期刊文献+
共找到576篇文章
< 1 2 29 >
每页显示 20 50 100
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
1
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
A hybrid data-driven approach for rainfall-induced landslide susceptibility mapping:Physically-based probabilistic model with convolutional neural network 被引量:1
2
作者 Hong-Zhi Cui Bin Tong +2 位作者 Tao Wang Jie Dou Jian Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4933-4951,共19页
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region... Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale. 展开更多
关键词 Rainfall landslides Landslide susceptibility mapping Hybrid model Physically-based model convolution neural network(CNN) Probability of failure(POF)
在线阅读 下载PDF
An Arrhythmia Intelligent Recognition Method Based on a Multimodal Information and Spatio-Temporal Hybrid Neural Network Model
3
作者 Xinchao Han Aojun Zhang +6 位作者 Runchuan Li Shengya Shen Di Zhang Bo Jin Longfei Mao Linqi Yang Shuqin Zhang 《Computers, Materials & Continua》 2025年第2期3443-3465,共23页
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to... Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness. 展开更多
关键词 Multimodal learning spatio-temporal hybrid graph convolutional network data imbalance ECG classification
在线阅读 下载PDF
A local-global dynamic hypergraph convolution with multi-head flow attention for traffic flow forecasting
4
作者 ZHANG Hong LI Yang +3 位作者 LUO Shengjun ZHANG Pengcheng ZHANG Xijun YI Min 《High Technology Letters》 2025年第3期246-256,共11页
Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To... Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance. 展开更多
关键词 traffic flow prediction multi-head flow attention graph convolution hypergraph learning dynamic spatio-temporal properties
在线阅读 下载PDF
Anatomic Boundary-Aware Explanation for Convolutional Neural Networks in Diagnostic Radiology
5
作者 Han Yuan 《iRADIOLOGY》 2025年第1期47-60,共14页
Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accur... Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accuracy and explainability due to the high stakes affecting patients'lives.Based on model explanations,clinicians can evaluate the diagnostic decisions suggested by CNN.Nevertheless,prior explainable artificial intelligence methods treat medical image tasks akin to general vision tasks,following end-to-end paradigms to generate explanations and frequently overlooking crucial clinical domain knowledge.Methods:We propose a plug-and-play module that explicitly integrates anatomic boundary information into the explanation process for CNN-based thoracopathy classifiers.To generate the anatomic boundary of the lung parenchyma,we utilize a lung segmentation model developed on external public datasets and deploy it on the unseen target dataset to constrain model ex-planations within the lung parenchyma for the clinical task of thoracopathy classification.Results:Assessed by the intersection over union and dice similarity coefficient between model-extracted explanations and expert-annotated lesion areas,our method consistently outperformed the baseline devoid of clinical domain knowledge in 71 out of 72 scenarios,encompassing 3 CNN architectures(VGG-11,ResNet-18,and AlexNet),2 classification settings(binary and multi-label),3 explanation methods(Saliency Map,Grad-CAM,and Integrated Gradients),and 4 co-occurred thoracic diseases(Atelectasis,Fracture,Mass,and Pneumothorax).Conclusions:We underscore the effectiveness of leveraging radiology knowledge in improving model explanations for CNN and envisage that it could inspire future efforts to integrate clinical domain knowledge into medical image analysis. 展开更多
关键词 ATELECTASIS convolutional neural networks diagnostic radiology explainable artificial intelligence FRACTURE grad-cam integrated gradients mass PNEUMOTHORAX saliency map
在线阅读 下载PDF
Use of Local Region Maps on Convolutional LSTM for Single-Image HDR Reconstruction
6
作者 Seungwook Oh GyeongIk Shin Hyunki Hong 《Computers, Materials & Continua》 SCIE EI 2022年第6期4555-4572,共18页
Low dynamic range(LDR)images captured by consumer cameras have a limited luminance range.As the conventional method for generating high dynamic range(HDR)images involves merging multiple-exposure LDR images of the sam... Low dynamic range(LDR)images captured by consumer cameras have a limited luminance range.As the conventional method for generating high dynamic range(HDR)images involves merging multiple-exposure LDR images of the same scene(assuming a stationary scene),we introduce a learning-based model for single-image HDR reconstruction.An input LDR image is sequentially segmented into the local region maps based on the cumulative histogram of the input brightness distribution.Using the local region maps,SParam-Net estimates the parameters of an inverse tone mapping function to generate a pseudo-HDR image.We process the segmented region maps as the input sequences on long short-term memory.Finally,a fast super-resolution convolutional neural network is used for HDR image reconstruction.The proposed method was trained and tested on datasets including HDR-Real,LDR-HDR-pair,and HDR-Eye.The experimental results revealed that HDR images can be generated more reliably than using contemporary end-to-end approaches. 展开更多
关键词 Low dynamic range high dynamic range deep learning convolutional long short-term memory inverse tone mapping function
在线阅读 下载PDF
Land cover classification from remote sensing images based on multi-scale fully convolutional network 被引量:17
7
作者 Rui Li Shunyi Zheng +2 位作者 Chenxi Duan Libo Wang Ce Zhang 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第2期278-294,共17页
Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propos... Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN. 展开更多
关键词 spatio-temporal remote sensing images Multi-Scale Fully convolutional Network land cover classification
原文传递
An Emotion Analysis Method Using Multi-Channel Convolution Neural Network in Social Networks 被引量:2
8
作者 Xinxin Lu Hong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期281-297,共17页
As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practica... As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set. 展开更多
关键词 Emotion analysis model emotion dictionary convolution neural network semi supervised learning deep learning pooling feature feature mapping
在线阅读 下载PDF
A Spatio-temporal Data Model for Road Network in Data Center Based on Incremental Updating in Vehicle Navigation System 被引量:1
9
作者 WU Huisheng LIU Zhaoli +1 位作者 ZHANG Shuwen ZUO Xiuling 《Chinese Geographical Science》 SCIE CSCD 2011年第3期346-353,共8页
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy... The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network. 展开更多
关键词 spatio-temporal data model reverse map with overlay model road network incremental updating vehicle navigation system data center vehicle terminal
在线阅读 下载PDF
An improved deep dilated convolutional neural network for seismic facies interpretation 被引量:1
10
作者 Na-Xia Yang Guo-Fa Li +2 位作者 Ting-Hui Li Dong-Feng Zhao Wei-Wei Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1569-1583,共15页
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network... With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information. 展开更多
关键词 Seismic facies interpretation Dilated convolution Spatial pyramid pooling Internal feature maps Compound loss function
原文传递
An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
11
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期506-520,共15页
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc... Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment. 展开更多
关键词 Anomaly detection spatio-temporal informa-tion Multivariate time series signals Attention graph convolution Stacked autoencoder
原文传递
Spatio-Temporal Variation of HIV Infection in Kenya
12
作者 Benard Tonui Samuel Mwalili Anthony Wanjoya 《Open Journal of Statistics》 2018年第5期811-830,共20页
Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and ... Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and spatio-temporal random effects. Model fitting and statistical inference are commonly accomplished through the empirical Bayes (EB) and fully Bayes (FB) approaches. The EB approach usually relies on the penalized quasi-likelihood (PQL), while the FB approach, which has increasingly become more popular in the recent past, usually uses Markov chain Monte Carlo (McMC) techniques. However, there are many challenges in conventional use of posterior sampling via McMC for inference. This includes the need to evaluate convergence of posterior samples, which often requires extensive simulation and can be very time consuming. Spatio-temporal models used in disease mapping are often very complex and McMC methods may lead to large Monte Carlo errors if the dimension of the data at hand is large. To address these challenges, a new strategy based on integrated nested Laplace approximations (INLA) has recently been recently developed as a promising alternative to the McMC. This technique is now becoming more popular in disease mapping because of its ability to fit fairly complex space-time models much more quickly than the McMC. In this paper, we show how to fit different spatio-temporal models for disease mapping with INLA using the Leroux CAR prior for the spatial component, and we compare it with McMC using Kenya HIV incidence data during the period 2013-2016. 展开更多
关键词 HIV INLA McMC Leroux CAR Prior DISEASE mapPING spatio-temporal MODELS
暂未订购
Deep Bi-Directional Adaptive Gating Graph Convolutional Networks for Spatio-Temporal Traffic Forecasting
13
作者 Xin Wang Jianhui Lv +5 位作者 Madini O.Alassafi Fawaz E.Alsaadi B.D.Parameshachari Longhao Zou Gang Feng Zhonghua Liu 《Tsinghua Science and Technology》 2025年第5期2060-2080,共21页
With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adapt... With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning. 展开更多
关键词 traffic forecasting spatio-temporal modeling Graph convolutional Networks(GCNs) adaptive gating
原文传递
基于SCCC结构非相干MAP译码的简化算法 被引量:2
14
作者 曹敏 尹虹 +1 位作者 王国栋 李际平 《电子与信息学报》 EI CSCD 北大核心 2010年第10期2526-2530,共5页
差分编码和序列译码相结合是实现高性能非相干解调的主要方式。对采用差分编码的SCCC结构进行非相干译码,其性能近乎于相干解调,但在估计信道转移概率时引入了修正的零阶贝塞尔函数,因此译码复杂度过高,不利于工程实现。针对该问题,该... 差分编码和序列译码相结合是实现高性能非相干解调的主要方式。对采用差分编码的SCCC结构进行非相干译码,其性能近乎于相干解调,但在估计信道转移概率时引入了修正的零阶贝塞尔函数,因此译码复杂度过高,不利于工程实现。针对该问题,该文提出了两种基于SCCC结构的非相干MAP译码的简化算法。该算法利用对贝塞尔函数的近似式,简化了内码译码log-MAP算法中分支度量的计算。理论分析和仿真结果表明,简化后的算法在保证译码性能的前提下,显著地减小了译码复杂度。 展开更多
关键词 差分编码 串行级联卷积码(SCCC) map算法 非相干解调
在线阅读 下载PDF
Geospatial Mapping of Large-Scale Electric Power Grids:A Residual Graph Convolutional Network-Based Approach with Attention Mechanism
15
作者 Razzaqul Ahshan Md.Shadman Abid Mohammed Al-Abri 《Energy and AI》 2025年第2期276-286,共11页
Precise geospatial mapping of grid infrastructure is essential for the effective development and administration of large-scale electrical infrastructure.The application of deep learning techniques in predicting region... Precise geospatial mapping of grid infrastructure is essential for the effective development and administration of large-scale electrical infrastructure.The application of deep learning techniques in predicting regional energy network architecture utilizing extensive datasets of geographical information systems(GISs)has yet to be thoroughly investigated in previous research works.Moreover,although graph convolutional networks(GCNs)have been proven to be effective in capturing the complex linkages within graph-structured data,the computationally demanding nature of modern energy grids necessitates additional computational contributions.Hence,this research introduces a novel residual GCN with attention mechanism for mapping critical energy infrastructure components in geographic contexts.The proposed model accurately predicts the geographic locations and links of large-scale grid infrastructure,such as poles,electricity service points,and substations.The proposed framework is assessed on the Sultanate of Oman’s regional energy grid and further validated on Nigeria’s electricity transmission network database.The obtained findings showcase the model’s capacity to accurately predict infrastructure components and their spatial relationships.Results show that the proposed method achieves a link-prediction accuracy of 95.88%for the Omani network and 92.98%for the Nigerian dataset.Furthermore,the proposed model achieved R^(2)values of 0.99 for both datasets in terms of regression.Therefore,the proposed architecture facilitates multifaceted assessment and enhances the capacity to capture the inherent geospatial aspects of large-scale energy distribution networks. 展开更多
关键词 Deep learning Graph convolutional network Energyinfrastructure Geospatial mapping Attention mechanism
在线阅读 下载PDF
LIC color texture enhancement algorithm for ocean vector field data based on HSV color mapping and cumulative distribution function 被引量:2
16
作者 Hongbo Zheng Qin Shao +4 位作者 Jie Chen Yangyang Shan Xujia Qin Ji Ma Xiaogang Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第10期171-180,共10页
Texture-based visualization method is a common method in the visualization of vector field data.Aiming at adding color mapping to the texture of ocean vector field and solving the ambiguity of vector direction in text... Texture-based visualization method is a common method in the visualization of vector field data.Aiming at adding color mapping to the texture of ocean vector field and solving the ambiguity of vector direction in texture image,a new color texture enhancement algorithm based on the Line Integral Convolution(LIC)for the vector field data is proposed,which combines the HSV color mapping and cumulative distribution function calculation of vector field data.This algorithm can be summarized as follows:firstly,the vector field data is convoluted twice by line integration to get the gray texture image.Secondly,the method of mapping vector data to each component of the HSV color space is established.And then,the vector field data is mapped into HSV color space and converted from HSV to RGB values to get the color image.Thirdly,the cumulative distribution function of the RGB color components of the gray texture image and the color image is constructed to enhance the gray texture and RGB color values.Finally,both the gray texture image and the color image are fused to get the color texture.The experimental results show that the proposed LIC color texture enhancement algorithm is capable of generating a better display of vector field data.Furthermore,the ambiguity of vector direction in the texture images is solved and the direction information of the vector field is expressed more accurately. 展开更多
关键词 ocean vector field visualization texture enhancement color mapping line integral convolution
在线阅读 下载PDF
STOCHASTIC FLOWS OF MAPPINGS 被引量:1
17
作者 Zhao Qiaoling Yan Guojun 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第3期343-352,共10页
In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stocha... In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations. 展开更多
关键词 Feller convolution semigroup Daniel integral Stone's theorem stochastic flow of mappings.
在线阅读 下载PDF
Integrated Joint Source-Channel Symbol-by-Symbol Decoding of Variable-Length Codes Using 3-D MAP Sequence Estimation 被引量:1
18
作者 WU Jing CHEN Shuzhen 《Wuhan University Journal of Natural Sciences》 CAS 2007年第3期471-475,共5页
Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this pape... Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links. 展开更多
关键词 integrated joint source-channel decoding (I-JSCD) variable-length code (VLC) exp-Golomb code convolutional code: maximum a-oosteriori map
在线阅读 下载PDF
Video super-resolution reconstruction based on deep convolutional neural network and spatio-temporal similarity 被引量:1
19
作者 Li Linghui Du Junping +2 位作者 Liang Meiyu Ren Nan Fan Dan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第5期68-81,共14页
Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of ... Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of learning-based algorithms to video SR field, a novel video SR reconstruction algorithm based on deep convolutional neural network (CNN) and spatio-temporal similarity (STCNN-SR) was proposed in this paper. It is a deep learning method for video SR reconstruction, which considers not onlv the mapping relationship among associated low-resolution (LR) and high-resolution (HR) image blocks, but also the spatio-temporal non-local complementary and redundant information between adjacent low-resolution video frames. The reconstruction speed can be improved obviously with the pre-trained end-to-end reconstructed coefficients. Moreover, the performance of video SR will be further improved by the optimization process with spatio-temporal similarity. Experimental results demonstrated that the proposed algorithm achieves a competitive SR quality on both subjective and objective evaluations, when compared to other state-of-the-art algorithms. 展开更多
关键词 video SR reconstruction deep convolutional neural network spatio-temporal siruilarity Zernike moment feature
原文传递
上一页 1 2 29 下一页 到第
使用帮助 返回顶部