期刊文献+
共找到1,339篇文章
< 1 2 67 >
每页显示 20 50 100
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
1
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
2
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
在线阅读 下载PDF
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
3
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
A local-global dynamic hypergraph convolution with multi-head flow attention for traffic flow forecasting
4
作者 ZHANG Hong LI Yang +3 位作者 LUO Shengjun ZHANG Pengcheng ZHANG Xijun YI Min 《High Technology Letters》 2025年第3期246-256,共11页
Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To... Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance. 展开更多
关键词 traffic flow prediction multi-head flow attention graph convolution hypergraph learning dynamic spatio-temporal properties
在线阅读 下载PDF
Dynamic Interaction-Aware Trajectory Prediction with Bidirectional Graph Attention Network
5
作者 Jun Li Kai Xu +4 位作者 Baozhu Chen Xiaohan Yang Mengting Sun Guojun Li HaoJie Du 《Computers, Materials & Continua》 2025年第11期3349-3368,共20页
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte... Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability. 展开更多
关键词 Pedestrian trajectory prediction spatio-temporal modeling bidirectional graph attention network autonomous system
在线阅读 下载PDF
A Dynamic Social Network Graph Anonymity Scheme with Community Structure Protection
6
作者 Yuanjing Hao Xuemin Wang +2 位作者 Liang Chang Long Li Mingmeng Zhang 《Computers, Materials & Continua》 2025年第2期3131-3159,共29页
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ... Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL. 展开更多
关键词 dynamic social network graph k-composition anonymity community structure protection graph publishing security and privacy
在线阅读 下载PDF
Recognition of carrier-based aircraft flight deck operations based on dynamic graph
7
作者 Xingyu GUO Jiaxin LI +3 位作者 Hua WANG Junnan LIU Yafei LI Mingliang XU 《Chinese Journal of Aeronautics》 2025年第3期474-490,共17页
Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-... Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-term and long-term spatial collaborative relationships among support agents and positions from long spatial–temporal trajectories. While the existing methods excel at recognizing collaborative behaviors from short trajectories, they often struggle with long spatial–temporal trajectories. To address this challenge, this paper introduces a dynamic graph method to enhance flight deck operation recognition. First, spatial–temporal collaborative relationships are modeled as a dynamic graph. Second, a discretized and compressed method is proposed to assign values to the states of this dynamic graph. To extract features that represent diverse collaborative relationships among agents and account for the duration of these relationships, a biased random walk is then conducted. Subsequently, the Swin Transformer is employed to comprehend spatial–temporal collaborative relationships, and a fully connected layer is applied to deck operation recognition. Finally, to address the scarcity of real datasets, a simulation pipeline is introduced to generate deck operations in virtual flight deck scenarios. Experimental results on the simulation dataset demonstrate the superior performance of the proposed method. 展开更多
关键词 Carrier-based aircraft Flight deck operation Operation recognition Long spatial-temporal trajectories dynamic graph Biased random walk graph embeddings
原文传递
Investigation of water structure and proton transfer within confined graphene by ab initio molecule dynamics and multiscale data analysis
8
作者 Heng-Su Liu Xi-Ming Zhang +2 位作者 Ge-Hao Liang Shisheng Zheng Jian-Feng Li 《Chinese Journal of Structural Chemistry》 2025年第6期41-49,共9页
The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there r... The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there remains a lack of consensus on fundamental properties such as diffusion behavior and the nature of hydrogen bonding in confined environments.In this work,we investigated the influence of confinement on proton transfer in water confined within graphene sheets at various spacings by ab initio molecule dynamic and multiscale analysis with time evolution of structural properties,graph theory and persistent homology.We found that reducing the graphene interlayer distance while maintaining water density close to that of bulk water leads to a decrease in proton transfer frequency.In contrast,reducing the interlayer distance without maintaining bulk-like water density results in an increase in proton transfer frequency.This difference is mainly due to the confinement conditions:when density is unchanged,the hydrogen bond network remains similar with significant layering,while compressive stress that increases density leads to a more planar hydrogen bond network,promoting faster proton transfer.Our findings elucidate the complex relationship between confinement and proton transfer dynamics,with implications for understanding proton transport in confined environments,relevant to energy storage and material design. 展开更多
关键词 Molecular dynamics graphENE Confined water graph theory Persistent homology
原文传递
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
9
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
Graph neural networks unveil universal dynamics in directed percolation
10
作者 Ji-Hui Han Cheng-Yi Zhang +3 位作者 Gao-Gao Dong Yue-Feng Shi Long-Feng Zhao Yi-Jiang Zou 《Chinese Physics B》 2025年第8期540-545,共6页
Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investig... Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains. 展开更多
关键词 graph neural networks non-equilibrium phase transition directed percolation model nonlinear dynamics
原文传递
UGEA-LMD: A Continuous-Time Dynamic Graph Representation Enhancement Framework for Lateral Movement Detection
11
作者 Jizhao Liu Yuanyuan Shao +2 位作者 Shuqin Zhang Fangfang Shan Jun Li 《Computers, Materials & Continua》 2026年第1期1924-1943,共20页
Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address thes... Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios. 展开更多
关键词 Advanced persistent threat(APTs) lateral movement detection continuous-time dynamic graph data enhancement
在线阅读 下载PDF
Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography 被引量:6
12
作者 DONG Yin JIN Gui +1 位作者 DENG Xiangzheng WU Feng 《Journal of Geographical Sciences》 SCIE CSCD 2021年第1期130-148,共19页
Exploring the spatio-temporal dynamics of poverty is important for research on sustainable poverty reduction in China. Based on the perspective of development geography, this paper proposes a panel vector autoregressi... Exploring the spatio-temporal dynamics of poverty is important for research on sustainable poverty reduction in China. Based on the perspective of development geography, this paper proposes a panel vector autoregressive(PVAR) model that combines the human development approach with the global indicator framework for Sustainable Development Goals(SDGs) to identify the poverty-causing and the poverty-reducing factors in China. The aim is to measure the multidimensional poverty index(MPI) of China’s provinces from 2007 to 2017, and use the exploratory spatio-temporal data analysis(ESTDA) method to reveal the characteristics of the spatio-temporal dynamics of multidimensional poverty. The results show the following:(1) The poverty-causing factors in China include the high social gross dependency ratio and crop-to-disaster ratio, and the poverty-reducing factors include the high per capita GDP, per capita social security expenditure, per capita public health expenditure, number of hospitals per 10,000 people, rate of participation in the new rural cooperative medical scheme, vegetation coverage, per capita education expenditure, number of universities, per capita research and development(R&D) expenditure, and funding per capita for cultural undertakings.(2) From 2007 to 2017, provincial income poverty(IP), health poverty(HP), cultural poverty(CP), and multidimensional poverty have been significantly reduced in China, and the overall national poverty has dropped by 5.67% annually. there is a differentiation in poverty along different dimensions in certain provinces.(3) During the study period, the local spatial pattern of multidimensional poverty between provinces showed strong spatial dynamics, and a trend of increase from the eastern to the central and western regions was noted. The MPI among provinces exhibited a strong spatial dependence over time to form a pattern of decrease from northwestern and northeastern China to the surrounding areas.(4) The spatio-temporal networks of multidimensional poverty in adjacent provinces were mainly negatively correlated, with only Shaanxi and Henan, Shaanxi and Ningxia, Qinghai and Gansu, Hubei and Anhui, Sichuan and Guizhou, and Hainan and Guangdong forming spatially strong cooperative poverty reduction relationships. These results have important reference value for the implementation of China’s poverty alleviation strategy. 展开更多
关键词 development geography multidimensional poverty poverty measurement spatio-temporal dynamics collaborative poverty reduction
原文传递
Spatio-Temporal Assessment of Land Use Changes in Sonipat,Haryana:Socio Economic Impacts and Policy Intervention
13
作者 Niraj Kumar Tejbir Singh Rana +1 位作者 Subhash Anand Nishit 《Research in Ecology》 2025年第3期309-334,共26页
This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in So... This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in Sonipat have undergone notable transformation,as open spaces and agricultural lands are increasingly converted into residential colonies,commercial hubs,and industrial zones.While such changes reflect economic development and urban growth,they also raise critical concerns about sustainability,especially in terms of food security,groundwater depletion,and environmental degradation.The study examines land use changes between 2000 and 2024 using remote sensing techniques and spatial analysis.It further incorporates secondary data and insights from community-level interactions to assess the socio-economic and ecological impacts of this transformation.The findings indicate rising land fragmentation,loss of agricultural livelihoods,pressure on civic infrastructure,and increasing pollution—factors that threaten long-term regional sustainability.The study underscores the urgent need to reconcile urban development with environmental and social sustainability.By offering a detailed case study of Sonipat,this research contributes to the broader discourse on India’s urbanisation pathways.It aims to provide policymakers,planners,and researchers with evidence-based recommendations to manage land transitions more responsibly,promoting urban growth models that ensure ecological integrity,equitable development,and long-term resilience. 展开更多
关键词 Land Use spatio-temporal dynamics Socio-Economic Impacts URBANIZATION POLICY
在线阅读 下载PDF
An Arrhythmia Intelligent Recognition Method Based on a Multimodal Information and Spatio-Temporal Hybrid Neural Network Model
14
作者 Xinchao Han Aojun Zhang +6 位作者 Runchuan Li Shengya Shen Di Zhang Bo Jin Longfei Mao Linqi Yang Shuqin Zhang 《Computers, Materials & Continua》 2025年第2期3443-3465,共23页
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to... Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness. 展开更多
关键词 Multimodal learning spatio-temporal hybrid graph convolutional network data imbalance ECG classification
在线阅读 下载PDF
An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
15
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期506-520,共15页
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc... Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment. 展开更多
关键词 Anomaly detection spatio-temporal informa-tion Multivariate time series signals Attention graph convolution Stacked autoencoder
原文传递
Position-Aware and Subgraph Enhanced Dynamic Graph Contrastive Learning on Discrete-Time Dynamic Graph
16
作者 Jian Feng Tian Liu Cailing Du 《Computers, Materials & Continua》 SCIE EI 2024年第11期2895-2909,共15页
Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information ... Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information when learning discrete snapshots,resulting in insufficient network topology learning.At the same time,due to the lack of appropriate data augmentation methods,it is difficult to capture the evolving patterns of the network effectively.To address the above problems,a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs.Firstly,the global snapshot is built based on the historical snapshots to express the stable pattern of the dynamic graph,and the random walk is used to obtain the position representation by learning the positional information of the nodes.Secondly,a new data augmentation method is carried out from the perspectives of short-term changes and long-term stable structures of dynamic graphs.Specifically,subgraph sampling based on snapshots and global snapshots is used to obtain two structural augmentation views,and node structures and evolving patterns are learned by combining graph neural network,gated recurrent unit,and attention mechanism.Finally,the quality of node representation is improved by combining the contrastive learning between different structural augmentation views and between the two representations of structure and position.Experimental results on four real datasets show that the performance of the proposed method is better than the existing unsupervised methods,and it is more competitive than the supervised learning method under a semi-supervised setting. 展开更多
关键词 dynamic graph representation learning graph contrastive learning structure representation position representation evolving pattern
在线阅读 下载PDF
Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network
17
作者 Zhao-Qin Huang Zhao-Xu Wang +4 位作者 Hui-Fang Hu Shi-Ming Zhang Yong-Xing Liang Qi Guo Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1062-1080,共19页
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi... The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil. 展开更多
关键词 graph neural network dynamic interwell connectivity Production-injection splitting Attention mechanism Multi-layer reservoir
原文传递
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
18
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
在线阅读 下载PDF
A significant wave height prediction method with ocean characteristics fusion and spatiotemporal dynamic graph modeling
19
作者 Xiao Yin Taoxing Wu +2 位作者 Jie Yu Xiaoyu He Lingyu Xu 《Acta Oceanologica Sinica》 CSCD 2024年第12期13-33,共21页
Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave energy.Deep learning methods such as recurrent and convolutional neural networks have achieved good results in S... Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave energy.Deep learning methods such as recurrent and convolutional neural networks have achieved good results in SWH forecasting.However,these methods do not adapt well to dynamic seasonal variations in wave data.In this study,we propose a novel method—the spatiotemporal dynamic graph(STDG)neural network.This method predicts the SWH of multiple nodes based on dynamic graph modeling and multi-characteristic fusion.First,considering the dynamic seasonal variations in the wave direction over time,the network models wave dynamic spatial dependencies from long-and short-term pattern perspectives.Second,to correlate multiple characteristics with SWH,the network introduces a cross-characteristic transformer to effectively fuse multiple characteristics.Finally,we conducted experiments on two datasets from the South China Sea and East China Sea to validate the proposed method and compared it with five prediction methods in the three categories.The experimental results show that the proposed method achieves the best performance at all predictive scales and has greater advantages for extreme value prediction.Furthermore,an analysis of the dynamic graph shows that the proposed method captures the seasonal variation mechanism of the waves. 展开更多
关键词 significant wave height forecasting dynamic seasonal variation dynamic graph neural networks
在线阅读 下载PDF
Spatio-temporal dynamics of vegetation in Jungar Banner of China during 2000–2017 被引量:5
20
作者 LI Xinhui LEI Shaogang +2 位作者 CHENG Wei LIU Feng WANG Weizhong 《Journal of Arid Land》 SCIE CSCD 2019年第6期837-854,共18页
It is known that the exploitation of opencast coal mines has seriously damaged the environments in the semi-arid areas.Vegetation status can reliably reflect the ecological degeneration and restoration in the opencast... It is known that the exploitation of opencast coal mines has seriously damaged the environments in the semi-arid areas.Vegetation status can reliably reflect the ecological degeneration and restoration in the opencast mining areas in the semi-arid areas.Long-time series MODIS NDVI data are widely used to simulate the vegetation cover to reflect the disturbance and restoration of local ecosystems.In this study, both qualitative(linear regression method and coefficient of variation(CoV)) and quantitative(spatial buffer analysis, and change amplitude and the rate of change in the average NDVI) analyses were conducted to analyze the spatio-temporal dynamics of vegetation during 2000–2017 in Jungar Banner of Inner Mongolia Autonomous Region, China, at the large(Jungar Banner and three mine groups) and small(three types of functional areas: opencast coal mining excavation areas, reclamation areas and natural areas) scales.The results show that the rates of change in the average NDVI in the reclamation areas(20%–60%) and opencast coal mining excavation areas(10%–20%) were considerably higher than that in the natural areas(<7%).The vegetation in the reclamation areas experienced a trend of increase(3–5 a after reclamation)-decrease(the sixth year of reclamation)-stability.The vegetation in Jungar Banner has a spatial heterogeneity under the influences of mining and reclamation activities.The ratio of vegetation improvement area to vegetation degradation area in the west, southwest and east mine groups during 2000–2017 was 8:1, 20:1 and 33:1, respectively.The regions with the high CoV of NDVI above 0.45 were mainly distributed around the opencast coal mining excavation areas, and the regions with the CoV of NDVI above 0.25 were mostly located in areas with low(28.8%) and medium-low(10.2%) vegetation cover.The average disturbance distances of mining activities on vegetation in the three mine groups(west, southwest and east) were 800, 800 and 1000 m, respectively.The greater the scale of mining, the farther the disturbance distances of mining activities on vegetation.We conclude that vegetation reclamation will certainly compensate for the negative impacts of opencast coal mining activities on vegetation.Sufficient attention should be paid to the proportional allocation of plant species(herbs and shrubs) in the reclamation areas, and the restored vegetation in these areas needs to be protected for more than 6 a.Then, as the repair time increased, the vegetation condition of the reclamation areas would exceed that of the natural areas. 展开更多
关键词 NDVI spatio-temporal dynamics linear regression method mining activities opencast coal mining areas reclamation areas Jungar Banner
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部