期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
An Algorithm for Mining Gradual Moving Object Clusters Pattern From Trajectory Streams
1
作者 Yujie Zhang Genlin Ji +1 位作者 Bin Zhao Bo Sheng 《Computers, Materials & Continua》 SCIE EI 2019年第6期885-901,共17页
The discovery of gradual moving object clusters pattern from trajectory streams allows characterizing movement behavior in real time environment,which leverages new applications and services.Since the trajectory strea... The discovery of gradual moving object clusters pattern from trajectory streams allows characterizing movement behavior in real time environment,which leverages new applications and services.Since the trajectory streams is rapidly evolving,continuously created and cannot be stored indefinitely in memory,the existing approaches designed on static trajectory datasets are not suitable for discovering gradual moving object clusters pattern from trajectory streams.This paper proposes a novel algorithm of gradual moving object clusters pattern discovery from trajectory streams using sliding window models.By processing the trajectory data in current window,the mining algorithm can capture the trend and evolution of moving object clusters pattern.Firstly,the density peaks clustering algorithm is exploited to identify clusters of different snapshots.The stable relationship between relatively few moving objects is used to improve the clustering efficiency.Then,by intersecting clusters from different snapshots,the gradual moving object clusters pattern is updated.The relationship of clusters between adjacent snapshots and the gradual property are utilized to accelerate updating process.Finally,experiment results on two real datasets demonstrate that our algorithm is effective and efficient. 展开更多
关键词 trajectory streams pattern mining moving object clusters pattern discovery of moving clusters pattern
在线阅读 下载PDF
Frequent Trajectory Patterns Mining for Intelligent Visual Surveillance System
2
作者 曲琳 陈耀武 《Journal of Donghua University(English Edition)》 EI CAS 2009年第2期164-170,共7页
A frequent trajectory patterns mining algorithm is proposed to learn the object activities and classify the trajectories in intelligent visual surveillance system.The distribution patterns of the trajectories were gen... A frequent trajectory patterns mining algorithm is proposed to learn the object activities and classify the trajectories in intelligent visual surveillance system.The distribution patterns of the trajectories were generated by an Apriori based frequent patterns mining algorithm and the trajectories were classified by the frequent trajectory patterns generated.In addition,a fuzzy c-means(FCM)based learning algorithm and a mean shift based clustering procedure were used to construct the representation of trajectories.The algorithm can be further used to describe activities and identify anomalies.The experiments on two real scenes show that the algorithm is effective. 展开更多
关键词 trajectory classification visual surveillance mean shift trajectory pattern mining
在线阅读 下载PDF
CLEAN:Frequent Pattern-Based Trajectory Compression and Computation on Road Networks 被引量:1
3
作者 Peng Zhao Qinpei Zhao +3 位作者 Chenxi Zhang Gong Su Qi Zhang Weixiong Rao 《China Communications》 SCIE CSCD 2020年第5期119-136,共18页
The volume of trajectory data has become tremendously huge in recent years. How to effectively and efficiently maintain and compute such trajectory data has become a challenging task. In this paper, we propose a traje... The volume of trajectory data has become tremendously huge in recent years. How to effectively and efficiently maintain and compute such trajectory data has become a challenging task. In this paper, we propose a trajectory spatial and temporal compression framework, namely CLEAN. The key of spatial compression is to mine meaningful trajectory frequent patterns on road network. By treating the mined patterns as dictionary items, the long trajectories have the chance to be encoded by shorter paths, thus leading to smaller space cost. And an error-bounded temporal compression is carefully designed on top of the identified spatial patterns for much low space cost. Meanwhile, the patterns are also utilized to improve the performance of two trajectory applications, range query and clustering, without decompression overhead. Extensive experiments on real trajectory datasets validate that CLEAN significantly outperforms existing state-of-art approaches in terms of spatial-temporal compression and trajectory applications. 展开更多
关键词 trajectory compression pattern mining spatial-temporal compressions range query CLUSTERING
在线阅读 下载PDF
Novel Algorithm for Mining Frequent Patterns of Moving Objects Based on Dictionary Tree Improvement
4
作者 Yi Chen Yulan Dong Dechang Pi 《国际计算机前沿大会会议论文集》 2018年第1期20-20,共1页
在线阅读 下载PDF
融合轨迹空间语义特征的车辆类型识别方法
5
作者 朱攀 张云菲 《交通科学与工程》 2025年第4期171-180,共10页
【目的】掌握路网中运行车辆类别信息制定道路设计标准,评估道路寿命周期,实现智能交通管控和个性化导航指引,并针对现有轨迹数据提取方法存在的缺陷提出改进方法。【方法】提出一种融合轨迹空间语义特征的车辆类型识别方法,该方法首先... 【目的】掌握路网中运行车辆类别信息制定道路设计标准,评估道路寿命周期,实现智能交通管控和个性化导航指引,并针对现有轨迹数据提取方法存在的缺陷提出改进方法。【方法】提出一种融合轨迹空间语义特征的车辆类型识别方法,该方法首先通过识别车辆停留点进行可变微行程划分,进而计算速度、加速度分布区间等车辆自身运动特征和途经道路、停留地点等关联地理语义信息,最后利用多核支持向量机、概率神经网络、随机森林分类模型进行牵引车、货车和客车三分类试验。【结果】对比不同分类方法,随机森林分类精度最高,平均分类精度在92%以上,概率神经网络次之,多核支持向量机分类精度最低;对比不同行程划分方式,基于停留点的可变长度行程分割方式的车辆精度比固定长度行程分割方式的车辆分类精度提升了15.38%~24.29%;对比不同特征组合方式,融合道路和停留点等空间语义信息比单纯基于运动特征的车辆分类精度提升了15.38%~37.31%;在不同类型车辆的识别中,客车分类精确率最高,达到93.80%,误分类主要集中在货车和牵引车中。【结论】提出的车辆分类方法适用于不同时间获取的车辆轨迹数据,能有效克服车辆轨迹时空异质性问题。 展开更多
关键词 轨迹数据挖掘 车辆类型识别 空间语义特征 运动行为模式
在线阅读 下载PDF
A parallel algorithm for detecting traffic patterns using stay point features and moving features 被引量:1
6
作者 Ji Genlin Zhou Xingxing +1 位作者 Zhao Zhujun Zhao Bin 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期22-29,共8页
In order to detect the traffic pattern of moving objects in the city more accurately and quickly, a parallel algorithm for detecting traffic patterns using stay points and moving features is proposed. First, the featu... In order to detect the traffic pattern of moving objects in the city more accurately and quickly, a parallel algorithm for detecting traffic patterns using stay points and moving features is proposed. First, the features of the stay points in different traffic patterns are extracted, that is, the stay points of various traffic patterns are identified, respectively, and the clustering algorithm is used to mine the unique features of the stop points to different traffic patterns. Then, the moving features in different traffic patterns are extracted from a trajectory of a moving object, including the maximum speed, the average speed, and the stopping rate. A classifier is constructed to predict the traffic pattern of the trajectory using the stay points and moving features. Finally, a parallel algorithm based on Spark is proposed to detect traffic patterns. Experimental results show that the stay points and moving features can reflect the difference between different traffic modes to a greater extent, and the detection accuracy is higher than those of other methods. In addition, the parallel algorithm can increase the speed of identifying traffic patterns. 展开更多
关键词 traffic patterns detection stay point trajectory classification parallel mining of trajectory
在线阅读 下载PDF
Mapping frequent spatio-temporal wind profile patterns using multi-dimensional sequential pattern mining
7
作者 Norhakim Yusof Raul Zurita-Milla 《International Journal of Digital Earth》 SCIE EI 2017年第3期238-256,共19页
Holistic understanding of wind behaviour over space,time and height is essential for harvesting wind energy application.This study presents a novel approach for mapping frequent wind profile patterns using multidimen... Holistic understanding of wind behaviour over space,time and height is essential for harvesting wind energy application.This study presents a novel approach for mapping frequent wind profile patterns using multidimensional sequential pattern mining(MDSPM).This study is illustrated with a time series of 24 years of European Centre for Medium-Range Weather Forecasts European Reanalysis-Interim gridded(0.125°×0.125°)wind data for the Netherlands every 6 h and at six height levels.The wind data were first transformed into two spatio-temporal sequence databases(for speed and direction,respectively).Then,the Linear time Closed Itemset Miner Sequence algorithm was used to extract the multidimensional sequential patterns,which were then visualized using a 3D wind rose,a circular histogram and a geographical map.These patterns were further analysed to determine their wind shear coefficients and turbulence intensities as well as their spatial overlap with current areas with wind turbines.Our analysis identified four frequent wind profile patterns.One of them highly suitable to harvest wind energy at a height of 128 m and 68.97%of the geographical area covered by this pattern already contains wind turbines.This study shows that the proposed approach is capable of efficiently extracting meaningful patterns from complex spatio-temporal datasets. 展开更多
关键词 spatio-temporal data mining multi-dimensional sequential pattern mining wind shear coefficient turbulence intensity wind energy
原文传递
基于轨迹活动语义挖掘的个体社会经济水平评估 被引量:1
8
作者 桂志鹏 丁劲宸 +2 位作者 刘宇航 陈欢 吴华意 《地球信息科学学报》 EI CSCD 北大核心 2024年第4期1075-1092,共18页
个体社会经济水平评估对于商业决策、城市规划和公共卫生具有重要的应用价值。但现有方法多依赖定位数据和呼叫详单记录构建出行位置和手机业务特征集合,未充分考虑个体出行的语义上下文,难以从动机与需求层面理解出行行为,导致建模过... 个体社会经济水平评估对于商业决策、城市规划和公共卫生具有重要的应用价值。但现有方法多依赖定位数据和呼叫详单记录构建出行位置和手机业务特征集合,未充分考虑个体出行的语义上下文,难以从动机与需求层面理解出行行为,导致建模过程可解释性不足。为此,本文提出一种基于轨迹活动语义挖掘的个体社会经济水平评估方法,通过显式提取居住、购物、餐饮、娱乐、消费喜爱度与探索欲6类消费模式,从消费能力与意愿角度刻画个体社会经济水平,提高评估方法的可解释性。(1)通过网格化的语义地图为停留点赋予出行语义上下文,并划分居住、购物、餐饮、娱乐4类活动的停留点集合;(2)计算4类活动的时间熵、旋转半径和活动区域经济水平等时空语义特征,并通过结构方程模型筛选特征计算各类消费模式价值;(3)使用极端随机森林决策个体社会经济水平。本文基于深圳市635名个体2019年4—11月的私家车轨迹数据开展实验,通过核心商圈、劳动密集型工厂、高档住宅与城中村等典型场景筛选高低社会经济水平人群,验证了方法有效性;此外,对高低社会经济水平群体的出行时空分布和工作强度开展可视化分析,探讨了群体间的出行模式差异。本文方法可为人地交互视角下的人口统计属性建模提供参考。 展开更多
关键词 社会经济水平 轨迹数据挖掘 出行语义 结构方程模型 随机森林 消费模式 活动模式差异
原文传递
基于轨迹数据的合肥市红色旅游者时空行为模式研究 被引量:6
9
作者 刘俊 陈佳淇 +1 位作者 冯冰 王胜宏 《地球信息科学学报》 EI CSCD 北大核心 2024年第2期424-439,共16页
通过轨迹大数据的挖掘,揭示旅游者时空行为模式是旅游地理学的重要研究内容。本文引入时间、空间和方向相似度对基于密度的聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)进行了改进,选择典型的红色旅... 通过轨迹大数据的挖掘,揭示旅游者时空行为模式是旅游地理学的重要研究内容。本文引入时间、空间和方向相似度对基于密度的聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)进行了改进,选择典型的红色旅游目的地合肥市为案例,对2010—2019年的红色旅游者轨迹进行分析。研究发现:(1)所构建的研究框架和方法能够有效提取轨迹大数据中隐含的旅游者的时空行为模式;(2)合肥市红色旅游以半日游为主,夏季是红色旅游旺季;(3)红色旅游有6类模式,分别为“红色+购物娱乐”、“红色+历史文化”、“红色+登山旅游”、“红色+生态休闲”、“红色+古镇旅游”、“红色+乡村旅游”,主要分布于合肥市的西北部、东南部和西南部,模式长度12.03~18.42 km,模式持续时长0.65~13.60 h;(4)所有模式中共提取出24条旅游线路,包括全红色旅游线路(58.33%)和混合线路(41.67%),平均长度为17.69 km,平均时长2.36 h;(5)合肥会议旧址作为核心吸引物,支撑了38.46%的线路的形成;(6)蓉遵高速、兰海高速、杭瑞高速和合肥绕城高速是红色旅游模式形成中最重要的交通依托。本文提出的方法可用于其他区域旅游行为模式和线路挖掘研究,研究结果可为合肥市红色旅游空间格局优化和线路规划提供依据。 展开更多
关键词 红色旅游 行为模式 DBSCAN模型 轨迹数据挖掘 旅游线路 机器学习 时空行为 合肥
原文传递
基于大数据的船舶活动轨迹规律挖掘方法 被引量:2
10
作者 安健鹏 李海霞 +2 位作者 雷亚丽 王永权 姚陈芳 《火力与指挥控制》 CSCD 北大核心 2024年第4期156-163,共8页
针对当前船舶轨迹聚类技术存在特征属性研究单一的问题,提出一种基于融合距离的多维度船舶轨迹聚类算法技术,该技术通过加入多个属性特征并采用新的距离度量算法,从时序性和复杂度两方面提出了新的解决思路。在聚类结果基础上,针对缺少... 针对当前船舶轨迹聚类技术存在特征属性研究单一的问题,提出一种基于融合距离的多维度船舶轨迹聚类算法技术,该技术通过加入多个属性特征并采用新的距离度量算法,从时序性和复杂度两方面提出了新的解决思路。在聚类结果基础上,针对缺少轨迹规律特征刻画方法的问题,提出基于局部区域均值的典型轨迹算法技术,通过对各属性进行均值计算,实现同类轨迹集合中轨迹特征的具体描绘。 展开更多
关键词 船舶轨迹聚类 相似性度量 典型轨迹提取 轨迹规律挖掘
在线阅读 下载PDF
Mining Semantic Trajectory Patterns from Geo-Tagged Data 被引量:6
11
作者 Guochen Cai Kyungmi Lee Ickjai Lee 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第4期849-862,共14页
User-generated social media data tagged with geographic information present messages of dynamic spatiotemporal trajectories. These increasing mobility data provide potential opportunities to enhance the understanding ... User-generated social media data tagged with geographic information present messages of dynamic spatiotemporal trajectories. These increasing mobility data provide potential opportunities to enhance the understanding of human mobility behaviors. Several trajectory data mining approaches have been proposed to benefit from these rich datasets, but fail to incorporate aspatial semantics in mining. This study investigates mining frequent moving sequences of geographic entities with transit time from geo-tagged data. Different from previous analysis of geographic feature only trajectories, this work focuses on extracting patterns with rich context semantics. We extend raw geographic trajectories generated from geo-tagged data with rich context semantic annotations, use regions-of-interest as stops to represent interesting places, enrich them with multiple aspatial semantic annotations, and propose a semantic trajectory pattern mining algorithm that returns basic and multidimensional semantic trajectory patterns. Experimental results demonstrate that semantic trajectory patterns from our method present semantically meaningful patterns and display richer semantic knowledge. 展开更多
关键词 semantic trajectory spatio-temporal geo-tagged data trajectory pattern mining
原文传递
Finding frequent trajectories by clustering and sequential pattern mining 被引量:4
12
作者 Arthur A.Shaw N.P.Gopalan 《Journal of Traffic and Transportation Engineering(English Edition)》 2014年第6期393-403,共11页
Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-... Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-temporal data by a novel method adopting the concepts of clustering and sequential pattern mining. The algorithms used logically split the trajectory span area into clusters and then apply the k-means algorithm over this clusters until the squared error minimizes. The new method applies the threshold to obtain active clusters and arranges them in descending order based on number of trajectories passing through. From these active clusters, inter cluster patterns are found by a sequential pattern mining technique. The process is repeated until all the active clusters are linked. The clusters thus linked in sequence are the frequent trajectories. A set of experiments conducted using real datasets shows that the proposed method is relatively five times better than the existing ones. A comparison is made with the results of other algorithms and their variation is analyzed by statistical methods. Further, tests of significance are conducted with ANOVA to find the efficient threshold value for the optimum plot of frequent trajectories. The results are analyzed and found to be superior than the existing ones. This approach may be of relevance in finding alternate paths in busy networks ( congestion control), finding the frequent paths of migratory birds, or even to predict the next level of pattern characteristics in case of time series data with minor alterations and finding the frequent path of balls in certain games. 展开更多
关键词 data mining frequent trajectory CLUSTERING sequential pattern mining statistical method
原文传递
Mining spatiotemporal patterns of urban dwellers from taxi trajectory data 被引量:8
13
作者 FengMAO Minhe JI Ting LIU 《Frontiers of Earth Science》 CSCD 2016年第2期205-221,共17页
With the widespread adoption of location- aware technology, obtaining long-sequence, massive and high-accuracy spatiotemporal trajectory data of individuals has become increasingly popular in various geographic studie... With the widespread adoption of location- aware technology, obtaining long-sequence, massive and high-accuracy spatiotemporal trajectory data of individuals has become increasingly popular in various geographic studies. Trajectory data of taxis, one of the most widely used inner-city travel modes, contain rich information about both road network traffic and travel behavior of passengers. Such data can be used to study the microscopic activity patterns of individuals as well as the macro system of urban spatial structures. This paper focuses on trajectories obtained from GPS-enabled taxis and their applications for mining urban commuting patterns. A novel approach is proposed to discover spatiotemporal patterns of household travel from the taxi trajectory dataset with a large number of point locations. The approach involves three critical steps: spatial clustering of taxi origin-destination (OD) based on urban traffic grids to discover potentially meaningful places, identifying thresh- old values from statistics of the OD clusters to extract urban jobs-housing structures, and visualization of analytic results to understand the spatial distribution and temporal trends of the revealed urban structures and implied household commuting behavior. A case study with a taxi trajectory dataset in Shanghai, China is presented to demonstrate and evaluate the proposed method. 展开更多
关键词 taxi trajectory spatial clustering spatiotem-poral pattern mining
原文传递
A new monitoring index for ecological vulnerability and its application in the Yellow River Basin,China from 2000 to 2022
14
作者 GUO Bing XU Mei +1 位作者 ZHANG Rui LUO Wei 《Journal of Arid Land》 SCIE CSCD 2024年第9期1163-1182,共20页
The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regio... The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regions and periods vary,and the reasons for this variability are yet to be explained.Thus,in this study,we proposed a new remote sensing ecological vulnerability index by considering moisture,heat,greenness,dryness,land degradation,and social economy indicators and then analyzed and disclosed the spatial and temporal change patterns of ecological vulnerability of the Yellow River Basin,China from 2000 to 2022 and its driving mechanisms.The results showed that the newly proposed remote sensing ecological vulnerability index had a high accuracy,at 86.36%,which indicated a higher applicability in the Yellow River Basin.From 2000 to 2022,the average remote sensing ecological vulnerability index of the Yellow River Basin was 1.03,denoting moderate vulnerability level.The intensive vulnerability area was the most widely distributed,which was mostly located in the northern part of Shaanxi Province and the eastern part of Shanxi Province.From 2000 to 2022,the ecological vulnerability in the Yellow showed an overall stable trend,while that of the central and eastern regions showed an obvious trend of improvement.The gravity center of ecological vulnerability migrated southwest,indicating that the aggravation of ecological vulnerability in the southwestern regions was more severe than in the northeastern regions of the basin.The dominant single factor of changes in ecological vulnerability shifted from normalized difference vegetation index(NDVI)to temperature from 2000 to 2022,and the interaction factors shifted from temperature∩NDVI to temperature∩precipitation,which indicated that the global climate change exerted a more significant impact on regional ecosystems.The above results could provide decision support for the ecological protection and restoration of the Yellow River Basin. 展开更多
关键词 ecological vulnerability spatio-temporal pattern gravity center migration trajectory interaction factors geodetector green index Q-VALUE
在线阅读 下载PDF
位置大数据的价值提取与协同挖掘方法 被引量:54
15
作者 郭迟 刘经南 +2 位作者 方媛 罗梦 崔竞松 《软件学报》 EI CSCD 北大核心 2014年第4期713-730,共18页
随着位置服务和车联网应用的不断普及,由地理数据、车辆轨迹和应用记录等所构成的位置大数据已成为当前用来感知人类社群活动规律、分析地理国情和构建智慧城市的重要战略性资源,是大数据科学研究极其重要的一部分.与传统小样统计不同,... 随着位置服务和车联网应用的不断普及,由地理数据、车辆轨迹和应用记录等所构成的位置大数据已成为当前用来感知人类社群活动规律、分析地理国情和构建智慧城市的重要战略性资源,是大数据科学研究极其重要的一部分.与传统小样统计不同,大规模位置数据存在明显的混杂性、复杂性和稀疏性,需要对其进行价值提取和协同挖掘,才能获得更为准确的移动行为模式和区域局部特征,从而还原和生成满足关联应用分析的整体数据模型.因此,着重从以下3个方面系统综述了针对位置大数据的分析方法,包括:(1)针对数据混杂性,如何先从局部提取出移动对象的二阶行为模式和区域交通动力学特征;(2)针对数据复杂性,如何从时间和空间尺度上分别对位置复杂网络进行降维分析,从而建立有关社群整体移动性的学习和推测方法;(3)针对数据的稀疏性,如何通过协同过滤、概率图分析等方法构建位置大数据全局模型.最后,从软件工程角度提出了位置大数据分析的整体框架.在这一框架下,位置数据将不仅被用来进行交通问题的分析,还能够提升人们对更为广泛的人类社会经济活动和自然环境的认识,从而体现位置大数据的真正价值. 展开更多
关键词 大数据 轨迹移动模式 位置服务 泛在测绘 数据挖掘
在线阅读 下载PDF
时空轨迹大数据模式挖掘研究进展 被引量:42
16
作者 吉根林 赵斌 《数据采集与处理》 CSCD 北大核心 2015年第1期47-58,共12页
时空轨迹挖掘是数据挖掘领域的前沿研究课题,通过研究和开发时空轨迹挖掘技术,来发现隐藏在轨迹大数据中有价值的规律和知识以供决策支持。本文介绍了时空轨迹大数据模式挖掘与知识发现领域的研究进展;然后对时空轨迹模式挖掘技术产生... 时空轨迹挖掘是数据挖掘领域的前沿研究课题,通过研究和开发时空轨迹挖掘技术,来发现隐藏在轨迹大数据中有价值的规律和知识以供决策支持。本文介绍了时空轨迹大数据模式挖掘与知识发现领域的研究进展;然后对时空轨迹模式挖掘技术产生的背景、应用领域和研究现状作了简介,并探讨了面向时空轨迹大数据模式挖掘的研究内容、系统架构以及关键技术,最后对时空轨迹频繁模式、伴随模式、聚集模式和异常模式的挖掘算法思想进行了阐述。 展开更多
关键词 时空轨迹模式挖掘 时空轨迹大数据 轨迹频繁模式 轨迹伴随模式 轨迹聚集模式 轨迹异常模式
在线阅读 下载PDF
轨迹数据挖掘城市应用研究综述 被引量:39
17
作者 牟乃夏 张恒才 +2 位作者 陈洁 张灵先 戴洪磊 《地球信息科学学报》 CSCD 北大核心 2015年第10期1136-1142,共7页
轨迹数据作为泛在地理信息环境中社会遥感数据的主要表现形式之一,为从个体的视角研究群体的空间移动规律,提供了新的数据支撑和研究思路。特别是在当前的大数据背景下,通过轨迹数据发掘人类的移动规律和活动模式,进而探求蕴含的深层次... 轨迹数据作为泛在地理信息环境中社会遥感数据的主要表现形式之一,为从个体的视角研究群体的空间移动规律,提供了新的数据支撑和研究思路。特别是在当前的大数据背景下,通过轨迹数据发掘人类的移动规律和活动模式,进而探求蕴含的深层次知识,是解决城市问题的重要途径,轨迹数据挖掘也由此成为地理信息科学及相关学科的研究热点。本文首先阐述了人类移动规律研究常用的轨迹数据集及在该数据集上开展的相关研究和典型应用;然后从城市空间结构功能单元的识别及城市韵律分析、人类活动模式的发现与空间移动行为预测、智能交通的时间估算与异常探测、城市计算的其他4个方面,综述了轨迹数据挖掘在城市中的应用;最后,指出了轨迹数据挖掘面临的挑战和进一步的发展方向。 展开更多
关键词 轨迹 数据挖掘 城市计算 人类移动 人类活动模式
原文传递
时空轨迹群体运动模式挖掘研究进展 被引量:13
18
作者 吉根林 孙鸿艳 赵斌 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第5期615-624,共10页
群体运动模式是时空轨迹模式挖掘的重要内容,用于发现群体运动规律、群体运动趋势以及群体事件。本文首先对群体运动模式建模和群体运动模式挖掘两个层面存在的问题与挑战进行了阐述。接着,对群体运动模式进行了分类,将其分为有领导者... 群体运动模式是时空轨迹模式挖掘的重要内容,用于发现群体运动规律、群体运动趋势以及群体事件。本文首先对群体运动模式建模和群体运动模式挖掘两个层面存在的问题与挑战进行了阐述。接着,对群体运动模式进行了分类,将其分为有领导者运动模式、伴随模式、突变运动模式、流行运动模式、聚集运动模式和发散运动模式。最后,介绍了各种群体运动模式之间的区别与联系,对各种群体运动模式挖掘算法思想进行了综述。 展开更多
关键词 群体运动模式 时空轨迹 群体事件 轨迹模式挖掘
在线阅读 下载PDF
基于FP-Tree模型的频繁轨迹模式挖掘方法 被引量:8
19
作者 牛新征 牛嘉郡 +1 位作者 苏大壮 佘堃 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期86-90,134,共6页
通过对经典频繁模式数据结构FP-tree的扩展与改进,提出了一种适用于处理轨迹数据的灵活高效的FP-tree轨迹挖掘方法(NFTM)。首先运用二维筛选和GPS格式过滤的方法对轨迹进行预处理,然后将有效数据经一次扫描后,生成按照真实轨迹顺序排列... 通过对经典频繁模式数据结构FP-tree的扩展与改进,提出了一种适用于处理轨迹数据的灵活高效的FP-tree轨迹挖掘方法(NFTM)。首先运用二维筛选和GPS格式过滤的方法对轨迹进行预处理,然后将有效数据经一次扫描后,生成按照真实轨迹顺序排列且具备时空属性的改进型FP-tree,使用动态数组存储模式挖掘过程中得到的候选集,根据用户的输入针对性输出相应时间和频率范围的频繁轨迹。最后通过与GSP算法、Prefixspan算法的对比测试表明,该算法具有更短执行时间和更优性能。 展开更多
关键词 FP-TREE 频繁轨迹模式 模式挖掘 时空属性
在线阅读 下载PDF
一种针对特定车辆潜在群体的行驶轨迹预测方法 被引量:8
20
作者 吴子珺 于重重 +1 位作者 孙利民 孙玉砚 《计算机应用研究》 CSCD 北大核心 2014年第7期1951-1955,共5页
城市智能交通信息系统所产生的原始交通数据中存在有大量的可供城市道路安全管理使用的未知模式信息,为了有效利用这些数据,提出一种针对特定车辆潜在群体的行驶轨迹预测方法(SVPG-TP)。该方法主要利用所提出的特定车辆潜在群体搜索算... 城市智能交通信息系统所产生的原始交通数据中存在有大量的可供城市道路安全管理使用的未知模式信息,为了有效利用这些数据,提出一种针对特定车辆潜在群体的行驶轨迹预测方法(SVPG-TP)。该方法主要利用所提出的特定车辆潜在群体搜索算法及序列模式发现与贝叶斯网络互补预测的方式,有效地解决了目前城市道路安全中最为关注的潜在群体发现以及行驶轨迹预测这两大问题。通过实验测试验证所提出的算法在城市道路安全管理中的有效性及实用性,并实现软件系统,为保障城市道路安全提供可靠的技术手段。 展开更多
关键词 序列模式发现 潜在群体 轨迹预测 贝叶斯网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部