期刊文献+
共找到21,743篇文章
< 1 2 250 >
每页显示 20 50 100
Natural and human-induced decline and spatio-temporal differentiation of terrestrial water storage over the Lancang-Mekong River Basin 被引量:2
1
作者 CHEN Junxu WANG Yuan +5 位作者 ZHAO Zhifang FAN Yunjiang LUO Xiaochuan YI Lu FENG Siqi YANG Liang Emlyn 《Journal of Geographical Sciences》 2025年第1期112-138,共27页
Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LM... Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012. 展开更多
关键词 spatio-temporal variation contribution separation GRACE Empirical Orthogonal Function Lancang-Mekong River
原文传递
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
2
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
Spatio-Temporal Pattern and Socio-economic Influencing Factors of Tuberculosis Incidence in Guangdong Province:A Bayesian Spatiotemporal Analysis
3
作者 Huizhong Wu Xing Li +7 位作者 Jiawen Wang Ronghua Jian Jianxiong Hu Yijun Hu Yiting Xu Jianpeng Xiao Aiqiong Jin Liang Chen 《Biomedical and Environmental Sciences》 2025年第7期819-828,共10页
Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB ... Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB incidence were mapped using heat maps and hierarchical clustering.Socioenvironmental influencing factors were evaluated using a Bayesian spatiotemporal conditional autoregressive(ST-CAR)model.Results Annual incidence of TB in Guangdong decreased from 91.85/100,000 in 2010 to 53.06/100,000in 2019.Spatial hotspots were found in northeastern Guangdong,particularly in Heyuan,Shanwei,and Shantou,while Shenzhen,Dongguan,and Foshan had the lowest rates in the Pearl River Delta.The STCAR model showed that the TB risk was lower with higher per capita Gross Domestic Product(GDP)[Relative Risk(RR),0.91;95%Confidence Interval(CI):0.86–0.98],more the ratio of licensed physicians and physician(RR,0.94;95%CI:0.90-0.98),and higher per capita public expenditure(RR,0.94;95%CI:0.90–0.97),with a marginal effect of population density(RR,0.86;95%CI:0.86–1.00).Conclusion The incidence of TB in Guangdong varies spatially and temporally.Areas with poor economic conditions and insufficient healthcare resources are at an increased risk of TB infection.Strategies focusing on equitable health resource distribution and economic development are the key to TB control. 展开更多
关键词 TUBERCULOSIS BAYESIAN Social-economic factor spatio-temporal model
暂未订购
Spatio-Temporal Assessment of Land Use Changes in Sonipat,Haryana:Socio Economic Impacts and Policy Intervention
4
作者 Niraj Kumar Tejbir Singh Rana +1 位作者 Subhash Anand Nishit 《Research in Ecology》 2025年第3期309-334,共26页
This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in So... This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in Sonipat have undergone notable transformation,as open spaces and agricultural lands are increasingly converted into residential colonies,commercial hubs,and industrial zones.While such changes reflect economic development and urban growth,they also raise critical concerns about sustainability,especially in terms of food security,groundwater depletion,and environmental degradation.The study examines land use changes between 2000 and 2024 using remote sensing techniques and spatial analysis.It further incorporates secondary data and insights from community-level interactions to assess the socio-economic and ecological impacts of this transformation.The findings indicate rising land fragmentation,loss of agricultural livelihoods,pressure on civic infrastructure,and increasing pollution—factors that threaten long-term regional sustainability.The study underscores the urgent need to reconcile urban development with environmental and social sustainability.By offering a detailed case study of Sonipat,this research contributes to the broader discourse on India’s urbanisation pathways.It aims to provide policymakers,planners,and researchers with evidence-based recommendations to manage land transitions more responsibly,promoting urban growth models that ensure ecological integrity,equitable development,and long-term resilience. 展开更多
关键词 Land Use spatio-temporal Dynamics Socio-Economic Impacts URBANIZATION POLICY
在线阅读 下载PDF
Deepfake Detection Method Based on Spatio-Temporal Information Fusion
5
作者 Xinyi Wang Wanru Song +1 位作者 Chuanyan Hao Feng Liu 《Computers, Materials & Continua》 2025年第5期3351-3368,共18页
As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limi... As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios. 展开更多
关键词 Deepfake detection vision transformer spatio-temporal information
在线阅读 下载PDF
Spatio-temporal dynamics and influencing factors of carbon emission intensity in China's agriculture sector
6
作者 YIN Junfeng YE Sijing +1 位作者 SONG Changqing GAO Peichao 《Journal of Geographical Sciences》 2025年第11期2310-2334,共25页
Agriculture holds a pivotal position in the economic fabric of every nation,yet concerns about agricultural carbon emission intensity(ACI)have become a major hurdle to achieving global economic sustainability.Focusing... Agriculture holds a pivotal position in the economic fabric of every nation,yet concerns about agricultural carbon emission intensity(ACI)have become a major hurdle to achieving global economic sustainability.Focusing on 31 provincial-level regions in China,this study uses the Exploratory Spatio-temporal Data Analysis(ESTDA)and Panel Quantile Regression(PQR)model to analyze the spatio-temporal interaction characteristics and influencing factors of ACI in China from 2004 to 2023.The findings are as follows:(1)ACI showed an overall downward trend,and the spatial distribution pattern was characterized by“high in the western region and low along the southeastern coast”.Although the overall disparity tended to converge,some high-carbon-intensity regions exhibited extreme trends.ACI displayed clear spatial directionality,with the spatial center shifting steadily toward the northeast.(2)Regions in the northwest,northeast,and central-south parts exhibited strong local spatial structural dynamics,and the local spatial dependence of ACI in each region showed a nonlinear trend.Generally speaking,the spatial association pattern demonstrated a certain degree of inertia in spatial transfer,reflecting strong path dependence or spatial lock-in characteristics.(3)Optimization of industrial structure and improvement in agricultural mechanization will increase ACI,while economic development can effectively reduce it.The impact of urbanization on ACI exhibits a nonlinear pattern.The coordinated development of economic growth and urbanization significantly reduces ACI,with a stronger emission reduction observed in regions with low ACI.The optimization of industrial structure,when combined with urbanization and environmental regulation,contributes to significant emission reductions particularly in high-ACI areas.Similarly,the synergy between agricultural mechanization and urbanization effectively lowers emissions in low-ACI regions,though this effect diminishes in areas with higher ACI. 展开更多
关键词 agriculture sector carbon emission intensity spatio-temporal interaction influencing factors China
原文传递
Spatio-temporal pattern and influencing factors of sloping farmland in China
7
作者 YAO Xiaowei XIE Youping +3 位作者 ZHUGE Jing ZENG Haibo ZENG Jie CHEN Wanxu 《Journal of Mountain Science》 2025年第11期4242-4257,共16页
Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing... Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing factors in China is imperative for the efficient utilization of farmland and the optimization of land space.We used land use transfer matrix,geographically weighted regression model and geographical detector to conduct this study.Results showed that sloping farmland in China firstly decreased and then increased from 2000 to 2020.The proportion of sloping farmland decreased radially outward from Sichuan basin to the surrounding areas.Change rates of sloping farmland with different slopes varied and the slope with 6°-15°underwent the fastest changes.The influencing factors of farmland at various slope degrees were different.For sloping farmland below 15°,land use intensity and elevation had the greatest contribution.For sloping farmland between 15°and 25°,elevation,land use intensity,and population density were the main influencing factors.Sloping farmland above 25°was mostly affected by natural factors.This study can provide scientific basis for rational development and protection of sloping farmland. 展开更多
关键词 Sloping farmland spatio-temporal differentiation Influencing factors Geographically weighted regression China
原文传递
ACSF-ED: Adaptive Cross-Scale Fusion Encoder-Decoder for Spatio-Temporal Action Detection
8
作者 Wenju Wang Zehua Gu +2 位作者 Bang Tang Sen Wang Jianfei Hao 《Computers, Materials & Continua》 2025年第2期2389-2414,共26页
Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decode... Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods. 展开更多
关键词 spatio-temporal action detection encoder-decoder cross-scale fusion multi-constraint loss function
在线阅读 下载PDF
An Arrhythmia Intelligent Recognition Method Based on a Multimodal Information and Spatio-Temporal Hybrid Neural Network Model
9
作者 Xinchao Han Aojun Zhang +6 位作者 Runchuan Li Shengya Shen Di Zhang Bo Jin Longfei Mao Linqi Yang Shuqin Zhang 《Computers, Materials & Continua》 2025年第2期3443-3465,共23页
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to... Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness. 展开更多
关键词 Multimodal learning spatio-temporal hybrid graph convolutional network data imbalance ECG classification
在线阅读 下载PDF
Design and research on seismic intensity monitoring system for railway based on Kriging interpolation method
10
作者 Xueying Zhou Xin Bai +4 位作者 Wentao Sun Zehui Zhang Youbiao Wang Cheng Wang Yan Xuan 《Railway Sciences》 2025年第6期729-745,共17页
Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribut... Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribution along railway routes,thereby achieving graded post-earthquake response measures.Design/methodology/approach–The seismic intensity monitoring system for railways adopts a two-level architecture,namely the seismic intensity monitoring equipment and the seismic intensity rapid reporting information center processing platform.The platform obtains measured instrumental intensity through the seismic intensity monitoring equipment deployed along railways and combines it with the National Seismic Network Earthquake Catalog to generate real-time railway seismic intensity distribution maps using the Kriging interpolation algorithm.A calculation method for railway seismic impact intervals is designed to calculate the mileage intervals where the intensity area corresponding to each contour line in the seismic intensity distribution map intersects with the railway line.Findings–The system was deployed for practical earthquake monitoring demonstration applications on the Nanjiang Railway Line in Xinjiang.During the operational period,the seismic intensity monitoring equipment calculated and uploaded instrumental intensity values to the seismic intensity rapid reporting information center processing platform a total of nine times.Among these,earthquakes triggering the Kriging interpolation algorithm occurred twice.The system operated stably throughout the application period and successfully visualized relevant seismic impact data,such as earthquake intensity distribution maps and affected railway mileage sections.These results validate the system’s practicality and effectiveness.Originality/value–The seismic intensity monitoring for the railway system designed in this study can integrate the measured instrumental intensity data along railways and the earthquake catalog of the National Seismic Network.It uses the Kriging interpolation method to calculate the intensity distribution and determine the seismic impact scope,thereby addressing the issue that the seismic intensity distribution calculated by traditional attenuation formulas deviates from reality.The system can provide clear graded interval recommendations for post-earthquake disposal,effectively improve the efficiency of post-earthquake recovery and inspection and offer a decision-making basis for restoring railway operations quickly. 展开更多
关键词 Seismic intensity monitoring RAILWAY Kriging interpolation Impact scope
在线阅读 下载PDF
Spatio-temporal evolution process and mechanism of land use in creative urban tourism complex:A case study of Hangzhou Leisure Expo Garden
11
作者 LV Jiong-yan LI Wei-wei 《Ecological Economy》 2025年第1期25-47,共23页
Exploring the spatial evolution patterns of land use in creative urban tourism complexes provides theoretical and decision-making support to foster creative tourism projects.This study focuses on the Hangzhou Leisure ... Exploring the spatial evolution patterns of land use in creative urban tourism complexes provides theoretical and decision-making support to foster creative tourism projects.This study focuses on the Hangzhou Leisure Expo Garden as a case study,utilizing a land use change index model to analyze the spatial evolution characteristics and dynamic processes of creative urban tourism complexes,as well as to explore their spatial differentiation mechanisms.The analysis indicates that Hangzhou Leisure Expo Garden,initially a derelict industrial area dominated by production and residential land use,has evolved into a creative urban tourism complex with tourism comprehensive service land at its core,going through the pattern evolution processes of“constrained sprawl,”“intensive expansion,”and“random integration.”From the perspective of tourism human-land relationships,the formation of land use evolution patterns in creative urban tourism complexes results from various stakeholders(government,tourism enterprises,residents,tourists,etc.),as humanistic factors,continuously adapting to specific urban spaces,which are considered as geographical elements and have locational advantages and are oriented towards economic and social values.Based on the acquisition of stakeholder interests,the transformation of resource-disadvantaged areas into tourism advantage areas is facilitated,thereby achieving the re-creation of tourism creative space and promoting intensive spatial growth. 展开更多
关键词 creative urban tourism complex land use spatio-temporal evolution Hangzhou Leisure Expo Garden
原文传递
Interpolation-Based Reversible Data Hiding in Encrypted Audio with Scalable Embedding Capacity
12
作者 Yuan-Yu Tsai Alfrindo Lin +1 位作者 Wen-Ting Jao Yi-Hui Chen 《Computers, Materials & Continua》 2025年第7期681-697,共17页
With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multi... With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework. 展开更多
关键词 Reversible data hiding encrypted audio interpolation sampling multi-MSB prediction Huffman coding
在线阅读 下载PDF
Spatio-temporal Variation of Freeze-thaw Cycles in the Qinghai-Xizang Plateau from 1981 to 2020 Based on Microwave Remote Sensing
13
作者 ZHAO Shangmin ZHANG Shifang YU Bohan 《Journal of Geodesy and Geoinformation Science》 2025年第1期1-11,共11页
Strong sensitivity of satellite microwave remote sensing to the change of surface dielectric properties,as well as the insensitivity to air pollution and solar illumination effects,makes it very suitable for monitorin... Strong sensitivity of satellite microwave remote sensing to the change of surface dielectric properties,as well as the insensitivity to air pollution and solar illumination effects,makes it very suitable for monitoring freeze-thaw conditions.The freeze-thaw cycle changes in the Qinghai-Xizang Plateau have an important impact on the ecological environment and infrastructure.Based on the Scanning Multi-channel Microwave Radiometer(SMMR)and other sensors of microwave satellite,the freeze-thaw cycle data of permafrost in the Qinghai-Xizang Plateau in the past 40 years from 1981 to 2020 was obtained.The changes of soil freeze-thaw conditions in different seasons of 2020 and in the same season of 1990,2000,2010 and 2020 were compared,and the annual variation trend of soil freeze-thaw area in the four years was analyzed.Further,the linear regression analysis was carried out on the duration of soil freezing/thawing/transition and the interannual variation trend under different area conditions from 1981 to 2020.The results show that the freeze-thaw changes in different years are similar.In winter,it is mainly frozen for about 110 days.Spring and autumn are transitional periods,lasting for 170 days.In summer,it is mainly thawed for about 80 days.From 1981 to 2020,the freezing period and the average freezing area of the Qinghai-Xizang Plateau decreased at a rate of 0.22 days and 1986 km^(2) per year,respectively,while the thawing period and the average thawing area increased at a rate of 0.07 days and 3187 km^(2) per year,respectively.The research results provide important theoretical support for the ecological environment and permafrost protection of the Qinghai-Xizang Plateau. 展开更多
关键词 freeze-thaw cycle PERMAFROST microwave remote sensing spatio-temporal variation linear regression analysis Qinghai-Xizang Plateau
在线阅读 下载PDF
Self-supervised simultaneous deblending and interpolation of incomplete blended data using a multistep blind-trace U-Net
14
作者 Ben-Feng Wang Shi-Cong Lin Xin-Yi Chen 《Petroleum Science》 2025年第3期1098-1109,共12页
Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caus... Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caused by artificial or natural effects during blended acquisition. Therefore, blending noise attenuation and missing shots reconstruction are essential for providing high-quality seismic data for further seismic processing and interpretation. The iterative shrinkage thresholding algorithm can help obtain deblended data based on sparsity assumptions of complete unblended data, and it characterizes seismic data linearly. Supervised learning algorithms can effectively capture the nonlinear relationship between incomplete pseudo-deblended data and complete unblended data. However, the dependence on complete unblended labels limits their practicality in field applications. Consequently, a self-supervised algorithm is presented for simultaneous deblending and interpolation of incomplete blended data, which minimizes the difference between simulated and observed incomplete pseudo-deblended data. The used blind-trace U-Net (BTU-Net) prevents identity mapping during complete unblended data estimation. Furthermore, a multistep process with blending noise simulation-subtraction and missing traces reconstruction-insertion is used in each step to improve the deblending and interpolation performance. Experiments with synthetic and field incomplete blended data demonstrate the effectiveness of the multistep self-supervised BTU-Net algorithm. 展开更多
关键词 Blind-trace U-Net Self-supervised learning Simultaneous deblending and interpolation Multi-step processing
原文传递
Localization of False Data Injection Attacks in Power Grid Based on Adaptive Neighborhood Selection and Spatio-Temporal Feature Fusion
15
作者 Zehui Qi Sixing Wu Jianbin Li 《Computers, Materials & Continua》 2025年第11期3739-3766,共28页
False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail... False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model. 展开更多
关键词 Power grid security adaptive neighborhood selection spatio-temporal correlation false data injection attacks localization
在线阅读 下载PDF
General Improvement of Image Interpolation-Based Data Hiding Methods Using Multiple-Based Number Conversion
16
作者 Da-Chun Wu Bing-Han 《Computer Modeling in Engineering & Sciences》 2025年第7期535-580,共46页
Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduce... Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities. 展开更多
关键词 Data hiding image interpolation interpolation-based hiding methods steganography multiple-based number conversion
在线阅读 下载PDF
Spatio-temporal evolution of rural industry and ecology based on perspective of symbiosis theory: Insights from Jiangxi Province, China
17
作者 ZHOU Dabao XU Liting +4 位作者 LI Wenziyi XU Yu FENG Xinghua FU Yu ZHONG Yexi 《Journal of Mountain Science》 2025年第11期4223-4241,共19页
Rural industrial development and ecological civilization transformation are crucial to China's comprehensive advancement of rural revitalization. However, many regions still face the issue of a conflict between ec... Rural industrial development and ecological civilization transformation are crucial to China's comprehensive advancement of rural revitalization. However, many regions still face the issue of a conflict between economic development and ecological protection. Symbiosis theory provides a new perspective for understanding the interactive relationship of rural industry and ecology(RIE). Jiangxi Province, one of China's first national pilot zones for ecological conservation, exemplifies rural areas' typical challenges in balancing industrial development and ecological protection, and has been selected as the study area. By integrating the characteristics of RIE with symbiosis theory, a comprehensive RIE assessment framework was constructed. The comprehensive model, spatial autocorrelation method, and symbiosis theory model were employed to address the spatio-temporal evolution characteristics of RIE, reveal the symbiotic relationship(SR) and the symbiosis types of RIE, and explore the path of symbiotic development between RIE. Results indicated that:(1) Since 2015, RIE has shown an upward trend, with regional differences in ecological development levels gradually shrinking. Significant spatial correlation and agglomeration characteristics exist, but a coordinated regional development pattern has not yet emerged.(2) Overall, the symbiosis degree(SD) between RIE showed a positive trend with narrowing gaps, the symbiosis coefficient(SC) of industry to ecology converged to 0.5 under a positive asymmetric mutualism(PAM) mode, suggesting that their relationship tended to be coordinated. Specifically, rural ecology grew increasingly influential on industry in most counties.(3) Rural areas were classified into different types led by industry-dominated PAM, and various optimization paths were proposed. Future efforts should promote the equalization of the interaction forces between RIE according to local conditions. 展开更多
关键词 Rural industry and ecology Symbiosis theory Symbiotic relationship spatio-temporal evolution Rural revitalization Jiangxi Province
原文传递
Access to emergency medical services in Beijing:integrating web mapping application programming interfaces and empirical Bayesian Kriging interpolation analysis
18
作者 Haolin Zhu Mo Xu +2 位作者 Luying Zhu Sijia Tian Jinjun Zhang 《World Journal of Emergency Medicine》 2025年第3期266-268,共3页
Emergency medical services (EMS) are a vital element of the public healthcare system in China,^([1])providing an opportunity to respond to critical medical conditions and save people’s lives.^([2])The accessibility o... Emergency medical services (EMS) are a vital element of the public healthcare system in China,^([1])providing an opportunity to respond to critical medical conditions and save people’s lives.^([2])The accessibility of EMS has received considerable attention in health and transport geography studies.^([3])One of the optimal gauges for evaluating the accessibility of EMS is the response time,which is defined as the time from receiving an emergency call to the arrival of an ambulance.^([4])Beijing has already reduced the response time to approximately12 min,and the next goal is to ensure that the response time across Beijing does not exceed 12 min (the information comes from the Beijing Emergency Medical Center). 展开更多
关键词 emergency medical services public healthcare system web mapping application programming interfaces empirical bayesian kriging interpolation analysis ACCESSIBILITY respond critical medical conditions response time
暂未订购
CKF phase noise suppression algorithm of using the polynomial interpolation for CO-OFDM systems
19
作者 YUAN Jianguo YU Yiran +2 位作者 SU Jie SU Chang PANG Yu 《Optoelectronics Letters》 2025年第8期468-475,共8页
A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symb... A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect. 展开更多
关键词 polynomial interpolation pilot symbols data processing cubature kalman filter ckf phase noise suppression coherent optical orthogonal frequency division multiplexing co ofdm systemsthe suppression method phase noise
原文传递
CASCADE-Net:Causality-Aware Spatio-Temporal Dynamics Encoding for Prognostic Prediction in Mild Cognitive Impairment
20
作者 Samuel Ocen Lawrence Muchemi Michaelina Almaz Yohannis 《Journal of Intelligent Learning Systems and Applications》 2025年第4期237-256,共20页
Predicting the progression from Mild Cognitive Impairment(MCI)to Alzheimer's Disease(AD)is a critical challenge for enabling early intervention and improving patient outcomes.While longitudinal multi-modal neuroim... Predicting the progression from Mild Cognitive Impairment(MCI)to Alzheimer's Disease(AD)is a critical challenge for enabling early intervention and improving patient outcomes.While longitudinal multi-modal neuroimaging data holds immense potential for capturing the spatio-temporal dynamics of disease progression,its effective analysis is hampered by significant challenges:temporal heterogeneity(irregularly sampled scans),multi-modal misalignment,and the propensity of deep learning models to learn spurious,noncausal correlations.We propose CASCADE-Net,a novel end-to-end pipeline for robust and interpretable MCI-to-AD progression prediction.Our architecture introduces a Dynamic Temporal Alignment Module that employs a Neural Ordinary Differential Equation(Neural ODE)to model the continuous,underlying progression of pathology from irregularly sampled scans,effectively mapping heterogeneous patient data to a unified latent timeline.This aligned,noise-reduced spatio-temporal data is then processed by a predictive model featuring a novel Causal Spatial Attention mechanism.This mechanism not only identifies the critical brain regions and their evolution predictive of conversion but also incorporates a counterfactual constraint during training.This constraint ensures the learned features are causally linked to AD pathology by encouraging invariance to non-causal,confounder-based changes.Extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that CASCADE-Net significantly outperforms state-of-the-art sequential models in prognostic accuracy.Furthermore,our model provides highly interpretable,causally-grounded attention maps,offering valuable insights into the disease progression process and fostering greater clinical trust. 展开更多
关键词 Alzheimer’s Disease Mild Cognitive Impairment Prognosis Neural ODE Counterfactual Learning spatio-temporal Modeling Interpretable AI
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部