期刊文献+
共找到298篇文章
< 1 2 15 >
每页显示 20 50 100
Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model 被引量:20
1
作者 Naiming Xie Sifeng Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期96-102,共7页
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th... This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model. 展开更多
关键词 grey number grey system theory INTERVAL discrete grey forecasting model non-homogeneous exponential sequence
在线阅读 下载PDF
Survey on Research of RNN-Based Spatio-Temporal Sequence Prediction Algorithms 被引量:19
2
作者 Wei Fang Yupeng Chen Qiongying Xue 《Journal on Big Data》 2021年第3期97-110,共14页
In the past few years,deep learning has developed rapidly,and many researchers try to combine their subjects with deep learning.The algorithm based on Recurrent Neural Network(RNN)has been successfully applied in the ... In the past few years,deep learning has developed rapidly,and many researchers try to combine their subjects with deep learning.The algorithm based on Recurrent Neural Network(RNN)has been successfully applied in the fields of weather forecasting,stock forecasting,action recognition,etc.because of its excellent performance in processing Spatio-temporal sequence data.Among them,algorithms based on LSTM and GRU have developed most rapidly because of their good design.This paper reviews the RNN-based Spatio-temporal sequence prediction algorithm,introduces the development history of RNN and the common application directions of the Spatio-temporal sequence prediction,and includes precipitation nowcasting algorithms and traffic flow forecasting algorithms.At the same time,it also compares the advantages and disadvantages,and innovations of each algorithm.The purpose of this article is to give readers a clear understanding of solutions to such problems.Finally,it prospects the future development of RNN in the Spatio-temporal sequence prediction algorithm. 展开更多
关键词 RNN LSTM GRU spatio-temporal sequence prediction
在线阅读 下载PDF
Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed 被引量:1
3
作者 Neelam Mughees Mujtaba Hussain Jaffery +2 位作者 Abdullah Mughees Anam Mughees Krzysztof Ejsmont 《Computers, Materials & Continua》 SCIE EI 2023年第6期6375-6393,共19页
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h... Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting. 展开更多
关键词 Deep stacked autoencoder sequence to sequence autoencoder bidirectional long short-term memory network wind speed forecasting solar irradiation forecasting
在线阅读 下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
4
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
在线阅读 下载PDF
A cloud model target damage effectiveness assessment algorithm based on spatio-temporal sequence finite multilayer fragments dispersion
5
作者 Hanshan Li Xiaoqian Zhang Junchai Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期48-64,共17页
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p... To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis. 展开更多
关键词 Target damage Cloud model Fragments dispersion Effectiveness assessment spatio-temporal sequence
在线阅读 下载PDF
Spatio-temporal epidemic type aftershock sequence model for Tangshan aftershock sequence
6
作者 Shaochuan Lue Yong Li 《Earthquake Science》 CSCD 2011年第5期401-408,共8页
Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tan... Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tangshan sequence based on classical empirical laws and a few assumptions. The relative fit of competing models is compared by Akalke Information Criterion. The spatial clustering pattern is well characterized by the model which gives the best fit to the data. A simulated aftershock sequence is generated by thinning algorithm and compared with the real seismicity. 展开更多
关键词 spatio-temporal model Tangshan aftershock sequence Laplace type clustering thinning simulation Akaike information criterion
在线阅读 下载PDF
Tracing the Forecast of Earthquakes Based on the Seismicity Characteristics of the Chi-Chi Strong Earthquake Swarm Sequence
7
作者 Cheng KueihsiangIntegrated Research Laboratory on Prediction of Seismic Hazard, The Department of Civil Engineering, Kao Yuan Institute of Technology, Kaohsiung, Taiwan (China) 《Earthquake Research in China》 2003年第1期85-96,共12页
The data of earthquakes with M ≥3 0 during the 7 years from September 21, 1993 to September 20, 2000 recorded by the Taiwan Central Weather Bureau (CWB) show that there were 6 types of clear characteristics of seismi... The data of earthquakes with M ≥3 0 during the 7 years from September 21, 1993 to September 20, 2000 recorded by the Taiwan Central Weather Bureau (CWB) show that there were 6 types of clear characteristics of seismicity during the Chi Chi strong earthquake swarm of September 21 These 6 types of characteristics are (1) foreshock types, (2) seismic gaps, (3) seismic bands, (4) clustering activity of foreshocks and signal shock, (5) quiescence before the main shock and (6) secondary aftershocks in the aftershock sequence. Using the procedures for analyzing the yearly strong earthquake tendency, further tracing based on the earthquake sequence characteristics, and taking the Chi Chi earthquake sequence as an example, tracing analysis of the earthquake tendency was attempted using the shorter time range of monthly rather than in a yearly time scale. An attempt was made to establish the procedures for tracing analysis of shallow focus earthquakes in the seismic belt of western Taiwan. It is hoped that this can provide an analystical method for approaching the short imminent time scale of seismometry based earthquake forecasting. 展开更多
关键词 Seismicity characteristics of earthquake sequence Earthquake tendency analysis Tracing forecast of earthquakes
在线阅读 下载PDF
The Development of Intelligent Operation Method of Urban Public Infrastructure Driven by Accurate Spatio-temporal Information 被引量:5
8
作者 Jingyuan JIA Bo WANG 《Journal of Geodesy and Geoinformation Science》 2021年第2期27-35,共9页
Urban public infrastructure is an important basis for urban development.It is of great significance to deepen the research on intelligent management and control of urban public infrastructure.Spatio-temporal informati... Urban public infrastructure is an important basis for urban development.It is of great significance to deepen the research on intelligent management and control of urban public infrastructure.Spatio-temporal information contains the law of state evolution of urban public infrastructure,which is the information base of intelligent control of infrastructure.Due to the needs of operation management and emergency response,efficient sharing and visualization of spatio-temporal information are important research contents of comprehensive management and control of urban public infrastructure.On the basis of summarizing the theoretical research and application in recent years,the basic methods and current situation of the acquisition and analysis of spatio-temporal information,the forecast and early warning,and the intelligent control of urban public infrastructure are reviewed in this paper. 展开更多
关键词 urban public infrastructure satellite navigation system spatio-temporal information forecast and early warning intelligent control
在线阅读 下载PDF
Multi-scale regionalization based mining of spatio-temporal teleconnection patterns between anomalous sea and land climate events
9
作者 XU Feng SHI Yan +3 位作者 DENG Min GONG Jian-ya LIU Qi-liang JIN Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2438-2448,共11页
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de... Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate. 展开更多
关键词 CLIMATE sequences ANOMALOUS climatic EVENTS spatio-temporal teleconnection patterns MULTI-SCALE REGIONALIZATION
在线阅读 下载PDF
AN ALGORITHM OF LOCAL PREDICTION FOR CHAOTIC SEQUENCES WITH VARIABLE FRAME LENGTH
10
作者 Li Jinlong Lin Jiayu 《Journal of Electronics(China)》 2012年第3期345-352,共8页
According to the issues that the predict errors of chaotic sequences rapidly accumulated in multi-step forecasting which affects the predict accuracy, we proposed a new predict algorithm based on local modeling with v... According to the issues that the predict errors of chaotic sequences rapidly accumulated in multi-step forecasting which affects the predict accuracy, we proposed a new predict algorithm based on local modeling with variable frame length and interpolation points. The core idea is that, using interpolation method to increase the available sample data, then modeling the chaos dynamics system with least square algorithm which based on the Bernstein polynomial to realize the forecasting. We use the local modeling method, looking for the optimum frame length and interpolation points in every frame to improve the predict peformance. The experimental results show that the proposed algorithm can improve the predictive ability effectively, decreasing the accumulation of iterative errors in multi-step prediction. 展开更多
关键词 Chaotic sequences forecasting Local modeling Variable frame length Bernstein polynomial Linear interpolation
在线阅读 下载PDF
Deep-Learning-Based Production Decline Curve Analysis in the Gas Reservoir through Sequence Learning Models
11
作者 Shaohua Gu Jiabao Wang +3 位作者 Liang Xue Bin Tu Mingjin Yang Yuetian Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1579-1599,共21页
Production performance prediction of tight gas reservoirs is crucial to the estimation of ultimate recovery,which has an important impact on gas field development planning and economic evaluation.Owing to the model’s... Production performance prediction of tight gas reservoirs is crucial to the estimation of ultimate recovery,which has an important impact on gas field development planning and economic evaluation.Owing to the model’s simplicity,the decline curve analysis method has been widely used to predict production performance.The advancement of deep-learning methods provides an intelligent way of analyzing production performance in tight gas reservoirs.In this paper,a sequence learning method to improve the accuracy and efficiency of tight gas production forecasting is proposed.The sequence learning methods used in production performance analysis herein include the recurrent neural network(RNN),long short-term memory(LSTM)neural network,and gated recurrent unit(GRU)neural network,and their performance in the tight gas reservoir production prediction is investigated and compared.To further improve the performance of the sequence learning method,the hyperparameters in the sequence learning methods are optimized through a particle swarm optimization algorithm,which can greatly simplify the optimization process of the neural network model in an automated manner.Results show that the optimized GRU and RNN models have more compact neural network structures than the LSTM model and that the GRU is more efficiently trained.The predictive performance of LSTM and GRU is similar,and both are better than the RNN and the decline curve analysis model and thus can be used to predict tight gas production. 展开更多
关键词 Tight gas production forecasting deep learning sequence learning models
在线阅读 下载PDF
MissNet:Leveraging Pre-trained Network for Spatio-temporal Forecasting with Missing Observations
12
作者 Shen Fang Hongyan Liu Wei Hua 《Automotive Innovation》 2025年第2期293-303,共11页
Spatio-temporal forecasting is critical in the traffic domain,where accurate predictions are essential for effective urban traffic management,planning,and simulation.Despite the importance of complete historical obser... Spatio-temporal forecasting is critical in the traffic domain,where accurate predictions are essential for effective urban traffic management,planning,and simulation.Despite the importance of complete historical observations,missing values due to sensor failures,data transmission errors,and other issues are common,posing significant challenges to the accuracy and reliability of forecasting models.Existing methods often fail to systematically account for incomplete historical data,especially non-random data missing for extended periods.Fortunately,this study introduces the MissNet,a pre-training enhanced framework for spatio-temporal data forecasting in the presence of missing historical data.MissNet consists of a two-stage process:a pre-training stage where a data masking and recovering task is used to pre-train a backbone,and a finetuning stage where the pre-trained backbone,combined with a specially designed header,predicts future data incorporating spatio-temporal metadata as auxiliary information.Experimental results on real-world datasets demonstrate the effectiveness of MissNet in achieving stable and accurate predictions under various missing data scenarios. 展开更多
关键词 spatio-temporal data mining Pre-training Data fusion Traffic forecasting
原文传递
Deep Bi-Directional Adaptive Gating Graph Convolutional Networks for Spatio-Temporal Traffic Forecasting
13
作者 Xin Wang Jianhui Lv +5 位作者 Madini O.Alassafi Fawaz E.Alsaadi B.D.Parameshachari Longhao Zou Gang Feng Zhonghua Liu 《Tsinghua Science and Technology》 2025年第5期2060-2080,共21页
With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adapt... With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning. 展开更多
关键词 traffic forecasting spatio-temporal modeling Graph Convolutional Networks(GCNs) adaptive gating
原文传递
Spatio-temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms 被引量:12
14
作者 Xiaochong Dong Yingyun Sun +2 位作者 Ye Li Xinying Wang Tianjiao Pu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期388-398,共11页
The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power fore... The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power forecasting of mul-tiple wind farms,determining the spatio-temporal correlation of multiple wind farms is critical for improving the forecasting accuracy.This paper proposes a spatio-temporal convolutional network(STCN)that utilizes a directed graph convolutional structure.A temporal convolutional network is also adopted to characterize the temporal features of wind power.Historical data from 15 wind farms in Australia are used in the case study.The forecasting results show that the proposed model has higher accuracy than the existing methods.Based on the structure of the STCN,asymmetric spatial correlation at different temporal scales can be observed,which shows the effectiveness of the proposed model. 展开更多
关键词 Deep learning spatio-temporal correlation wind power forecasting graph conventional network(GCN).
原文传递
A Deep Spatio-Temporal Forecasting Model for Multi-Site Weather Prediction Post-Processing 被引量:4
15
作者 Wenjia Kong Haochen Li +3 位作者 Chen Yu Jiangjiang Xia Yanyan Kang Pingwen Zhang 《Communications in Computational Physics》 SCIE 2022年第1期131-153,共23页
In this paper, we propose a deep spatio-temporal forecasting model (DeepSTF) for multi-site weather prediction post-processing by using both temporal andspatial information. In our proposed framework, the spatio-tempo... In this paper, we propose a deep spatio-temporal forecasting model (DeepSTF) for multi-site weather prediction post-processing by using both temporal andspatial information. In our proposed framework, the spatio-temporal information ismodeled by a CNN (convolutional neural network) module and an encoder-decoderstructure with the attention mechanism. The novelty of our work lies in that our modeltakes full account of temporal and spatial characteristics and obtain forecasts of multiple meteorological stations simultaneously by using the same framework. We applythe DeepSTF model to short-term weather prediction at 226 meteorological stations inBeijing. It significantly improves the short-term forecasts compared to other widelyused benchmark models including the Model Output Statistics method. In order toevaluate the uncertainty of the model parameters, we estimate the confidence intervals by bootstrapping. The results show that the prediction accuracy of the DeepSTFmodel has strong stability. Finally, we evaluate the impact of seasonal changes and topographical differences on the accuracy of the model predictions. The results indicatethat our proposed model has high prediction accuracy. 展开更多
关键词 Weather forecasting POST-PROCESSING spatio-temporal modeling deep learning
原文传递
STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting
16
作者 Zhuolun Jiang Zefei Ning +1 位作者 Hao Miao Li Wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第4期1232-1247,共16页
Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of f... Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of fields. Due to the non-linear and unstable characteristics of multivariate time series, the existing methods encounter difficulties in analyzing complex high-dimensional data and capturing latent relationships between multivariates in time series, thus affecting the performance of long-term prediction. In this paper, we propose a novel time series forecasting model based on multilayer perceptron that combines spatio-temporal decomposition and doubly residual stacking, namely Spatio-Temporal Decomposition Neural Network (STDNet). We decompose the originally complex and unstable time series into two parts, temporal term and spatial term. We design temporal module based on auto-correlation mechanism to discover temporal dependencies at the sub-series level, and spatial module based on convolutional neural network and self-attention mechanism to integrate multivariate information from two dimensions, global and local, respectively. Then we integrate the results obtained from the different modules to get the final forecast. Extensive experiments on four real-world datasets show that STDNet significantly outperforms other state-of-the-art methods, which provides an effective solution for long-term time series forecasting. 展开更多
关键词 time series forecasting multivariate time series spatio-temporal decomposition
原文传递
基于多尺度时频域学习的多元长时间序列预测 被引量:2
17
作者 衡红军 李怡欣 《西安电子科技大学学报》 北大核心 2025年第2期128-142,共15页
针对现有多元长时间序列预测模型中存在的两个问题,一是仅利用单周期尺度时域信息无法捕捉序列的长期时间依赖关系,二是难以捕捉到有效的多元依赖关系。基于多层感知机,提出了一种基于多尺度时频域学习的多元长时间序列预测模型。模型... 针对现有多元长时间序列预测模型中存在的两个问题,一是仅利用单周期尺度时域信息无法捕捉序列的长期时间依赖关系,二是难以捕捉到有效的多元依赖关系。基于多层感知机,提出了一种基于多尺度时频域学习的多元长时间序列预测模型。模型首先基于傅里叶变换自适应寻找序列的不同周期作为多个尺度;然后针对每个尺度,通过序列分解,分别进行时域和频域两阶段的学习,获取序列的局部和全局时间依赖关系;随后再依据变量间的相关性分析结果,自适应建模多元序列的变量依赖关系;最后,对各尺度中不同的序列分解项应用不同的聚合方法,实现多尺度信息的互补融合。在七个真实数据集上的实验表明,该模型在超过90%的测试中位于最优或次优水平。与基于序列分解的线性模型DLinear相比,MSE实现了11%的平均降低和49.22%的最大降低,MAE实现了10%的平均降低和33.03%的最大降低。此外,模型在有效提升预测精度的同时,具有更高的运行效率。 展开更多
关键词 预测 时间序列 时频域 多尺度 序列分解 多层感知机
在线阅读 下载PDF
考虑时序特征缺失值动态插补的超短期风电功率预测
18
作者 李丹 唐建 +2 位作者 缪书唯 黄烽云 罗娇娇 《中国电机工程学报》 北大核心 2025年第17期6790-6803,I0015,共15页
风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据... 风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据存在缺失值的问题,设计嵌入时滞衰减插补策略的门控循环单元动态捕捉输入特征时间序列中缺失值前后观测值间的不规则时滞关系,并通过带掩码的自相关分析,确定输入特征的最佳时窗长度和时滞衰减率函数的初始参数;基于门控循环单元提取的时序信息,进一步构建序列到序列的预测结构,协调历史和预测时刻输入特征维度不一致的问题,输出未来15 min~4 h的风电功率预测序列。实验结果表明,所提方法在风电数据含缺失值的情景下,与传统的缺失值处理和预测方法相比,具有更高的预测精度和更稳定的预测性能。 展开更多
关键词 超短期风电功率预测 时序特征缺失值 自相关分析 时滞衰减率函数 序列到序列模型
原文传递
基于FSA优化CEEMDAN-VMD-BILSTM组合模型的短期负荷预测
19
作者 王金玉 李任武 孙佳怡 《化工自动化及仪表》 2025年第3期421-427,共7页
由于电力负荷数据的非平稳性和复杂性,传统预测模型难以有效捕捉数据中的关键特征,导致预测精度低,设计并实现了一种基于完全集成经验模态分解(CEEMDAN)和变分模态分解(VMD)的双向长短期记忆网络模型(BILSTM),并使用火烈鸟搜索算法(FSA... 由于电力负荷数据的非平稳性和复杂性,传统预测模型难以有效捕捉数据中的关键特征,导致预测精度低,设计并实现了一种基于完全集成经验模态分解(CEEMDAN)和变分模态分解(VMD)的双向长短期记忆网络模型(BILSTM),并使用火烈鸟搜索算法(FSA)优化短期电力负荷预测方法。首先,使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF);然后,对高频分量使用VMD进行进一步分解,以提取更多的特征;接着,使用FSA优化BILSTM模型的超参数,利用此模型对分解后的各个分量进行预测;最后,将各分量的预测结果线性相加,得到最终的负荷预测结果。实验结果表明:所提方法的平均绝对误差在0.6%~0.8%,并且在平均绝对百分比误差、均方根误差等评价指标上表现优异,相较于传统模型,预测精度显著提高,证明所提方法能够有效处理非平稳性数据,精确获取负荷数据的时间依赖性和空间相关性,提高预测精度。 展开更多
关键词 短期负荷预测 CEEMDAN VMD BILSTM FSA 非平稳性 负荷序列潜在空间相关性
在线阅读 下载PDF
基于ALIF-VMD二次分解的NGO-CNN-LSTM电力负荷短期组合预测模型 被引量:2
20
作者 张琳 高胜强 +2 位作者 宋煜 卜帅羽 余伟 《科学技术与工程》 北大核心 2025年第11期4583-4597,共15页
针对电力负荷预测过程中普遍存在的负荷波动变化趋势明显、随机性强,以及预测模型的参数取值不合理导致的精度偏低问题,提出了一种基于ALIF-VMD(adaptive local iterative filtering-variational mode decomposition)二次分解和北方苍... 针对电力负荷预测过程中普遍存在的负荷波动变化趋势明显、随机性强,以及预测模型的参数取值不合理导致的精度偏低问题,提出了一种基于ALIF-VMD(adaptive local iterative filtering-variational mode decomposition)二次分解和北方苍鹰优化算法(northern goshawk optimization, NGO)优化CNN-LSTM(convolutional neural networks-long short-term memory)的电力负荷组合预测模型,在使用交叉映射收敛方法(convergent cross-mapping, CCM)准确识别电力负荷的关键影响因素的基础上,创新性地联合使用ALIF、基于NGO的VMD和模糊熵(fuzzy entropy, FE)对原始负荷序列进行组合分解和必要的重组;针对分解和重组后生成的模态分量,结合NGO确定的CNN-LSTM模型最优超参数组合,建立预测精度高、训练时间短、收敛速度快的NGO-CNN-LSTM日前电力负荷组合预测模型。与其他基准模型的对比结果表明,该模型具有更好的适应性和预测精度,可为电力系统的安全、可靠、经济运行提供重要的技术支撑。 展开更多
关键词 负荷预测 序列分解与重组 北方苍鹰算法 卷积神经网络-长短期记忆神经网络模型
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部