期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
1
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
An Arrhythmia Intelligent Recognition Method Based on a Multimodal Information and Spatio-Temporal Hybrid Neural Network Model
2
作者 Xinchao Han Aojun Zhang +6 位作者 Runchuan Li Shengya Shen Di Zhang Bo Jin Longfei Mao Linqi Yang Shuqin Zhang 《Computers, Materials & Continua》 2025年第2期3443-3465,共23页
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to... Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness. 展开更多
关键词 Multimodal learning spatio-temporal hybrid graph convolutional network data imbalance ECG classification
在线阅读 下载PDF
应用STGCN时空建模的地震波阻抗反演方法
3
作者 王泽峰 赵海波 +3 位作者 杨懋新 王团 许辉群 毛伟建 《石油地球物理勘探》 北大核心 2025年第1期43-53,共11页
现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓... 现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓扑结构及互相关性,使用马氏距离对地震数据进行空间邻近度的加权处理建立邻接矩阵;进一步通过切比雪夫多项式扩大空间感受野的同时减少参数量,高效地提取地震数据的空间构造特征,同时利用门控循环单元捕获其时序相关性;最后构建时空图卷积单元实现基于STGCN的地震数据与波阻抗在时间和空间两个维度的映射。模型测试及实际资料反演结果表明,该方法在提高反演精度的同时对噪声具有一定的适应性,并可以很好的体现地层的横向变化。 展开更多
关键词 地震波阻抗反演 深度学习 时空建模 时空图卷积神经网络
在线阅读 下载PDF
一种改进STGCN的深地时空域地震子波提取方法 被引量:1
4
作者 戴永寿 孙家钊 +3 位作者 李泓浩 颜廷尚 孙伟峰 左琳 《石油物探》 CSCD 北大核心 2024年第6期1111-1125,1137,共16页
地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道... 地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道地震记录提取时变子波,忽略了多道地震记录之间子波的空间变化。同时,传统时空域子波提取方法,如经验模态分解(EMD)方法,对测井资料等先验信息依赖程度较高,实际应用范围受限。深度学习为时空域子波提取提供了新的思路,针对以上问题,提出了一种改进时空图卷积神经网络(STGCN)的时空域子波提取方法。首先,根据目标区地震数据分布特征与非平稳性质,建立以非平稳地震剖面为输入,时空域子波为标签的合成训练数据,再利用传统EMD时变子波提取方法逐道提取目标区子波,有针对性地构建以目标区地震剖面为输入,目标区时空域子波为标签的实际训练数据。最后,利用两种训练数据对改进后的STGCN进行训练,使其能够融合提取的子波时空特征,从而实现目标区时空域子波的有效提取。合成数据和实际地震数据的处理结果表明,该方法对于深地时空域子波的提取有效且准确,相较于传统方法更具优越性,具有较好的实际应用价值。 展开更多
关键词 深度学习 时空域子波提取 时空图卷积神经网络 时空特征
在线阅读 下载PDF
Research on traffic flow prediction method based on adaptive multichannel graph convolutional neural networks
5
作者 Zhengzheng Xu Junhua Gu 《Advances in Engineering Innovation》 2024年第2期41-47,共7页
In order to address the issues of predefined adjacency matrices inadequately representing information in road networks,insufficiently capturing spatial dependencies of traffic networks,and the potential problem of exc... In order to address the issues of predefined adjacency matrices inadequately representing information in road networks,insufficiently capturing spatial dependencies of traffic networks,and the potential problem of excessive smoothing or neglecting initial node information as the layers of graph convolutional neural networks increase,thus affecting traffic prediction performance,this paper proposes a prediction model based on Adaptive Multi-channel Graph Convolutional Neural Networks(AMGCN).The model utilizes an adaptive adjacency matrix to automatically learn implicit graph structures from data,introduces a mixed skip propagation graph convolutional neural network model,which retains the original node states and selectively acquires outputs of convolutional layers,thus avoiding the loss of node initial states and comprehensively capturing spatial correlations of traffic flow.Finally,the output is fed into Long Short-Term Memory networks to capture temporal correlations.Comparative experiments on two real datasets validate the effectiveness of the proposed model. 展开更多
关键词 traffic flow prediction spatio-temporal correlations graph convolutional neural network adaptive adjacency matrix
在线阅读 下载PDF
基于分解动态时空分解框架预测交通流量 被引量:1
6
作者 蒋挺 杨柳 +2 位作者 刘亚林 张邵华 石硕 《科学技术与工程》 北大核心 2025年第7期3007-3017,共11页
近几年,时空图卷积网络(spatial-temporal graph convolutional network, STGCN)被引入交通流量预测中,具有良好的时空交通数据建模能力,取得了先进的性能,但是仍存在两个问题:(1)交通流量数据具有很强的时空相关性;(2)静态的预定义图... 近几年,时空图卷积网络(spatial-temporal graph convolutional network, STGCN)被引入交通流量预测中,具有良好的时空交通数据建模能力,取得了先进的性能,但是仍存在两个问题:(1)交通流量数据具有很强的时空相关性;(2)静态的预定义图难以捕获交通流随时间动态变化的时空依赖关系。为解决以上问题,提出了一种新的时空分解框架(spatial-temporal decomposed framework, STDF),它使用了残差连接、遗忘门、更新门,将时间模块和空间模块有机连接起来,以将输入信息进行多层次双维度的分解和预测。此外将STDF进行实例化,提出一种新的基于输入交通信号分解的动态时空融合的交通预测模型(decomposed dynamic spatial-temporal graph convolutional network, DDSTGCN),它捕捉了交通的时空相关性,并设计了一个动态图学习模块,考虑了空间依赖的动态性质。最后利用两个真实交通流量的数据(在PEMS04和PEMS08的数据集),与现有的交通流量预测算法进行对比。实验结果证明,所提方法在交通流量预测的准确率有良好的性能表现,能够有效地完成真实场景下的交通流量预测。 展开更多
关键词 交通流量预测 时空图卷积网络(stgcn) 时空相关性 时空融合 动态图学习
在线阅读 下载PDF
基于多头注意力时空图卷积网络的交通事故预测
7
作者 姜天豪 王瑞 《上海大学学报(自然科学版)》 北大核心 2025年第4期678-690,共13页
提出一种结合多头注意力(multi-head attention, MHA)机制和自适应邻接矩阵的新型时空图卷积网络(spatio-temporal graph convolutional network, STGCN)模型. MHA机制对时空特征和外部环境因素进行加权融合,自适应邻接矩阵对道路网络... 提出一种结合多头注意力(multi-head attention, MHA)机制和自适应邻接矩阵的新型时空图卷积网络(spatio-temporal graph convolutional network, STGCN)模型. MHA机制对时空特征和外部环境因素进行加权融合,自适应邻接矩阵对道路网络的连接权重进行动态调整,提升了对空间依赖性的刻画能力.结果表明,该模型在伦敦道路网络数据集上的表现优于已有模型,在多个指标上显著提升了预测精度. 展开更多
关键词 交通事故预测 时空图卷积网络 多头注意力机制 自适应邻接矩阵
在线阅读 下载PDF
Spatio-temporal orediction of terrorist attacks based on GCN-LSTM
8
作者 Yingjie Du Ning Ding Hongyu Lv 《Journal of Safety Science and Resilience》 2025年第2期186-195,共10页
Terrorist attacks represent a significant threat to national order,social stability,and economic security.Accurate prediction of such attacks is a critical task for casualty reduction,enhanced decision-making,and opti... Terrorist attacks represent a significant threat to national order,social stability,and economic security.Accurate prediction of such attacks is a critical task for casualty reduction,enhanced decision-making,and optimal resource distribution in counter-terrorism efforts.This paper introduces an innovative spatio-temporal fusion framework that combines graph convolutional network(GCN)with long short-term memory(LSTM)models.By capturing and merging spatio-temporal features from relevant events,the proposed GCN-LSTM model achieves remarkable accuracy in predicting terrorist attacks.The experimental results demonstrate outstanding perfor-mance,with the model attaining minimal RMSE and MAE values of 0.037 and 0.031,respectively,surpassing all baseline models(LSTM,GCN,and CNN-LSTM-Transformer).Through its effective interpretation of complex spatio-temporal patterns underlying terrorist attacks,our model substantially enhances the predictive accuracy across diverse time horizons.These findings carry crucial implications for enhancing counter-terrorism strategies. 展开更多
关键词 Terrorist attacks spatio-temporal prediction graph convolutional networks Long short-termmemory COUNTER-TERRORISM
原文传递
Detection and Classification of Transmission Line Transient Faults Based on Graph Convolutional Neural Network 被引量:6
9
作者 Houjie Tong Robert C.Qiu +3 位作者 Dongxia Zhang Haosen Yang Qi Ding Xin Shi 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第3期456-471,共16页
We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers ex... We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers explicit spatial information in sampling sequences as prior knowledge and it has stronger feature extraction ability.On this basis,a framework for transient fault detection and classification is created.Graph structure is generated to provide topology information to the task.Our approach takes the adjacency matrix of topology graph and the bus voltage signals during a sampling period after transient faults as inputs,and outputs the predicted classification results rapidly.Furthermore,the proposed approach is tested in various situations and its generalization ability is verified by experimental results.The results show that the proposed approach can detect and classify transient faults more effectively than the existing techniques,and it is practical for online transmission line protection for its rapidness,high robustness and generalization ability. 展开更多
关键词 graph convolutional network(GCN) power transmission line fault detection and classification spatio-temporal data topology information
原文传递
基于周边车辆轨迹预测的智能汽车路径规划 被引量:3
10
作者 黄晨 贾丁鹏 +1 位作者 孙晓强 许庆 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第5期753-762,共10页
为提高智能汽车在动态行车环境下的行驶安全和通行效率,研究了基于周边车辆轨迹预测的路径规划方法,并进行了仿真。提出了一种基于时空图卷积网络(STGCN)的周边车辆轨迹预测方法,通过STGCN对车辆历史轨迹进行编码,提取交通图的时空特征... 为提高智能汽车在动态行车环境下的行驶安全和通行效率,研究了基于周边车辆轨迹预测的路径规划方法,并进行了仿真。提出了一种基于时空图卷积网络(STGCN)的周边车辆轨迹预测方法,通过STGCN对车辆历史轨迹进行编码,提取交通图的时空特征,并结合长短时记忆网络实现周边车辆的轨迹预测。在此基础上,提出了一种基于改进人工势场(APF)的路径规划方法;建立了基于APF的行车危险评价模块;利用Frenet坐标描述驾驶危险度,通过目标障碍物和道路边界的势能分布及梯度下降法完成路径规划。结果表明:本算法的短时预测精度提高了3%,长时预测精度提高了1%;所得路径曲线的前轮转角不超过0.12 rad,曲率不超过0.1;因此,在确保有效避撞的前提下,保证了车辆行驶的舒适性和高效性。 展开更多
关键词 智能汽车 路径规划 轨迹预测 时空图卷积网络(stgcn) 人工势场(APF)
在线阅读 下载PDF
Deep Bi-Directional Adaptive Gating Graph Convolutional Networks for Spatio-Temporal Traffic Forecasting
11
作者 Xin Wang Jianhui Lv +5 位作者 Madini O.Alassafi Fawaz E.Alsaadi B.D.Parameshachari Longhao Zou Gang Feng Zhonghua Liu 《Tsinghua Science and Technology》 2025年第5期2060-2080,共21页
With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adapt... With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning. 展开更多
关键词 traffic forecasting spatio-temporal modeling graph convolutional networks(GCNs) adaptive gating
原文传递
基于时空图卷积网络的电力系统暂态稳定评估 被引量:33
12
作者 庄颖睿 肖谭南 +2 位作者 程林 陈颖 关慧哲 《电力系统自动化》 EI CSCD 北大核心 2022年第11期11-18,共8页
快速准确的电力系统暂态稳定分析对电力系统安全稳定运行有着重要意义。现代电力系统设备元件日趋复杂多样导致系统非线性日益增强,作为电力系统暂态稳定分析传统方法的时域仿真法过于耗时。针对此问题,提出了一种基于时空图卷积网络模... 快速准确的电力系统暂态稳定分析对电力系统安全稳定运行有着重要意义。现代电力系统设备元件日趋复杂多样导致系统非线性日益增强,作为电力系统暂态稳定分析传统方法的时域仿真法过于耗时。针对此问题,提出了一种基于时空图卷积网络模型的暂态稳定分析方法,将短时仿真与神经网络预测相结合,减少暂态稳定分析所需时间,可用于多种仿真分析场景。该方法将暂态稳定分析建模为样本空间映射问题,利用数据驱动方法训练神经网络模型,建立从暂态过程电网空间结构与时序潮流数据到暂态稳定的映射。模型通过同时提取暂态过程故障前、故障中、故障后的电网空间结构特征和时序潮流特征来实现对系统暂态稳定的快速准确判断。与传统暂态稳定分析方法相比,所提出的方法仅需进行短时间仿真分析,提高了分析效率。与其他机器学习模型相比,时空图卷积网络模型同时挖掘电力系统暂态过程的空间特征和时间特征,引入了更多与稳定性相关的先验知识,具有更优的特征挖掘能力和分析性能。基于新英格兰39节点系统的测试结果验证了所提方法的可行性、有效性和优越性。 展开更多
关键词 电力系统 暂态稳定分析 特征分析 数据驱动 神经网络 时空图卷积网络
在线阅读 下载PDF
基于路径签名的改进时空图卷积网络 被引量:3
13
作者 赵艺 《计算机工程与科学》 CSCD 北大核心 2022年第12期2213-2219,共7页
针对时空图卷积网络ST-GCN中GCN的关节邻接图不易学习远端关节之间的语义信息和TCN在描述时间信息方面存在不足的问题,引入了数字签名预处理来增强数据,提出了基于路径签名的改进时空图卷积网络SSIT-GCN。首先将关节位置坐标的时间序列... 针对时空图卷积网络ST-GCN中GCN的关节邻接图不易学习远端关节之间的语义信息和TCN在描述时间信息方面存在不足的问题,引入了数字签名预处理来增强数据,提出了基于路径签名的改进时空图卷积网络SSIT-GCN。首先将关节位置坐标的时间序列输入签名层进行数据预处理,在该层时间序列通过嵌入算法被转换为多维路径,将其划分为多条路径并计算每条路径的签名特征;其次重新设计GCN的关节邻接矩阵,并用反卷积来代替补零,以保持TCN的尺寸不变,还引入1×1的卷积核增加非线性来改进ST-GCN,得到改进时空图卷积网络SIT-GCN;最后用签名特征代替原始数据输入SITGCN,得到最终的输出结果。实验结果表明,基于路径签名的改进时空图卷积网络大大提高了训练精度,缩短了训练时间,对动态手势识别有较好的识别能力和识别速度。 展开更多
关键词 手势识别 路径签名 时空图卷积网络 监督学习 签名层
在线阅读 下载PDF
基于天气模式识别与时空图神经网络的新能源发电功率预测 被引量:6
14
作者 林琳 邓国新 樊浩 《电气自动化》 2023年第3期30-33,共4页
区域光伏功率预测有助于调度人员科学、合理地制定调度方案,但现有研究方法没有充分考虑功率输出的时间相关性和云移动造成的影响。为此,提出了一种基于天气条件识别的区域光伏功率时空图神经网络预测方法。考虑了光伏电站之间随天气条... 区域光伏功率预测有助于调度人员科学、合理地制定调度方案,但现有研究方法没有充分考虑功率输出的时间相关性和云移动造成的影响。为此,提出了一种基于天气条件识别的区域光伏功率时空图神经网络预测方法。考虑了光伏电站之间随天气条件的变化而变化的影响因素,并根据云层覆盖情况将历史光伏发电数据分为三类,根据不同类别设置不同的邻接矩阵。在时空图卷积网络(spatio-temporal graph convolutional network,STGCN)模型的基础上建立了三个子模型,分别通过图卷积神经网络捕捉空间相关性和门卷积神经网络捕捉时间相关性。最后,应用实际数据进行了仿真,并与图神经网络模型、长短期记忆网络模型和STGCN模型进行比较。结果表明,采用STGCN分类模型的方法在功率预测精度上有显著提高。 展开更多
关键词 模式识别 时空图卷积神经网络 门卷积神经网络 光伏发电 负荷预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部