Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints...BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.展开更多
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred...This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This st...Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions.展开更多
The International Centre for Theoretical Physics(ICTP,Italy) Regional Climate Model version 3.0(RegCM3) is used to simulate spatio-temporal distribution characteristics and radiative forcing(RF) of organic carbon(OC) ...The International Centre for Theoretical Physics(ICTP,Italy) Regional Climate Model version 3.0(RegCM3) is used to simulate spatio-temporal distribution characteristics and radiative forcing(RF) of organic carbon(OC) aerosols in and around China.The preliminary simulation results show that OC aerosols are mostly concentrated in the area to the south of Yellow River and east of Tibetan Plateau.There is a decreasing trend of column burden of OC aerosols from south to north in China.The maximum value of column burden of OC aerosols is above 3 mg/m2 and located in the central and southern China,southeastern Tibet,and southwestern China's Yunnan,Guizhou,Sichuan provinces.The simulation on the seasonal variation shows that the maximum value of column burden of OC aerosols appears in winter and the secondary value is in spring and the minimum in summer.The RF of OC aerosols which varies seasonally is negative at the top of the atmosphere(TOA) and surface.The spatio-temporal characteristics of the RF of OC aerosols are basically consistent with that of IPCC,implying the high accuracy of the parameterization scheme for OC aerosols in RegCM3.展开更多
This article uses TM images in 1999 and 2006 in Dahua County,selects the driving factors having great impact on urban land use change,and conducts data processing using GIS software.It then uses CLUE-S model to simula...This article uses TM images in 1999 and 2006 in Dahua County,selects the driving factors having great impact on urban land use change,and conducts data processing using GIS software.It then uses CLUE-S model to simulate land use change pattern in 2006,and uses land use map in 2006 to test the simulation results.The results show that the simulation achieves good effect,indicating that we can use CLUE-S model to simulate the future urban land use change in karst areas,to provide scientific decision-making support for sustainable development of land use.展开更多
The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe develop...The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe development in underground engineering.To address this,a novel numerical model with an explicit coupling simulation strategy is presented.This model integrates distinct modules for individual physical mechanisms,ensuring second-order accuracy through shared time integration,thereby overcoming lim-itations in simulating mining-induced strata damage,water flow,and permeability dynamics.A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation.This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength.The mechanical model tracks permeability changes due to mining.The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning,adapt-ing to mining progress.When applied to a case study of a complex mine,this approach significantly improved the accuracy of water inflow rate predictions by 57%.展开更多
Rapid urbanization leads to dramatic changes in land use patterns,and the land use/cover change(LUCC)can reflect the spatial impact of urbanization on the ecological environment.Simulating the process of LUCC and pred...Rapid urbanization leads to dramatic changes in land use patterns,and the land use/cover change(LUCC)can reflect the spatial impact of urbanization on the ecological environment.Simulating the process of LUCC and predicting the ecological risk future changes can provide supports for urban ecological management.Taking the Yangtze River Delta Urban Agglomeration(YRDUA),China as the study area,four developmental scenarios were set on the basis of the land use data from 2005 to 2015.The temporal land use changes were predicted by the integration of the system dynamic and the future land use simulation(SD-FLUS)model,and the geographically weighted regression(GWR)model was used to identify the spatial heterogeneity and evolution characteristics between ecological risk index(ERI)and socio-economic driving forces.Results showed that:1)From 2005 to 2015,the expansion of construction land(7670.24 km^(2))mainly came from the occupation of cultivated land(7854.22 km2).The Kappa coefficient of the SD-FLUS model was 0.886,indicating that this model could be used to predict the future land use changes in the YRDUA.2)Gross domestic production(GDP)and population density(POP)showed a positive effect on the ERI,and the impact of POP exceeded that of GDP.The ERI showed the characteristics of zonal diffusion and a slight upward trend,and the high ecological risk region increased by 6.09%,with the largest increase.3)Under different developmental scenarios,the land use and ecological risk patterns varied.The construction land is increased by 5.76%,7.41%,5.25%and 6.06%,respectively.And the high ecological risk region accounted for 12.71%,15.06%,11.89%,and 12.94%,correspondingly.In Scenario D,the structure of land use and ecological risk pattern was better compared with other scenarios considering the needs of rapid economic and ecological protection.This study is helpful to understand the spatio-temporal pattern and demand of land use types,grasp the ecological security pattern of large-scale areas,and provide scientific basis for the territory development of urban agglomeration in the future.展开更多
The widespread use of numerical simulations in different scientific domains provides a variety of research opportunities.They often output a great deal of spatio-temporal simulation data,which are traditionally charac...The widespread use of numerical simulations in different scientific domains provides a variety of research opportunities.They often output a great deal of spatio-temporal simulation data,which are traditionally characterized as single-run,multi-run,multi-variate,multi-modal and multi-dimensional.From the perspective of data exploration and analysis,we noticed that many works focusing on spatiotemporal simulation data often share similar exploration techniques,for example,the exploration schemes designed in simulation space,parameter space,feature space and combinations of them.However,it lacks a survey to have a systematic overview of the essential commonalities shared by those works.In this survey,we take a novel multi-space perspective to categorize the state-ofthe-art works into three major categories.Specifically,the works are characterized as using similar techniques such as visual designs in simulation space(e.g,visual mapping,boxplot-based visual summarization,etc.),parameter space analysis(e.g,visual steering,parameter space projection,etc.)and data processing in feature space(e.g,feature definition and extraction,sampling,reduction and clustering of simulation data,etc.).展开更多
Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LM...Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
文摘BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.
基金supported by the National Key R&D Program of China[grant number 2023YFC3008004]。
文摘This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
文摘Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions.
基金National Fundamental Research Program of China (2011CB403202)National Natural Science Foundation of China (40675040)
文摘The International Centre for Theoretical Physics(ICTP,Italy) Regional Climate Model version 3.0(RegCM3) is used to simulate spatio-temporal distribution characteristics and radiative forcing(RF) of organic carbon(OC) aerosols in and around China.The preliminary simulation results show that OC aerosols are mostly concentrated in the area to the south of Yellow River and east of Tibetan Plateau.There is a decreasing trend of column burden of OC aerosols from south to north in China.The maximum value of column burden of OC aerosols is above 3 mg/m2 and located in the central and southern China,southeastern Tibet,and southwestern China's Yunnan,Guizhou,Sichuan provinces.The simulation on the seasonal variation shows that the maximum value of column burden of OC aerosols appears in winter and the secondary value is in spring and the minimum in summer.The RF of OC aerosols which varies seasonally is negative at the top of the atmosphere(TOA) and surface.The spatio-temporal characteristics of the RF of OC aerosols are basically consistent with that of IPCC,implying the high accuracy of the parameterization scheme for OC aerosols in RegCM3.
文摘This article uses TM images in 1999 and 2006 in Dahua County,selects the driving factors having great impact on urban land use change,and conducts data processing using GIS software.It then uses CLUE-S model to simulate land use change pattern in 2006,and uses land use map in 2006 to test the simulation results.The results show that the simulation achieves good effect,indicating that we can use CLUE-S model to simulate the future urban land use change in karst areas,to provide scientific decision-making support for sustainable development of land use.
基金supported by the National Natural Science Foundation of China (Nos. 42027801, 42072284, and 42372297)the National Key Research and Development Program of China (Nos. 2023YFC3012102 and 2021YFC2902004)the Fundamental Research Funds for the Central Universities (No. 2023ZKPYSH01)
文摘The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe development in underground engineering.To address this,a novel numerical model with an explicit coupling simulation strategy is presented.This model integrates distinct modules for individual physical mechanisms,ensuring second-order accuracy through shared time integration,thereby overcoming lim-itations in simulating mining-induced strata damage,water flow,and permeability dynamics.A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation.This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength.The mechanical model tracks permeability changes due to mining.The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning,adapt-ing to mining progress.When applied to a case study of a complex mine,this approach significantly improved the accuracy of water inflow rate predictions by 57%.
基金Under the auspices of the National Natural Science Foundation of China(No.41961027)Key Talents Project of Gansu Province(No.2021RCXM073)Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘Rapid urbanization leads to dramatic changes in land use patterns,and the land use/cover change(LUCC)can reflect the spatial impact of urbanization on the ecological environment.Simulating the process of LUCC and predicting the ecological risk future changes can provide supports for urban ecological management.Taking the Yangtze River Delta Urban Agglomeration(YRDUA),China as the study area,four developmental scenarios were set on the basis of the land use data from 2005 to 2015.The temporal land use changes were predicted by the integration of the system dynamic and the future land use simulation(SD-FLUS)model,and the geographically weighted regression(GWR)model was used to identify the spatial heterogeneity and evolution characteristics between ecological risk index(ERI)and socio-economic driving forces.Results showed that:1)From 2005 to 2015,the expansion of construction land(7670.24 km^(2))mainly came from the occupation of cultivated land(7854.22 km2).The Kappa coefficient of the SD-FLUS model was 0.886,indicating that this model could be used to predict the future land use changes in the YRDUA.2)Gross domestic production(GDP)and population density(POP)showed a positive effect on the ERI,and the impact of POP exceeded that of GDP.The ERI showed the characteristics of zonal diffusion and a slight upward trend,and the high ecological risk region increased by 6.09%,with the largest increase.3)Under different developmental scenarios,the land use and ecological risk patterns varied.The construction land is increased by 5.76%,7.41%,5.25%and 6.06%,respectively.And the high ecological risk region accounted for 12.71%,15.06%,11.89%,and 12.94%,correspondingly.In Scenario D,the structure of land use and ecological risk pattern was better compared with other scenarios considering the needs of rapid economic and ecological protection.This study is helpful to understand the spatio-temporal pattern and demand of land use types,grasp the ecological security pattern of large-scale areas,and provide scientific basis for the territory development of urban agglomeration in the future.
基金supported by the National Natural Science Foundation of China(NSFC)Grant Nos.61702271,61702270.
文摘The widespread use of numerical simulations in different scientific domains provides a variety of research opportunities.They often output a great deal of spatio-temporal simulation data,which are traditionally characterized as single-run,multi-run,multi-variate,multi-modal and multi-dimensional.From the perspective of data exploration and analysis,we noticed that many works focusing on spatiotemporal simulation data often share similar exploration techniques,for example,the exploration schemes designed in simulation space,parameter space,feature space and combinations of them.However,it lacks a survey to have a systematic overview of the essential commonalities shared by those works.In this survey,we take a novel multi-space perspective to categorize the state-ofthe-art works into three major categories.Specifically,the works are characterized as using similar techniques such as visual designs in simulation space(e.g,visual mapping,boxplot-based visual summarization,etc.),parameter space analysis(e.g,visual steering,parameter space projection,etc.)and data processing in feature space(e.g,feature definition and extraction,sampling,reduction and clustering of simulation data,etc.).
基金National Natural Science Foundation of China,No.42161006Yunnan Fundamental Research Projects No.202201AT070094,No.202301BF070001-004+1 种基金Special Project for High-level Talents of Yunnan Province for Young Top Talents,No.C6213001159European Research Council(ERC)Starting-Grant STORIES,No.101040939。
文摘Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.