Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a...Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.展开更多
This paper presents an investigation into the spatio-temporal dynamics of Severe Acute Respiratory Syndrome(SARS)across the diverse health regions of Brazil from 2016 to 2024.Leveraging extensive datasets that include...This paper presents an investigation into the spatio-temporal dynamics of Severe Acute Respiratory Syndrome(SARS)across the diverse health regions of Brazil from 2016 to 2024.Leveraging extensive datasets that include SARS cases,climate data,hospitalization records,and COVID-19 vaccination information,our study employs a Bayesian spatio-temporal generalized linear model to capture the intricate dependencies inherent in the dataset.The analysis reveals significant variations in the incidence of SARS cases over time,particularly during and between the distinct eras of pre-COVID-19,during,and post-COVID-19.Our modeling approach accommodates explanatory variables such as humidity,temperature,and COVID-19 vaccine doses,providing a comprehensive understanding of the factors influencing SARS dynamics.Our modeling revealed unique temporal trends in SARS cases for each region,resembling neighborhood patterns.Low temperature and high humidity were linked to decreased cases,while in the COVID-19 era,temperature and vaccination coverage played significant roles.The findings contribute valuable insights into the spatial and temporal patterns of SARS in Brazil,offering a foundation for targeted public health interventions and preparedness strategies.展开更多
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to...Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.展开更多
Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view ...Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view to sustainable development. The territorial scale of municipalities is not sufficient for this necessary contextualization;the scale of the “village terroir” seems to be a better option. This is the hypothesis we put forward in the framework of the Global Collaboration for Resilient Food Systems program (CRFS), i.e. local context is spatially defined by village terroir. The study is based on data collected through participatory mapping and surveys in “village terroirs” in three regions of Niger (Maradi, Dosso and Tillabéri). Then the links between farm managers and their cultivated land, as well as the spatio-temporal dynamics of local context are analyzed. This study provides evidence of the existence and functional usefulness of the village terroir for farmers, their land management and their activities. It demonstrates the usefulness of contextualizing agricultural options at this scale. Their analysis elucidates the links between “terroirs village” and the specific functioning of the agrosocio-ecosystems acting on each of them, thus laying the systemic and geographical foundations for a model of the spatio- temporal dynamics of “village terroirs”. This initial work has opened up new perspectives in modeling and sustainable development.展开更多
Predicting the progression from Mild Cognitive Impairment(MCI)to Alzheimer's Disease(AD)is a critical challenge for enabling early intervention and improving patient outcomes.While longitudinal multi-modal neuroim...Predicting the progression from Mild Cognitive Impairment(MCI)to Alzheimer's Disease(AD)is a critical challenge for enabling early intervention and improving patient outcomes.While longitudinal multi-modal neuroimaging data holds immense potential for capturing the spatio-temporal dynamics of disease progression,its effective analysis is hampered by significant challenges:temporal heterogeneity(irregularly sampled scans),multi-modal misalignment,and the propensity of deep learning models to learn spurious,noncausal correlations.We propose CASCADE-Net,a novel end-to-end pipeline for robust and interpretable MCI-to-AD progression prediction.Our architecture introduces a Dynamic Temporal Alignment Module that employs a Neural Ordinary Differential Equation(Neural ODE)to model the continuous,underlying progression of pathology from irregularly sampled scans,effectively mapping heterogeneous patient data to a unified latent timeline.This aligned,noise-reduced spatio-temporal data is then processed by a predictive model featuring a novel Causal Spatial Attention mechanism.This mechanism not only identifies the critical brain regions and their evolution predictive of conversion but also incorporates a counterfactual constraint during training.This constraint ensures the learned features are causally linked to AD pathology by encouraging invariance to non-causal,confounder-based changes.Extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that CASCADE-Net significantly outperforms state-of-the-art sequential models in prognostic accuracy.Furthermore,our model provides highly interpretable,causally-grounded attention maps,offering valuable insights into the disease progression process and fostering greater clinical trust.展开更多
Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LM...Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.展开更多
Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB ...Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB incidence were mapped using heat maps and hierarchical clustering.Socioenvironmental influencing factors were evaluated using a Bayesian spatiotemporal conditional autoregressive(ST-CAR)model.Results Annual incidence of TB in Guangdong decreased from 91.85/100,000 in 2010 to 53.06/100,000in 2019.Spatial hotspots were found in northeastern Guangdong,particularly in Heyuan,Shanwei,and Shantou,while Shenzhen,Dongguan,and Foshan had the lowest rates in the Pearl River Delta.The STCAR model showed that the TB risk was lower with higher per capita Gross Domestic Product(GDP)[Relative Risk(RR),0.91;95%Confidence Interval(CI):0.86–0.98],more the ratio of licensed physicians and physician(RR,0.94;95%CI:0.90-0.98),and higher per capita public expenditure(RR,0.94;95%CI:0.90–0.97),with a marginal effect of population density(RR,0.86;95%CI:0.86–1.00).Conclusion The incidence of TB in Guangdong varies spatially and temporally.Areas with poor economic conditions and insufficient healthcare resources are at an increased risk of TB infection.Strategies focusing on equitable health resource distribution and economic development are the key to TB control.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging f...Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).展开更多
BACKGROUND Emerging evidence implicates Candida albicans(C.albicans)in human oncogenesis.Notably,studies have supported its involvement in regulating outcomes in colorectal cancer(CRC).This study investigated the para...BACKGROUND Emerging evidence implicates Candida albicans(C.albicans)in human oncogenesis.Notably,studies have supported its involvement in regulating outcomes in colorectal cancer(CRC).This study investigated the paradoxical role of C.albicans in CRC,aiming to determine whether it promotes or suppresses tumor development,with a focus on the mechanistic basis linked to its metabolic profile.AIM To investigate the dual role of C.albicans in the development and progression of CRC through metabolite profiling and to establish a prognostic model that integrates the microbial and metabolic interactions in CRC,providing insights into potential therapeutic strategies and clinical outcomes.METHODSA prognostic model integrating C. albicans with CRC was developed, incorporating enrichment analysis, immuneinfiltration profiling, survival analysis, Mendelian randomization, single-cell sequencing, and spatial transcriptomics.The effects of the C. albicans metabolite mixture on CRC cells were subsequently validated in vitro. Theprimary metabolite composition was characterized using liquid chromatography-mass spectrometry.RESULTSA prognostic model based on five specific mRNA markers, EHD4, LIME1, GADD45B, TIMP1, and FDFT1, wasestablished. The C. albicans metabolite mixture significantly reduced CRC cell viability. Post-treatment analysisrevealed a significant decrease in gene expression in HT29 cells, while the expression levels of TIMP1, EHD4, andGADD45B were significantly elevated in HCT116 cells. Conversely, LIME1 expression and that of other CRC celllines showed reductions. In normal colonic epithelial cells (NCM460), GADD45B, TIMP1, and FDFT1 expressionlevels were significantly increased, while LIME1 and EHD4 levels were markedly reduced. Following metabolitetreatment, the invasive and migratory capabilities of NCM460, HT29, and HCT116 cells were reduced. Quantitativeanalysis of extracellular ATP post-treatment showed a significant elevation (P < 0.01). The C. albicans metabolitemixture had no effect on reactive oxygen species accumulation in CRC cells but led to a reduction in mitochondrialmembrane potential, increased intracellular lipid peroxidation, and induced apoptosis. Metabolomic profilingrevealed significant alterations, with 516 metabolites upregulated and 531 downregulated.CONCLUSIONThis study introduced a novel prognostic model for CRC risk assessment. The findings suggested that the C.albicans metabolite mixture exerted an inhibitory effect on CRC initiation.展开更多
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
Background Lip reading uses lip images for visual speech recognition.Deep-learning-based lip reading has greatly improved performance in current datasets;however,most existing research ignores the significance of shor...Background Lip reading uses lip images for visual speech recognition.Deep-learning-based lip reading has greatly improved performance in current datasets;however,most existing research ignores the significance of short-term temporal dependencies of lip-shape variations between adjacent frames,which leaves space for further improvement in feature extraction.Methods This article presents a spatiotemporal feature fusion network(STDNet)that compensates for the deficiencies of current lip-reading approaches in short-term temporal dependency modeling.Specifically,to distinguish more similar and intricate content,STDNet adds a temporal feature extraction branch based on a 3D-CNN,which enhances the learning of dynamic lip movements in adjacent frames while not affecting spatial feature extraction.In particular,we designed a local–temporal block,which aggregates interframe differences,strengthening the relationship between various local lip regions through multiscale convolution.We incorporated the squeeze-and-excitation mechanism into the Global-Temporal Block,which processes a single frame as an independent unitto learn temporal variations across the entire lip region more effectively.Furthermore,attention pooling was introduced to highlight meaningful frames containing key semantic information for the target word.Results Experimental results demonstrated STDNet's superior performance on the LRW and LRW-1000,achieving word-level recognition accuracies of 90.2% and 53.56%,respectively.Extensive ablation experiments verified the rationality and effectiveness of its modules.Conclusions The proposed model effectively addresses short-term temporal dependency limitations in lip reading,and improves the temporal robustness of the model against variable-length sequences.These advancements validate the importance of explicit short-term dynamics modeling for practical lip-reading systems.展开更多
A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques inclu...A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.展开更多
It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size...It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are train...In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.展开更多
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ...The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.展开更多
Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up ...Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table.展开更多
The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique natu...The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.展开更多
文摘Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.
文摘This paper presents an investigation into the spatio-temporal dynamics of Severe Acute Respiratory Syndrome(SARS)across the diverse health regions of Brazil from 2016 to 2024.Leveraging extensive datasets that include SARS cases,climate data,hospitalization records,and COVID-19 vaccination information,our study employs a Bayesian spatio-temporal generalized linear model to capture the intricate dependencies inherent in the dataset.The analysis reveals significant variations in the incidence of SARS cases over time,particularly during and between the distinct eras of pre-COVID-19,during,and post-COVID-19.Our modeling approach accommodates explanatory variables such as humidity,temperature,and COVID-19 vaccine doses,providing a comprehensive understanding of the factors influencing SARS dynamics.Our modeling revealed unique temporal trends in SARS cases for each region,resembling neighborhood patterns.Low temperature and high humidity were linked to decreased cases,while in the COVID-19 era,temperature and vaccination coverage played significant roles.The findings contribute valuable insights into the spatial and temporal patterns of SARS in Brazil,offering a foundation for targeted public health interventions and preparedness strategies.
基金supported by The Henan Province Science and Technology Research Project(242102211046)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25A520039)+1 种基金theNatural Science Foundation project of Zhongyuan Institute of Technology(K2025YB011)the Zhongyuan University of Technology Graduate Education and Teaching Reform Research Project(JG202424).
文摘Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.
文摘Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view to sustainable development. The territorial scale of municipalities is not sufficient for this necessary contextualization;the scale of the “village terroir” seems to be a better option. This is the hypothesis we put forward in the framework of the Global Collaboration for Resilient Food Systems program (CRFS), i.e. local context is spatially defined by village terroir. The study is based on data collected through participatory mapping and surveys in “village terroirs” in three regions of Niger (Maradi, Dosso and Tillabéri). Then the links between farm managers and their cultivated land, as well as the spatio-temporal dynamics of local context are analyzed. This study provides evidence of the existence and functional usefulness of the village terroir for farmers, their land management and their activities. It demonstrates the usefulness of contextualizing agricultural options at this scale. Their analysis elucidates the links between “terroirs village” and the specific functioning of the agrosocio-ecosystems acting on each of them, thus laying the systemic and geographical foundations for a model of the spatio- temporal dynamics of “village terroirs”. This initial work has opened up new perspectives in modeling and sustainable development.
文摘Predicting the progression from Mild Cognitive Impairment(MCI)to Alzheimer's Disease(AD)is a critical challenge for enabling early intervention and improving patient outcomes.While longitudinal multi-modal neuroimaging data holds immense potential for capturing the spatio-temporal dynamics of disease progression,its effective analysis is hampered by significant challenges:temporal heterogeneity(irregularly sampled scans),multi-modal misalignment,and the propensity of deep learning models to learn spurious,noncausal correlations.We propose CASCADE-Net,a novel end-to-end pipeline for robust and interpretable MCI-to-AD progression prediction.Our architecture introduces a Dynamic Temporal Alignment Module that employs a Neural Ordinary Differential Equation(Neural ODE)to model the continuous,underlying progression of pathology from irregularly sampled scans,effectively mapping heterogeneous patient data to a unified latent timeline.This aligned,noise-reduced spatio-temporal data is then processed by a predictive model featuring a novel Causal Spatial Attention mechanism.This mechanism not only identifies the critical brain regions and their evolution predictive of conversion but also incorporates a counterfactual constraint during training.This constraint ensures the learned features are causally linked to AD pathology by encouraging invariance to non-causal,confounder-based changes.Extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that CASCADE-Net significantly outperforms state-of-the-art sequential models in prognostic accuracy.Furthermore,our model provides highly interpretable,causally-grounded attention maps,offering valuable insights into the disease progression process and fostering greater clinical trust.
基金National Natural Science Foundation of China,No.42161006Yunnan Fundamental Research Projects No.202201AT070094,No.202301BF070001-004+1 种基金Special Project for High-level Talents of Yunnan Province for Young Top Talents,No.C6213001159European Research Council(ERC)Starting-Grant STORIES,No.101040939。
文摘Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.
基金supported by the Guangdong Provincial Clinical Research Center for Tuberculosis(No.2020B1111170014)。
文摘Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB incidence were mapped using heat maps and hierarchical clustering.Socioenvironmental influencing factors were evaluated using a Bayesian spatiotemporal conditional autoregressive(ST-CAR)model.Results Annual incidence of TB in Guangdong decreased from 91.85/100,000 in 2010 to 53.06/100,000in 2019.Spatial hotspots were found in northeastern Guangdong,particularly in Heyuan,Shanwei,and Shantou,while Shenzhen,Dongguan,and Foshan had the lowest rates in the Pearl River Delta.The STCAR model showed that the TB risk was lower with higher per capita Gross Domestic Product(GDP)[Relative Risk(RR),0.91;95%Confidence Interval(CI):0.86–0.98],more the ratio of licensed physicians and physician(RR,0.94;95%CI:0.90-0.98),and higher per capita public expenditure(RR,0.94;95%CI:0.90–0.97),with a marginal effect of population density(RR,0.86;95%CI:0.86–1.00).Conclusion The incidence of TB in Guangdong varies spatially and temporally.Areas with poor economic conditions and insufficient healthcare resources are at an increased risk of TB infection.Strategies focusing on equitable health resource distribution and economic development are the key to TB control.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
文摘Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).
基金Supported by Gansu Province Joint Fund General Program,No.24JRRA878Gansu Provincial Science and Technology Program Project,No.24JRRA1020+2 种基金Gansu Province Key Talent Program,No.2025RCXM006Teaching Research and Reform Program for Postgraduate Education at Gansu University of Traditional Chinese Medicine(GUSTCM),No.YBXM-202406Special Fund for Mentors of“Qihuang Talents”in the First-Level Discipline of Chinese Medicine,No.ZYXKBD-202415。
文摘BACKGROUND Emerging evidence implicates Candida albicans(C.albicans)in human oncogenesis.Notably,studies have supported its involvement in regulating outcomes in colorectal cancer(CRC).This study investigated the paradoxical role of C.albicans in CRC,aiming to determine whether it promotes or suppresses tumor development,with a focus on the mechanistic basis linked to its metabolic profile.AIM To investigate the dual role of C.albicans in the development and progression of CRC through metabolite profiling and to establish a prognostic model that integrates the microbial and metabolic interactions in CRC,providing insights into potential therapeutic strategies and clinical outcomes.METHODSA prognostic model integrating C. albicans with CRC was developed, incorporating enrichment analysis, immuneinfiltration profiling, survival analysis, Mendelian randomization, single-cell sequencing, and spatial transcriptomics.The effects of the C. albicans metabolite mixture on CRC cells were subsequently validated in vitro. Theprimary metabolite composition was characterized using liquid chromatography-mass spectrometry.RESULTSA prognostic model based on five specific mRNA markers, EHD4, LIME1, GADD45B, TIMP1, and FDFT1, wasestablished. The C. albicans metabolite mixture significantly reduced CRC cell viability. Post-treatment analysisrevealed a significant decrease in gene expression in HT29 cells, while the expression levels of TIMP1, EHD4, andGADD45B were significantly elevated in HCT116 cells. Conversely, LIME1 expression and that of other CRC celllines showed reductions. In normal colonic epithelial cells (NCM460), GADD45B, TIMP1, and FDFT1 expressionlevels were significantly increased, while LIME1 and EHD4 levels were markedly reduced. Following metabolitetreatment, the invasive and migratory capabilities of NCM460, HT29, and HCT116 cells were reduced. Quantitativeanalysis of extracellular ATP post-treatment showed a significant elevation (P < 0.01). The C. albicans metabolitemixture had no effect on reactive oxygen species accumulation in CRC cells but led to a reduction in mitochondrialmembrane potential, increased intracellular lipid peroxidation, and induced apoptosis. Metabolomic profilingrevealed significant alterations, with 516 metabolites upregulated and 531 downregulated.CONCLUSIONThis study introduced a novel prognostic model for CRC risk assessment. The findings suggested that the C.albicans metabolite mixture exerted an inhibitory effect on CRC initiation.
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
基金Supported by the National Key Research and Development Program of China(2023YFC3306201)the National Natural Science Foundation of China(61772125)the Fundamental Research Funds for the Central Universities(N2317004).
文摘Background Lip reading uses lip images for visual speech recognition.Deep-learning-based lip reading has greatly improved performance in current datasets;however,most existing research ignores the significance of short-term temporal dependencies of lip-shape variations between adjacent frames,which leaves space for further improvement in feature extraction.Methods This article presents a spatiotemporal feature fusion network(STDNet)that compensates for the deficiencies of current lip-reading approaches in short-term temporal dependency modeling.Specifically,to distinguish more similar and intricate content,STDNet adds a temporal feature extraction branch based on a 3D-CNN,which enhances the learning of dynamic lip movements in adjacent frames while not affecting spatial feature extraction.In particular,we designed a local–temporal block,which aggregates interframe differences,strengthening the relationship between various local lip regions through multiscale convolution.We incorporated the squeeze-and-excitation mechanism into the Global-Temporal Block,which processes a single frame as an independent unitto learn temporal variations across the entire lip region more effectively.Furthermore,attention pooling was introduced to highlight meaningful frames containing key semantic information for the target word.Results Experimental results demonstrated STDNet's superior performance on the LRW and LRW-1000,achieving word-level recognition accuracies of 90.2% and 53.56%,respectively.Extensive ablation experiments verified the rationality and effectiveness of its modules.Conclusions The proposed model effectively addresses short-term temporal dependency limitations in lip reading,and improves the temporal robustness of the model against variable-length sequences.These advancements validate the importance of explicit short-term dynamics modeling for practical lip-reading systems.
文摘A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.
基金supported by the National Natural Science Foundation of China (Grant Nos.12202294 and 12022208)the Project funded by China Postdoctoral Science Foundation (Grant No.2022M712243)the Fundamental Research Funds for the Central Universities (Grant No.2023SCU12098).
文摘It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金Supported by the National Natural Science Foundation of China(62201293,62034003)the Open-Foundation of State Key Laboratory of Millimeter-Waves(K202313)the Jiangsu Province Youth Science and Technology Talent Support Project(JSTJ-2024-040)。
文摘In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(Nos.52275044,U2233212)。
文摘The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3900400)the National Natural Science Foundation of China(Grant Nos.U2142212 and 42361074)。
文摘Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table.
基金Project(42202318)supported by the National Natural Science Foundation of ChinaProject(252300421199)supported by the Natural Science Foundation of Henan Province,ChinaProject(2024JJ6219)supported by the Hunan Provincial Natural Science Foundation of China。
文摘The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.