The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region...Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.展开更多
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to...Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.展开更多
Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To...Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance.展开更多
Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accur...Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accuracy and explainability due to the high stakes affecting patients'lives.Based on model explanations,clinicians can evaluate the diagnostic decisions suggested by CNN.Nevertheless,prior explainable artificial intelligence methods treat medical image tasks akin to general vision tasks,following end-to-end paradigms to generate explanations and frequently overlooking crucial clinical domain knowledge.Methods:We propose a plug-and-play module that explicitly integrates anatomic boundary information into the explanation process for CNN-based thoracopathy classifiers.To generate the anatomic boundary of the lung parenchyma,we utilize a lung segmentation model developed on external public datasets and deploy it on the unseen target dataset to constrain model ex-planations within the lung parenchyma for the clinical task of thoracopathy classification.Results:Assessed by the intersection over union and dice similarity coefficient between model-extracted explanations and expert-annotated lesion areas,our method consistently outperformed the baseline devoid of clinical domain knowledge in 71 out of 72 scenarios,encompassing 3 CNN architectures(VGG-11,ResNet-18,and AlexNet),2 classification settings(binary and multi-label),3 explanation methods(Saliency Map,Grad-CAM,and Integrated Gradients),and 4 co-occurred thoracic diseases(Atelectasis,Fracture,Mass,and Pneumothorax).Conclusions:We underscore the effectiveness of leveraging radiology knowledge in improving model explanations for CNN and envisage that it could inspire future efforts to integrate clinical domain knowledge into medical image analysis.展开更多
Low dynamic range(LDR)images captured by consumer cameras have a limited luminance range.As the conventional method for generating high dynamic range(HDR)images involves merging multiple-exposure LDR images of the sam...Low dynamic range(LDR)images captured by consumer cameras have a limited luminance range.As the conventional method for generating high dynamic range(HDR)images involves merging multiple-exposure LDR images of the same scene(assuming a stationary scene),we introduce a learning-based model for single-image HDR reconstruction.An input LDR image is sequentially segmented into the local region maps based on the cumulative histogram of the input brightness distribution.Using the local region maps,SParam-Net estimates the parameters of an inverse tone mapping function to generate a pseudo-HDR image.We process the segmented region maps as the input sequences on long short-term memory.Finally,a fast super-resolution convolutional neural network is used for HDR image reconstruction.The proposed method was trained and tested on datasets including HDR-Real,LDR-HDR-pair,and HDR-Eye.The experimental results revealed that HDR images can be generated more reliably than using contemporary end-to-end approaches.展开更多
Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propos...Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN.展开更多
As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practica...As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network...With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.展开更多
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc...Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.展开更多
Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and ...Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and spatio-temporal random effects. Model fitting and statistical inference are commonly accomplished through the empirical Bayes (EB) and fully Bayes (FB) approaches. The EB approach usually relies on the penalized quasi-likelihood (PQL), while the FB approach, which has increasingly become more popular in the recent past, usually uses Markov chain Monte Carlo (McMC) techniques. However, there are many challenges in conventional use of posterior sampling via McMC for inference. This includes the need to evaluate convergence of posterior samples, which often requires extensive simulation and can be very time consuming. Spatio-temporal models used in disease mapping are often very complex and McMC methods may lead to large Monte Carlo errors if the dimension of the data at hand is large. To address these challenges, a new strategy based on integrated nested Laplace approximations (INLA) has recently been recently developed as a promising alternative to the McMC. This technique is now becoming more popular in disease mapping because of its ability to fit fairly complex space-time models much more quickly than the McMC. In this paper, we show how to fit different spatio-temporal models for disease mapping with INLA using the Leroux CAR prior for the spatial component, and we compare it with McMC using Kenya HIV incidence data during the period 2013-2016.展开更多
With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adapt...With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning.展开更多
Precise geospatial mapping of grid infrastructure is essential for the effective development and administration of large-scale electrical infrastructure.The application of deep learning techniques in predicting region...Precise geospatial mapping of grid infrastructure is essential for the effective development and administration of large-scale electrical infrastructure.The application of deep learning techniques in predicting regional energy network architecture utilizing extensive datasets of geographical information systems(GISs)has yet to be thoroughly investigated in previous research works.Moreover,although graph convolutional networks(GCNs)have been proven to be effective in capturing the complex linkages within graph-structured data,the computationally demanding nature of modern energy grids necessitates additional computational contributions.Hence,this research introduces a novel residual GCN with attention mechanism for mapping critical energy infrastructure components in geographic contexts.The proposed model accurately predicts the geographic locations and links of large-scale grid infrastructure,such as poles,electricity service points,and substations.The proposed framework is assessed on the Sultanate of Oman’s regional energy grid and further validated on Nigeria’s electricity transmission network database.The obtained findings showcase the model’s capacity to accurately predict infrastructure components and their spatial relationships.Results show that the proposed method achieves a link-prediction accuracy of 95.88%for the Omani network and 92.98%for the Nigerian dataset.Furthermore,the proposed model achieved R^(2)values of 0.99 for both datasets in terms of regression.Therefore,the proposed architecture facilitates multifaceted assessment and enhances the capacity to capture the inherent geospatial aspects of large-scale energy distribution networks.展开更多
Texture-based visualization method is a common method in the visualization of vector field data.Aiming at adding color mapping to the texture of ocean vector field and solving the ambiguity of vector direction in text...Texture-based visualization method is a common method in the visualization of vector field data.Aiming at adding color mapping to the texture of ocean vector field and solving the ambiguity of vector direction in texture image,a new color texture enhancement algorithm based on the Line Integral Convolution(LIC)for the vector field data is proposed,which combines the HSV color mapping and cumulative distribution function calculation of vector field data.This algorithm can be summarized as follows:firstly,the vector field data is convoluted twice by line integration to get the gray texture image.Secondly,the method of mapping vector data to each component of the HSV color space is established.And then,the vector field data is mapped into HSV color space and converted from HSV to RGB values to get the color image.Thirdly,the cumulative distribution function of the RGB color components of the gray texture image and the color image is constructed to enhance the gray texture and RGB color values.Finally,both the gray texture image and the color image are fused to get the color texture.The experimental results show that the proposed LIC color texture enhancement algorithm is capable of generating a better display of vector field data.Furthermore,the ambiguity of vector direction in the texture images is solved and the direction information of the vector field is expressed more accurately.展开更多
In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stocha...In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.展开更多
Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this pape...Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.展开更多
Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of ...Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of learning-based algorithms to video SR field, a novel video SR reconstruction algorithm based on deep convolutional neural network (CNN) and spatio-temporal similarity (STCNN-SR) was proposed in this paper. It is a deep learning method for video SR reconstruction, which considers not onlv the mapping relationship among associated low-resolution (LR) and high-resolution (HR) image blocks, but also the spatio-temporal non-local complementary and redundant information between adjacent low-resolution video frames. The reconstruction speed can be improved obviously with the pre-trained end-to-end reconstructed coefficients. Moreover, the performance of video SR will be further improved by the optimization process with spatio-temporal similarity. Experimental results demonstrated that the proposed algorithm achieves a competitive SR quality on both subjective and objective evaluations, when compared to other state-of-the-art algorithms.展开更多
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金funding support from the National Natural Science Foundation of China(Grant Nos.U22A20594,52079045)Hong-Zhi Cui acknowledges the financial support of the China Scholarship Council(Grant No.CSC:202206710014)for his research at Universitat Politecnica de Catalunya,Barcelona.
文摘Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.
基金supported by The Henan Province Science and Technology Research Project(242102211046)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25A520039)+1 种基金theNatural Science Foundation project of Zhongyuan Institute of Technology(K2025YB011)the Zhongyuan University of Technology Graduate Education and Teaching Reform Research Project(JG202424).
文摘Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.
基金Supported by the Key R&D Program of Gansu Province(No.23YFGA0063)the Key Talent Project of Gansu Province(No.2024RCXM57,2024RCXM22)the Major Science and Technology Special Program of Gansu Province(No.25ZYJA037).
文摘Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance.
文摘Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accuracy and explainability due to the high stakes affecting patients'lives.Based on model explanations,clinicians can evaluate the diagnostic decisions suggested by CNN.Nevertheless,prior explainable artificial intelligence methods treat medical image tasks akin to general vision tasks,following end-to-end paradigms to generate explanations and frequently overlooking crucial clinical domain knowledge.Methods:We propose a plug-and-play module that explicitly integrates anatomic boundary information into the explanation process for CNN-based thoracopathy classifiers.To generate the anatomic boundary of the lung parenchyma,we utilize a lung segmentation model developed on external public datasets and deploy it on the unseen target dataset to constrain model ex-planations within the lung parenchyma for the clinical task of thoracopathy classification.Results:Assessed by the intersection over union and dice similarity coefficient between model-extracted explanations and expert-annotated lesion areas,our method consistently outperformed the baseline devoid of clinical domain knowledge in 71 out of 72 scenarios,encompassing 3 CNN architectures(VGG-11,ResNet-18,and AlexNet),2 classification settings(binary and multi-label),3 explanation methods(Saliency Map,Grad-CAM,and Integrated Gradients),and 4 co-occurred thoracic diseases(Atelectasis,Fracture,Mass,and Pneumothorax).Conclusions:We underscore the effectiveness of leveraging radiology knowledge in improving model explanations for CNN and envisage that it could inspire future efforts to integrate clinical domain knowledge into medical image analysis.
基金This study was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2018R1D1A1B07049932).
文摘Low dynamic range(LDR)images captured by consumer cameras have a limited luminance range.As the conventional method for generating high dynamic range(HDR)images involves merging multiple-exposure LDR images of the same scene(assuming a stationary scene),we introduce a learning-based model for single-image HDR reconstruction.An input LDR image is sequentially segmented into the local region maps based on the cumulative histogram of the input brightness distribution.Using the local region maps,SParam-Net estimates the parameters of an inverse tone mapping function to generate a pseudo-HDR image.We process the segmented region maps as the input sequences on long short-term memory.Finally,a fast super-resolution convolutional neural network is used for HDR image reconstruction.The proposed method was trained and tested on datasets including HDR-Real,LDR-HDR-pair,and HDR-Eye.The experimental results revealed that HDR images can be generated more reliably than using contemporary end-to-end approaches.
基金supported by the National Natural Science Foundation of China[grant number 41671452].
文摘Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN.
基金This paper was supported by the 2018 Science and Technology Breakthrough Project of Henan Provincial Science and Technology Department(No.182102310694).
文摘As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
基金funded by the Fundamental Research Project of CNPC Geophysical Key Lab(2022DQ0604-4)the Strategic Cooperation Technology Projects of China National Petroleum Corporation and China University of Petroleum-Beijing(ZLZX 202003)。
文摘With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.
基金supported by the National Natural Science Foundation of China (No.52075349)the National Natural Science Foundation of China (No.62303335)+1 种基金the Postdoctoral Researcher Program of China (No.GZC20231779)the Natural Science Foundation of Sichuan Province (No.2022NSFSC1942).
文摘Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.
文摘Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and spatio-temporal random effects. Model fitting and statistical inference are commonly accomplished through the empirical Bayes (EB) and fully Bayes (FB) approaches. The EB approach usually relies on the penalized quasi-likelihood (PQL), while the FB approach, which has increasingly become more popular in the recent past, usually uses Markov chain Monte Carlo (McMC) techniques. However, there are many challenges in conventional use of posterior sampling via McMC for inference. This includes the need to evaluate convergence of posterior samples, which often requires extensive simulation and can be very time consuming. Spatio-temporal models used in disease mapping are often very complex and McMC methods may lead to large Monte Carlo errors if the dimension of the data at hand is large. To address these challenges, a new strategy based on integrated nested Laplace approximations (INLA) has recently been recently developed as a promising alternative to the McMC. This technique is now becoming more popular in disease mapping because of its ability to fit fairly complex space-time models much more quickly than the McMC. In this paper, we show how to fit different spatio-temporal models for disease mapping with INLA using the Leroux CAR prior for the spatial component, and we compare it with McMC using Kenya HIV incidence data during the period 2013-2016.
基金supported by the National Natural Science Foundation of China(Nos.62202247 and 62306073)the National Key Research and Development Program of China(No.2022ZD0115303).
文摘With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning.
文摘Precise geospatial mapping of grid infrastructure is essential for the effective development and administration of large-scale electrical infrastructure.The application of deep learning techniques in predicting regional energy network architecture utilizing extensive datasets of geographical information systems(GISs)has yet to be thoroughly investigated in previous research works.Moreover,although graph convolutional networks(GCNs)have been proven to be effective in capturing the complex linkages within graph-structured data,the computationally demanding nature of modern energy grids necessitates additional computational contributions.Hence,this research introduces a novel residual GCN with attention mechanism for mapping critical energy infrastructure components in geographic contexts.The proposed model accurately predicts the geographic locations and links of large-scale grid infrastructure,such as poles,electricity service points,and substations.The proposed framework is assessed on the Sultanate of Oman’s regional energy grid and further validated on Nigeria’s electricity transmission network database.The obtained findings showcase the model’s capacity to accurately predict infrastructure components and their spatial relationships.Results show that the proposed method achieves a link-prediction accuracy of 95.88%for the Omani network and 92.98%for the Nigerian dataset.Furthermore,the proposed model achieved R^(2)values of 0.99 for both datasets in terms of regression.Therefore,the proposed architecture facilitates multifaceted assessment and enhances the capacity to capture the inherent geospatial aspects of large-scale energy distribution networks.
基金The National Natural Science Foundation of China under contract Nos 61702455,61672462 and 61902350the Natural Science Foundation of Zhejiang Province,China under contract No.LY20F020025。
文摘Texture-based visualization method is a common method in the visualization of vector field data.Aiming at adding color mapping to the texture of ocean vector field and solving the ambiguity of vector direction in texture image,a new color texture enhancement algorithm based on the Line Integral Convolution(LIC)for the vector field data is proposed,which combines the HSV color mapping and cumulative distribution function calculation of vector field data.This algorithm can be summarized as follows:firstly,the vector field data is convoluted twice by line integration to get the gray texture image.Secondly,the method of mapping vector data to each component of the HSV color space is established.And then,the vector field data is mapped into HSV color space and converted from HSV to RGB values to get the color image.Thirdly,the cumulative distribution function of the RGB color components of the gray texture image and the color image is constructed to enhance the gray texture and RGB color values.Finally,both the gray texture image and the color image are fused to get the color texture.The experimental results show that the proposed LIC color texture enhancement algorithm is capable of generating a better display of vector field data.Furthermore,the ambiguity of vector direction in the texture images is solved and the direction information of the vector field is expressed more accurately.
基金Supported by the Natural Science Foundation of Henan Province(2004601018).
文摘In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.
基金supported by the National Natural Science Foundation of China (61320106006, 61532006, 61502042)
文摘Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of learning-based algorithms to video SR field, a novel video SR reconstruction algorithm based on deep convolutional neural network (CNN) and spatio-temporal similarity (STCNN-SR) was proposed in this paper. It is a deep learning method for video SR reconstruction, which considers not onlv the mapping relationship among associated low-resolution (LR) and high-resolution (HR) image blocks, but also the spatio-temporal non-local complementary and redundant information between adjacent low-resolution video frames. The reconstruction speed can be improved obviously with the pre-trained end-to-end reconstructed coefficients. Moreover, the performance of video SR will be further improved by the optimization process with spatio-temporal similarity. Experimental results demonstrated that the proposed algorithm achieves a competitive SR quality on both subjective and objective evaluations, when compared to other state-of-the-art algorithms.