期刊文献+
共找到56,352篇文章
< 1 2 250 >
每页显示 20 50 100
MissNet:Leveraging Pre-trained Network for Spatio-temporal Forecasting with Missing Observations
1
作者 Shen Fang Hongyan Liu Wei Hua 《Automotive Innovation》 2025年第2期293-303,共11页
Spatio-temporal forecasting is critical in the traffic domain,where accurate predictions are essential for effective urban traffic management,planning,and simulation.Despite the importance of complete historical obser... Spatio-temporal forecasting is critical in the traffic domain,where accurate predictions are essential for effective urban traffic management,planning,and simulation.Despite the importance of complete historical observations,missing values due to sensor failures,data transmission errors,and other issues are common,posing significant challenges to the accuracy and reliability of forecasting models.Existing methods often fail to systematically account for incomplete historical data,especially non-random data missing for extended periods.Fortunately,this study introduces the MissNet,a pre-training enhanced framework for spatio-temporal data forecasting in the presence of missing historical data.MissNet consists of a two-stage process:a pre-training stage where a data masking and recovering task is used to pre-train a backbone,and a finetuning stage where the pre-trained backbone,combined with a specially designed header,predicts future data incorporating spatio-temporal metadata as auxiliary information.Experimental results on real-world datasets demonstrate the effectiveness of MissNet in achieving stable and accurate predictions under various missing data scenarios. 展开更多
关键词 spatio-temporal data mining Pre-training Data fusion Traffic forecasting
原文传递
Forecasting solar cycles using the time-series dense encoder deep learning model
2
作者 Cui Zhao Shangbin Yang +1 位作者 Jianguo Liu Shiyuan Liu 《Astronomical Techniques and Instruments》 2026年第1期43-54,共12页
The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and na... The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and navigation systems.Consequently,accurately predicting the intensity of the SC holds great significance,but predicting the SC involves a long-term time series,and many existing time series forecasting methods have fallen short in terms of accuracy and efficiency.The Time-series Dense Encoder model is a deep learning solution tailored for long time series prediction.Based on a multi-layer perceptron structure,it outperforms the best previously existing models in accuracy,while being efficiently trainable on general datasets.We propose a method based on this model for SC forecasting.Using a trained model,we predict the test set from SC 19 to SC 25 with an average mean absolute percentage error of 32.02,root mean square error of 30.3,mean absolute error of 23.32,and R^(2)(coefficient of determination)of 0.76,outperforming other deep learning models in terms of accuracy and training efficiency on sunspot number datasets.Subsequently,we use it to predict the peaks of SC 25 and SC 26.For SC 25,the peak time has ended,but a stronger peak is predicted for SC 26,of 199.3,within a range of 170.8-221.9,projected to occur during April 2034. 展开更多
关键词 Solar cycle forecasting TIDE Deep learning
在线阅读 下载PDF
Day-Ahead Electricity Price Forecasting Using the XGBoost Algorithm: An Application to the Turkish Electricity Market
3
作者 Yagmur Yılan Ahad Beykent 《Computers, Materials & Continua》 2026年第1期1649-1664,共16页
Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies,hedge risk and plan generation schedules.By leveraging advanced data analytics and machine learning ... Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies,hedge risk and plan generation schedules.By leveraging advanced data analytics and machine learning methods,accurate and reliable price forecasts can be achieved.This study forecasts day-ahead prices in Türkiye’s electricity market using eXtreme Gradient Boosting(XGBoost).We benchmark XGBoost against four alternatives—Support Vector Machines(SVM),Long Short-Term Memory(LSTM),Random Forest(RF),and Gradient Boosting(GBM)—using 8760 hourly observations from 2023 provided by Energy Exchange Istanbul(EXIST).All models were trained on an identical chronological 80/20 train–test split,with hyperparameters tuned via 5-fold cross-validation on the training set.XGBoost achieved the best performance(Mean Absolute Error(MAE)=144.8 TRY/MWh,Root Mean Square Error(RMSE)=201.8 TRY/MWh,coefficient of determination(R^(2))=0.923)while training in 94 s.To enhance interpretability and identify key drivers,we employed Shapley Additive Explanations(SHAP),which highlighted a strong association between higher prices and increased natural-gas-based generation.The results provide a clear performance benchmark and practical guidance for selecting forecasting approaches in day-ahead electricity markets. 展开更多
关键词 Day-ahead electricity price forecasting machine learning XGBoost SHAP
在线阅读 下载PDF
A novel deep learning-based framework for forecasting
4
作者 Congqi Cao Ze Sun +2 位作者 Lanshu Hu Liujie Pan Yanning Zhang 《Atmospheric and Oceanic Science Letters》 2026年第1期22-26,共5页
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep... Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance. 展开更多
关键词 Weather forecasting Deep learning Semantic segmentation models Learnable Gaussian noise Cascade prediction
在线阅读 下载PDF
A Deep Spatio-Temporal Forecasting Model for Multi-Site Weather Prediction Post-Processing 被引量:4
5
作者 Wenjia Kong Haochen Li +3 位作者 Chen Yu Jiangjiang Xia Yanyan Kang Pingwen Zhang 《Communications in Computational Physics》 SCIE 2022年第1期131-153,共23页
In this paper, we propose a deep spatio-temporal forecasting model (DeepSTF) for multi-site weather prediction post-processing by using both temporal andspatial information. In our proposed framework, the spatio-tempo... In this paper, we propose a deep spatio-temporal forecasting model (DeepSTF) for multi-site weather prediction post-processing by using both temporal andspatial information. In our proposed framework, the spatio-temporal information ismodeled by a CNN (convolutional neural network) module and an encoder-decoderstructure with the attention mechanism. The novelty of our work lies in that our modeltakes full account of temporal and spatial characteristics and obtain forecasts of multiple meteorological stations simultaneously by using the same framework. We applythe DeepSTF model to short-term weather prediction at 226 meteorological stations inBeijing. It significantly improves the short-term forecasts compared to other widelyused benchmark models including the Model Output Statistics method. In order toevaluate the uncertainty of the model parameters, we estimate the confidence intervals by bootstrapping. The results show that the prediction accuracy of the DeepSTFmodel has strong stability. Finally, we evaluate the impact of seasonal changes and topographical differences on the accuracy of the model predictions. The results indicatethat our proposed model has high prediction accuracy. 展开更多
关键词 Weather forecasting POST-PROCESSING spatio-temporal modeling deep learning
原文传递
ST-SIGMA:Spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting 被引量:6
6
作者 Yang Fang Bei Luo +3 位作者 Ting Zhao Dong He Bingbing Jiang Qilie Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期744-757,共14页
Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges... Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges mentioned above with a single model.To tackle this dilemma,this paper proposes spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting(STSIGMA),an efficient end-to-end method to jointly and accurately perceive the AD environment and forecast the trajectories of the surrounding traffic agents within a unified framework.ST-SIGMA adopts a trident encoder-decoder architecture to learn scene semantics and agent interaction information on bird’s-eye view(BEV)maps simultaneously.Specifically,an iterative aggregation network is first employed as the scene semantic encoder(SSE)to learn diverse scene information.To preserve dynamic interactions of traffic agents,ST-SIGMA further exploits a spatio-temporal graph network as the graph interaction encoder.Meanwhile,a simple yet efficient feature fusion method to fuse semantic and interaction features into a unified feature space as the input to a novel hierarchical aggregation decoder for downstream prediction tasks is designed.Extensive experiments on the nuScenes data set have demonstrated that the proposed ST-SIGMA achieves significant improvements compared to the state-of-theart(SOTA)methods in terms of scene perception and trajectory forecasting,respectively.Therefore,the proposed approach outperforms SOTA in terms of model generalisation and robustness and is therefore more feasible for deployment in realworld AD scenarios. 展开更多
关键词 feature fusion graph interaction hierarchical aggregation scene perception scene semantics trajectory forecasting
在线阅读 下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
7
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
在线阅读 下载PDF
Natural and human-induced decline and spatio-temporal differentiation of terrestrial water storage over the Lancang-Mekong River Basin 被引量:2
8
作者 CHEN Junxu WANG Yuan +5 位作者 ZHAO Zhifang FAN Yunjiang LUO Xiaochuan YI Lu FENG Siqi YANG Liang Emlyn 《Journal of Geographical Sciences》 2025年第1期112-138,共27页
Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LM... Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012. 展开更多
关键词 spatio-temporal variation contribution separation GRACE Empirical Orthogonal Function Lancang-Mekong River
原文传递
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
9
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
Forecasting Solar Energy Production across Multiple Sites Using Deep Learning 被引量:1
10
作者 Samira Marhraoui Basma Saad +2 位作者 Hassan Silkan Said Laasri Asmaa El Hannani 《Energy Engineering》 2025年第7期2653-2672,共20页
Photovoltaic(PV)power forecasting is essential for balancing energy supply and demand in renewable energy systems.However,the performance of PV panels varies across different technologies due to differences in efficie... Photovoltaic(PV)power forecasting is essential for balancing energy supply and demand in renewable energy systems.However,the performance of PV panels varies across different technologies due to differences in efficiency and how they process solar radiation.This study evaluates the effectiveness of deep learning models in predicting PV power generation for three panel technologies:Hybrid-Si,Mono-Si,and Poly-Si,across three forecasting horizons:1-step,12-step,and 24-step.Among the tested models,the Convolutional Neural Network—Long Short-Term Memory(CNN-LSTM)architecture exhibited superior performance,particularly for the 24-step horizon,achieving R^(2)=0.9793 and MAE 0.0162 for the Poly-Si array,followed by Mono-Si(R^(2)=0.9768)and Hybrid-Si arrays(R^(2)=0.9769).These findings demonstrate that the CNN-LSTM model can provide accurate and reliable PV power predictions for all studied technologies.By identifying the most suitable predictive model for each panel technology,this study contributes to optimizing PV power forecasting and improving energy management strategies. 展开更多
关键词 CNN-LSTM deep learning models forecasting horizons PV energy prediction accuracy solar panel technologies
在线阅读 下载PDF
Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations 被引量:1
11
作者 Zhengjing Ma Gang Mei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期960-982,共23页
Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predict... Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors. 展开更多
关键词 GEOHAZARDS Landslide deformation forecasting Landslide predictability Knowledge infused deep learning interpretable machine learning Attention mechanism Transformer
在线阅读 下载PDF
How Do Deep Learning Forecasting Models Perform for Surface Variables in the South China Sea Compared to Operational Oceanography Forecasting Systems?
12
作者 Ziqing ZU Jiangjiang XIA +6 位作者 Xueming ZHU Marie DREVILLON Huier MO Xiao LOU Qian ZHOU Yunfei ZHANG Qing YANG 《Advances in Atmospheric Sciences》 2025年第1期178-189,共12页
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using... It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs. 展开更多
关键词 forecast error deep learning forecasting model operational oceanography forecasting system VALIDATION intercomparison
在线阅读 下载PDF
Spatio-Temporal Pattern and Socio-economic Influencing Factors of Tuberculosis Incidence in Guangdong Province:A Bayesian Spatiotemporal Analysis
13
作者 Huizhong Wu Xing Li +7 位作者 Jiawen Wang Ronghua Jian Jianxiong Hu Yijun Hu Yiting Xu Jianpeng Xiao Aiqiong Jin Liang Chen 《Biomedical and Environmental Sciences》 2025年第7期819-828,共10页
Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB ... Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB incidence were mapped using heat maps and hierarchical clustering.Socioenvironmental influencing factors were evaluated using a Bayesian spatiotemporal conditional autoregressive(ST-CAR)model.Results Annual incidence of TB in Guangdong decreased from 91.85/100,000 in 2010 to 53.06/100,000in 2019.Spatial hotspots were found in northeastern Guangdong,particularly in Heyuan,Shanwei,and Shantou,while Shenzhen,Dongguan,and Foshan had the lowest rates in the Pearl River Delta.The STCAR model showed that the TB risk was lower with higher per capita Gross Domestic Product(GDP)[Relative Risk(RR),0.91;95%Confidence Interval(CI):0.86–0.98],more the ratio of licensed physicians and physician(RR,0.94;95%CI:0.90-0.98),and higher per capita public expenditure(RR,0.94;95%CI:0.90–0.97),with a marginal effect of population density(RR,0.86;95%CI:0.86–1.00).Conclusion The incidence of TB in Guangdong varies spatially and temporally.Areas with poor economic conditions and insufficient healthcare resources are at an increased risk of TB infection.Strategies focusing on equitable health resource distribution and economic development are the key to TB control. 展开更多
关键词 TUBERCULOSIS BAYESIAN Social-economic factor spatio-temporal model
暂未订购
Improving Model Chain Approaches for Probabilistic Solar Energy Forecasting through Post-processing and Machine Learning
14
作者 Nina HORAT Sina KLERINGS Sebastian LERCH 《Advances in Atmospheric Sciences》 2025年第2期297-312,共16页
Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi... Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies. 展开更多
关键词 solar forecasting POST-PROCESSING probabilistic forecasting machine learning model chain
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
15
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long Short-Term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Time-Series Stock Price Forecasting Based on Neural Networks:A Comprehensive Survey
16
作者 Guangyang TIAN Yin YANG Shiping WEN 《Artificial Intelligence Science and Engineering》 2025年第4期255-277,共23页
As financial markets grow increasingly complex and volatile,timeseriesbased stock price forecasting has become a critical research focus in the field of finance.Traditional forecasting methods face significant limitat... As financial markets grow increasingly complex and volatile,timeseriesbased stock price forecasting has become a critical research focus in the field of finance.Traditional forecasting methods face significant limitations in handling nonlinear and high-dimensional data,while neural networks(NNs)have demonstrated great potential due to their powerful feature extraction and pattern recognition capabilities.Although several existing surveys discuss the applications of NNs in stock forecasting,they often lack a detailed examination of models that use time-series data as input and fail to cover the latest research developments.In response,this paper reviews relevant literature from 2015 to 2025 and classifies timeseriesbased stock forecasting methods into four categories:NNs,recurrent NNs(RNNs),convolutional NNs(CNNs),Transformers and other models.We analyze their performance under different market conditions,highlight strengths and limitations,and identify recent trends in model design.Our findings show that hybrid architectures and attention-based models consistently achieve superior forecasting stability and adaptability across volatile market scenarios.This survey offers a systematic reference for researchers and practitioners and outlines promising future research directions. 展开更多
关键词 stock price forecasting time-series forecasting neural networks Trans-former deep learning
在线阅读 下载PDF
Deep learning for air pollutant forecasting:opportunities,challenges,and future directions
17
作者 Chenliang Tao Yiheng Wang +2 位作者 Yuhao Wang Zhonghua Zheng Hongliang Zhang 《Frontiers of Environmental Science & Engineering》 2025年第12期263-277,共15页
Deep learning methods are increasingly employed to forecast air quality from an everincreasing stream of data and algorithms.However,the efficacy of current approaches may be questionable when evaluated not solely in ... Deep learning methods are increasingly employed to forecast air quality from an everincreasing stream of data and algorithms.However,the efficacy of current approaches may be questionable when evaluated not solely in terms of greater forecasting fidelity,but also concerning the decision-making process in pollution early warning.Here,rather than amending classical machine learning algorithms,we argue that now is the time to push the frontiers of air pollutant forecasting beyond state-of-the-art approaches.This can be achieved through near real-time assimilation of multiscale observations for laying the foundation of training data,enhanced attribution methods for impending heavy pollution,diagnostics for forecasting uncertainty,and advanced climate-chemistry emulators for improving seasonal forecasting.To harness this potential,it is essential to address several key challenges in deep learning methods,particularly generalization ability in extreme events,physics-informed interpretable approaches,and the mitigation technology of cumulative errors in multi-process coupled systems.This interdisciplinary endeavor will remain a central pursuit in the quest to anticipate and manage environmental change. 展开更多
关键词 Deep learning Air pollution forecasting Data assimilation Seasonal forecasting
原文传递
Demand Forecasting Tool Driving the Digital Twin of a Perishable Food Process
18
作者 Laura Lucantoni Stefano Croci +3 位作者 Giovanni Mazzuto Filippo Emanuele Ciarapica Maurizio Bevilacqua Severino Perenzoni 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2356-2358,共3页
Dear Editor,The food industry emphasizes improving demand forecasting to align production with consumer needs and reduce waste.This letter thus presents a study that integrates artificial intelligence(AI)and digital t... Dear Editor,The food industry emphasizes improving demand forecasting to align production with consumer needs and reduce waste.This letter thus presents a study that integrates artificial intelligence(AI)and digital twin(DT)technologies to enhance decision-making and efficiency in food production.A data-driven DT was implemented in an Italian company for Raspberry production planning,based on a daily demand forecasting tool powered by a dynamic extreme gradient boosting(XGBoost)algorithm.The model achieved a mean absolute percentage error(MAPE)of 16.37%with 1.69 average of absolute extra working hours(AEW)and a tracking signal(TS)range of[−1.9,+4.3]. 展开更多
关键词 improving demand forecasting demand forecasting daily demand forecasting tool dynamic extreme gradient artificial intelligence artificial intelligence ai align production digital twin dt technologies
在线阅读 下载PDF
Multivariate natural gas price forecasting model with feature selection,machine learning and chernobyl disaster optimizer
19
作者 Pei Du Xuan-Kai Zhang +1 位作者 Jun-Tao Du Jian-Zhou Wang 《Petroleum Science》 2025年第11期4823-4837,共15页
The significance of accurately forecasting natural gas prices is far-reaching and significant,not only for the stable operation of the energy market,but also as a key element in promoting sustainable development and a... The significance of accurately forecasting natural gas prices is far-reaching and significant,not only for the stable operation of the energy market,but also as a key element in promoting sustainable development and addressing environmental challenges.However,natural gas prices are affected by multiple source factors,presenting complex,unstable nonlinear characteristics hindering the improvement of the prediction accuracy of existing models.To address this issue,this study proposes an innovative multivariate combined forecasting model for natural gas prices.Initially,the study meticulously identifies and introduces 16 variables impacting natural gas prices across five crucial dimensions:the production,marketing,commodities,political and economic indicators of the United States and temperature.Subsequently,this study employs the least absolute shrinkage and selection operator,grey relation analysis,and random forest for dimensionality reduction,effectively screening out the most influential key variables to serve as input features for the subsequent learning model.Building upon this foundation,a suite of machine learning models is constructed to ensure precise natural gas price prediction.To further elevate the predictive performance,an intelligent algorithm for parameter optimization is incorporated,addressing potential limitations of individual models.To thoroughly assess the prediction accuracy of the proposed model,this study conducts three experiments using monthly natural gas trading prices.These experiments incorporate 19 benchmark models for comparative analysis,utilizing five evaluation metrics to quantify forecasting effectiveness.Furthermore,this study conducts in-depth validation of the proposed model's effectiveness through hypothesis testing,discussions on the improvement ratio of forecasting performance,and case studies on other energy prices.The empirical results demonstrate that the multivariate combined forecasting method developed in this study surpasses other comparative models in forecasting accuracy.It offers new perspectives and methodologies for natural gas price forecasting while also providing valuable insights for other energy price forecasting studies. 展开更多
关键词 Natural gas price forecasting Multivariate forecasting model Machine learning Chernobyl disaster optimizer
原文传递
Spatio-Temporal Assessment of Land Use Changes in Sonipat,Haryana:Socio Economic Impacts and Policy Intervention
20
作者 Niraj Kumar Tejbir Singh Rana +1 位作者 Subhash Anand Nishit 《Research in Ecology》 2025年第3期309-334,共26页
This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in So... This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in Sonipat have undergone notable transformation,as open spaces and agricultural lands are increasingly converted into residential colonies,commercial hubs,and industrial zones.While such changes reflect economic development and urban growth,they also raise critical concerns about sustainability,especially in terms of food security,groundwater depletion,and environmental degradation.The study examines land use changes between 2000 and 2024 using remote sensing techniques and spatial analysis.It further incorporates secondary data and insights from community-level interactions to assess the socio-economic and ecological impacts of this transformation.The findings indicate rising land fragmentation,loss of agricultural livelihoods,pressure on civic infrastructure,and increasing pollution—factors that threaten long-term regional sustainability.The study underscores the urgent need to reconcile urban development with environmental and social sustainability.By offering a detailed case study of Sonipat,this research contributes to the broader discourse on India’s urbanisation pathways.It aims to provide policymakers,planners,and researchers with evidence-based recommendations to manage land transitions more responsibly,promoting urban growth models that ensure ecological integrity,equitable development,and long-term resilience. 展开更多
关键词 Land Use spatio-temporal Dynamics Socio-Economic Impacts URBANIZATION POLICY
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部