected the abrupt change. The results as follows: at both the station level and the regional levelthe FFP across China decreases with the increase of latitude from south to northand with the increase of altitude from east to west generally. At the station levelthe inter-annual fluctuations of FFDLFD and FFP in south and west agricultural regions are greater than those in north and east. At the regional levelexcluding the QT regiontemporal changes of FFP are relatively small in both the low-latitude and the high-latitude regionsbut for the mid-latitude regions. According to the linear trend gradients of the moving average values of station-specific FFDLFD and FFPFFD was delayedLFD advancedand FFP extended gradually over the 80% of China. Furthermorethe change magnitudes for FFDLFD and FFP in the north and east agricultural regions are higher than that in the southern and western. Among the 659 station-specific time series of FFP examined by the Mann-Kendall test341 stationslocated mainly in the north regionhave one identifiable and significant abrupt change. And at the 341 stations with identified abrupt changesmost(57%) abrupt changes occurred during 1991–2012followed by the periods of 1981–1990(28%)1971–1980(12%)and 1951–1970(3%). The spatio-temporal variations of FFDLFD and FFP would provide important guidance to agricultural practices. 展开更多
关键词 frost-free period first frost date last frost date spatio-temporal variations agricultural region China
原文传递
Spatio-temporal Variations of Temperature and Precipitation During 1951–2019 in Arid and Semiarid Region, China 被引量:2
4
作者 HUANG Yufei LU Chunyan +3 位作者 LEI Yifan SU Yue SU Yanlin WANG Zili 《Chinese Geographical Science》 SCIE CSCD 2022年第2期285-301,共17页
Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-makin... Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses. 展开更多
关键词 multi-source remote sensing data TEMPERATURE PRECIPITATION arid and semiarid region spatio-temporal variation atmospheric circulation
在线阅读 下载PDF
Spatio-temporal variations in organic carbon density and carbon sequestration potential in the topsoil of Hebei Province, China 被引量:5
5
作者 CAO Xiang-hui LONG Huai-yu +4 位作者 LEI Qiu-liang LIU Jian ZHANG Ji-zong ZHANG Wen-ju WU Shu-xia 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第11期2627-2638,共12页
Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation... Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation of topsoil SOC density and CSP of 21 soil groups across Hebei Province, China, using data collected during the second national soil survey in the 1980 s and during the recent soil inventory in 2010. The CSP can be estimated by the method that the saturated SOC content subtracts the actual SOC associated with clay and silt. Overall, the SOC density and CSP of most soil groups increased from the 1980 s to 2010 and varied between different soil groups. Among all soil groups, Haplic phaeozems had the highest SOC density and Endogleyic solonchaks had the largest CSP. Areas of soil groups with the highest SOC density(90 to 120 t C ha^(–1)) and carbon sequestration(120 to 160 t C ha^(–1)) also increased over time. With regard to spatial distribution, the north of the province had higher SOC density but lower CSP than the south. With respect to land-use type, cultivated soils had lower SOC density but higher CSP than uncultivated soils. In addition, SOC density and CSP were influenced by soil physicochemical properties, climate and terrain and were most strongly correlated with soil humic acid concentration. The results suggest that soil groups(uncultivated soils) of higher SOC density have greater risk of carbon dioxide emission and that management should be aimed at maximizing carbon sequestration in soil groups(cultivated soils) with greater CSP. Furthermore, soils should be managed according to their spatial distributions of SOC density and carbon sequestration potential under different soil groups. 展开更多
关键词 carbon sequestration SOC density spatial variation TOPSOIL
在线阅读 下载PDF
Assessment of Spatio-Temporal Variations in Water Quality of Shailmari River, Khulna (Bangladesh) Using Multivariate Statistical Techniques 被引量:1
6
作者 Md. Muhyminul Islam Olaf K. Lenz +3 位作者 Abul Kalam Azad Mosummath Hosna Ara Masudur Rahman Nazia Hassan 《Journal of Geoscience and Environment Protection》 2017年第1期1-26,共26页
Surface water has become one of the most vulnerable resources on the earth due to deterioration of its quality from diverse sources of pollution. Understanding of the spatiotemporal distribution of pollutants and iden... Surface water has become one of the most vulnerable resources on the earth due to deterioration of its quality from diverse sources of pollution. Understanding of the spatiotemporal distribution of pollutants and identification of the sources in the river systems is a prerequisite for the protection and sustainable utilization of the water resources. Multivariate statistical techniques such as Principal Component Analysis (PCA) and Factor Analysis (FA) were applied in this study to investigate the temporal and spatial variations of water quality and appoint the major factors of pollution in the Shailmari River system. Water quality data for 14 physicochemical parameters from 11 monitoring sites over the year of 2014 in three sampling seasons were collected and analyzed for this study. Kruskal-Wallis test showed significant (p < 0.01) temporal and spatial variations in all of the water quality parameters of the river water. Principal component analysis (PCA) allowed extracting the contributing parameters affecting the seasonal water quality in the river system. Scatter plots of the PCs showed the tidal and spatial variation within river system and identified parameters controlling the behavior in each case. Factor analysis (FA) further reduced the data and extracted factors which are significantly responsible for water quality variation in the river. The results indicate that the parameters controlling the water quality in different seasons are related with salinity, anthropogenic pollution (sewage disposal, effluents) and agricultural runoff in pre-monsoon;precipitation induced surface runoff in monsoon;and erosion, oxidation or organic pollution (point and non-point sources) in post-monsoon. Therefore, the study reveals the applicability and usefulness of the multivariate statistical methods in assessing water quality of river by identifying the potential environmental factors controlling the water quality in different seasons which might help to better understand, monitor and manage the quality of the water resources. 展开更多
关键词 Water Quality variation WASTEWATER MULTIvariatE STATISTICAL Analysis MONSOON BANGLADESH
暂未订购
Spatio-temporal variations in ecological spaces and their ecological carrying status in China's mega-urban agglomerations 被引量:1
7
作者 WANG Shihao HUANG Lin +1 位作者 XU Xinliang LI Jiahui 《Journal of Geographical Sciences》 SCIE CSCD 2022年第9期1683-1704,共22页
The rapid expansion of China’s urban agglomerations in recent decades has resulted in over-occupied ecological spaces and increased ecological pressure that are restricting healthy regional development.This paper exa... The rapid expansion of China’s urban agglomerations in recent decades has resulted in over-occupied ecological spaces and increased ecological pressure that are restricting healthy regional development.This paper examines the structure and characteristics of distribution of“production-living-ecological”spaces in five mega-urban agglomerations in China:Beijing-Tianjin-Hebei(BTH),the Yangtze River Delta(YRD),Guangdong-Hong Kong-Macao Greater Bay Area(GBA),Chengdu-Chongqing(CY),and the middle reaches of the Yangtze River(MYR).We analyze spatial and temporal variations in the ecological spaces and factors influencing them from 1990 to 2020,and examine the comprehensive ecological carrying capacity and status of ecological spaces in the past 30 years based on the available water resources,regulation of water and air quality,and leisure and recreation.The results show the following:(1)Urban agglomerations in different stages of formation and development represent varying area ratios of“ecological-production-living”spaces.The modes of expansion and evolution of the living spaces are dominated by multi-center combinations as well as the spatial structure of ecological spaces,including barrier,compact,discrete,and fully enveloping spaces.(2)From 1990 to 2020,the area occupied by living spaces in urban agglomerations continued to increase significantly while that of spaces for ecological production decreased.Except in the GBA,ecological spaces have exhibited a trend of increase in area,especially in the past 10 years.The area ratios and spatio-temporal variations in the“production-living-ecological”spaces indicate that the main functions of production and ecological spaces in mega-urban agglomerations have shifted from supply to regulation and culture,and reflect the transition from rapid urbanization to sustainable urbanization in China.(3)The comprehensive ecological carrying capacities of 78.6%,73.1%,54.5%,56.3%,and 25.8%of cities in BTH,YRD,GBA,CY and MYR are severely overburdened.Water supply and the regulation of water quality are the main factors restricting the ecological carrying capacity of BTH and YRD while leisure and recreation services have hindered the capacities of GBA and CY.Policymakers thus need to pay attention to the conservation and rational layout of ecological spaces to reduce the ecological pressure in urban agglomerations.The work here can provide a scientific basis for the green and sustainable development of urban agglomerations as well as the optimized configuration of“production-living-ecological”spaces. 展开更多
关键词 mega-urban agglomerations “production-living-ecological”spaces ecological spaces ecological carrying capacity spatial and temporal variations
原文传递
Wi-Fi Positioning Dataset with Multiusers and Multidevices Considering Spatio-Temporal Variations
8
作者 Imran Ashraf Sadia Din +1 位作者 Soojung Hur Yongwan Park 《Computers, Materials & Continua》 SCIE EI 2022年第3期5213-5232,共20页
Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency id... Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered. 展开更多
关键词 Wi-fi positioning dataset smartphone sensors benchmark analysis indoor positioning and localization spatio-temporal data
在线阅读 下载PDF
Spatio-temporal Variation of Freeze-thaw Cycles in the Qinghai-Xizang Plateau from 1981 to 2020 Based on Microwave Remote Sensing
9
作者 ZHAO Shangmin ZHANG Shifang YU Bohan 《Journal of Geodesy and Geoinformation Science》 2025年第1期1-11,共11页
Strong sensitivity of satellite microwave remote sensing to the change of surface dielectric properties,as well as the insensitivity to air pollution and solar illumination effects,makes it very suitable for monitorin... Strong sensitivity of satellite microwave remote sensing to the change of surface dielectric properties,as well as the insensitivity to air pollution and solar illumination effects,makes it very suitable for monitoring freeze-thaw conditions.The freeze-thaw cycle changes in the Qinghai-Xizang Plateau have an important impact on the ecological environment and infrastructure.Based on the Scanning Multi-channel Microwave Radiometer(SMMR)and other sensors of microwave satellite,the freeze-thaw cycle data of permafrost in the Qinghai-Xizang Plateau in the past 40 years from 1981 to 2020 was obtained.The changes of soil freeze-thaw conditions in different seasons of 2020 and in the same season of 1990,2000,2010 and 2020 were compared,and the annual variation trend of soil freeze-thaw area in the four years was analyzed.Further,the linear regression analysis was carried out on the duration of soil freezing/thawing/transition and the interannual variation trend under different area conditions from 1981 to 2020.The results show that the freeze-thaw changes in different years are similar.In winter,it is mainly frozen for about 110 days.Spring and autumn are transitional periods,lasting for 170 days.In summer,it is mainly thawed for about 80 days.From 1981 to 2020,the freezing period and the average freezing area of the Qinghai-Xizang Plateau decreased at a rate of 0.22 days and 1986 km^(2) per year,respectively,while the thawing period and the average thawing area increased at a rate of 0.07 days and 3187 km^(2) per year,respectively.The research results provide important theoretical support for the ecological environment and permafrost protection of the Qinghai-Xizang Plateau. 展开更多
关键词 freeze-thaw cycle PERMAFROST microwave remote sensing spatio-temporal variation linear regression analysis Qinghai-Xizang Plateau
在线阅读 下载PDF
Natural and human-induced decline and spatio-temporal differentiation of terrestrial water storage over the Lancang-Mekong River Basin 被引量:2
10
作者 CHEN Junxu WANG Yuan +5 位作者 ZHAO Zhifang FAN Yunjiang LUO Xiaochuan YI Lu FENG Siqi YANG Liang Emlyn 《Journal of Geographical Sciences》 2025年第1期112-138,共27页
Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LM... Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012. 展开更多
关键词 spatio-temporal variation contribution separation GRACE Empirical Orthogonal Function Lancang-Mekong River
原文传递
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
11
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
Anthropogenic sources and air mass transport affect spatial and seasonal variations of ambient halocarbons in southeastern China 被引量:1
12
作者 Zhaoyang Wu Zhiwei Cao +4 位作者 Xinyi Huang Yonglong Lu Pei Wang Zian Liang Xupeng An 《Journal of Environmental Sciences》 2025年第6期340-352,共13页
Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,bu... Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China. 展开更多
关键词 HALOCARBONS Source apportionment Southeastern China Seasonal variations Montreal Protocol
原文传递
Single-nucleotide polymorphisms and copy number variations drive adaptive evolution to freezing stress in a subtropical evergreen broadleaved tree:Hexaploid wild Camellia oleifera 被引量:1
13
作者 Haoxing Xie Kaifeng Xing +3 位作者 Jun Zhou Yao Zhao Jian Zhang Jun Rong 《Plant Diversity》 2025年第2期214-228,共15页
Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wil... Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress. 展开更多
关键词 Adaptive evolution Camellia oleifera Copy number variations Freezing stress POLYPLOID Single-nucleotide polymorphisms
在线阅读 下载PDF
A Review on Modeling Environmental Loading Effects and Their Contributions to Nonlinear Variations of Global Navigation Satellite System Coordinate Time Series 被引量:1
14
作者 Zhao Li Weiping Jiang +3 位作者 Tonie van Dam Xiaowei Zou Qusen Chen Hua Chen 《Engineering》 2025年第4期26-37,共12页
Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including at... Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050. 展开更多
关键词 Environmental loading Global navigation satellite system Nonlinear variations Time series analysis Surface mass distribution Green’s function Spherical harmonic function
在线阅读 下载PDF
Spatio-Temporal Pattern and Socio-economic Influencing Factors of Tuberculosis Incidence in Guangdong Province:A Bayesian Spatiotemporal Analysis
15
作者 Huizhong Wu Xing Li +7 位作者 Jiawen Wang Ronghua Jian Jianxiong Hu Yijun Hu Yiting Xu Jianpeng Xiao Aiqiong Jin Liang Chen 《Biomedical and Environmental Sciences》 2025年第7期819-828,共10页
Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB ... Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB incidence were mapped using heat maps and hierarchical clustering.Socioenvironmental influencing factors were evaluated using a Bayesian spatiotemporal conditional autoregressive(ST-CAR)model.Results Annual incidence of TB in Guangdong decreased from 91.85/100,000 in 2010 to 53.06/100,000in 2019.Spatial hotspots were found in northeastern Guangdong,particularly in Heyuan,Shanwei,and Shantou,while Shenzhen,Dongguan,and Foshan had the lowest rates in the Pearl River Delta.The STCAR model showed that the TB risk was lower with higher per capita Gross Domestic Product(GDP)[Relative Risk(RR),0.91;95%Confidence Interval(CI):0.86–0.98],more the ratio of licensed physicians and physician(RR,0.94;95%CI:0.90-0.98),and higher per capita public expenditure(RR,0.94;95%CI:0.90–0.97),with a marginal effect of population density(RR,0.86;95%CI:0.86–1.00).Conclusion The incidence of TB in Guangdong varies spatially and temporally.Areas with poor economic conditions and insufficient healthcare resources are at an increased risk of TB infection.Strategies focusing on equitable health resource distribution and economic development are the key to TB control. 展开更多
关键词 TUBERCULOSIS BAYESIAN Social-economic factor spatio-temporal model
暂未订购
Spatio-Temporal Assessment of Land Use Changes in Sonipat,Haryana:Socio Economic Impacts and Policy Intervention
16
作者 Niraj Kumar Tejbir Singh Rana +1 位作者 Subhash Anand Nishit 《Research in Ecology》 2025年第3期309-334,共26页
This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in So... This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in Sonipat have undergone notable transformation,as open spaces and agricultural lands are increasingly converted into residential colonies,commercial hubs,and industrial zones.While such changes reflect economic development and urban growth,they also raise critical concerns about sustainability,especially in terms of food security,groundwater depletion,and environmental degradation.The study examines land use changes between 2000 and 2024 using remote sensing techniques and spatial analysis.It further incorporates secondary data and insights from community-level interactions to assess the socio-economic and ecological impacts of this transformation.The findings indicate rising land fragmentation,loss of agricultural livelihoods,pressure on civic infrastructure,and increasing pollution—factors that threaten long-term regional sustainability.The study underscores the urgent need to reconcile urban development with environmental and social sustainability.By offering a detailed case study of Sonipat,this research contributes to the broader discourse on India’s urbanisation pathways.It aims to provide policymakers,planners,and researchers with evidence-based recommendations to manage land transitions more responsibly,promoting urban growth models that ensure ecological integrity,equitable development,and long-term resilience. 展开更多
关键词 Land Use spatio-temporal Dynamics Socio-Economic Impacts URBANIZATION POLICY
在线阅读 下载PDF
Deepfake Detection Method Based on Spatio-Temporal Information Fusion
17
作者 Xinyi Wang Wanru Song +1 位作者 Chuanyan Hao Feng Liu 《Computers, Materials & Continua》 2025年第5期3351-3368,共18页
As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limi... As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios. 展开更多
关键词 Deepfake detection vision transformer spatio-temporal information
在线阅读 下载PDF
Spatio-temporal dynamics and influencing factors of carbon emission intensity in China's agriculture sector
18
作者 YIN Junfeng YE Sijing +1 位作者 SONG Changqing GAO Peichao 《Journal of Geographical Sciences》 2025年第11期2310-2334,共25页
Agriculture holds a pivotal position in the economic fabric of every nation,yet concerns about agricultural carbon emission intensity(ACI)have become a major hurdle to achieving global economic sustainability.Focusing... Agriculture holds a pivotal position in the economic fabric of every nation,yet concerns about agricultural carbon emission intensity(ACI)have become a major hurdle to achieving global economic sustainability.Focusing on 31 provincial-level regions in China,this study uses the Exploratory Spatio-temporal Data Analysis(ESTDA)and Panel Quantile Regression(PQR)model to analyze the spatio-temporal interaction characteristics and influencing factors of ACI in China from 2004 to 2023.The findings are as follows:(1)ACI showed an overall downward trend,and the spatial distribution pattern was characterized by“high in the western region and low along the southeastern coast”.Although the overall disparity tended to converge,some high-carbon-intensity regions exhibited extreme trends.ACI displayed clear spatial directionality,with the spatial center shifting steadily toward the northeast.(2)Regions in the northwest,northeast,and central-south parts exhibited strong local spatial structural dynamics,and the local spatial dependence of ACI in each region showed a nonlinear trend.Generally speaking,the spatial association pattern demonstrated a certain degree of inertia in spatial transfer,reflecting strong path dependence or spatial lock-in characteristics.(3)Optimization of industrial structure and improvement in agricultural mechanization will increase ACI,while economic development can effectively reduce it.The impact of urbanization on ACI exhibits a nonlinear pattern.The coordinated development of economic growth and urbanization significantly reduces ACI,with a stronger emission reduction observed in regions with low ACI.The optimization of industrial structure,when combined with urbanization and environmental regulation,contributes to significant emission reductions particularly in high-ACI areas.Similarly,the synergy between agricultural mechanization and urbanization effectively lowers emissions in low-ACI regions,though this effect diminishes in areas with higher ACI. 展开更多
关键词 agriculture sector carbon emission intensity spatio-temporal interaction influencing factors China
原文传递
Spatio-temporal pattern and influencing factors of sloping farmland in China
19
作者 YAO Xiaowei XIE Youping +3 位作者 ZHUGE Jing ZENG Haibo ZENG Jie CHEN Wanxu 《Journal of Mountain Science》 2025年第11期4242-4257,共16页
Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing... Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing factors in China is imperative for the efficient utilization of farmland and the optimization of land space.We used land use transfer matrix,geographically weighted regression model and geographical detector to conduct this study.Results showed that sloping farmland in China firstly decreased and then increased from 2000 to 2020.The proportion of sloping farmland decreased radially outward from Sichuan basin to the surrounding areas.Change rates of sloping farmland with different slopes varied and the slope with 6°-15°underwent the fastest changes.The influencing factors of farmland at various slope degrees were different.For sloping farmland below 15°,land use intensity and elevation had the greatest contribution.For sloping farmland between 15°and 25°,elevation,land use intensity,and population density were the main influencing factors.Sloping farmland above 25°was mostly affected by natural factors.This study can provide scientific basis for rational development and protection of sloping farmland. 展开更多
关键词 Sloping farmland spatio-temporal differentiation Influencing factors Geographically weighted regression China
原文传递
ACSF-ED: Adaptive Cross-Scale Fusion Encoder-Decoder for Spatio-Temporal Action Detection
20
作者 Wenju Wang Zehua Gu +2 位作者 Bang Tang Sen Wang Jianfei Hao 《Computers, Materials & Continua》 2025年第2期2389-2414,共26页
Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decode... Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods. 展开更多
关键词 spatio-temporal action detection encoder-decoder cross-scale fusion multi-constraint loss function
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部