期刊文献+
共找到1,379篇文章
< 1 2 69 >
每页显示 20 50 100
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
1
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
2
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
UGEA-LMD: A Continuous-Time Dynamic Graph Representation Enhancement Framework for Lateral Movement Detection
3
作者 Jizhao Liu Yuanyuan Shao +2 位作者 Shuqin Zhang Fangfang Shan Jun Li 《Computers, Materials & Continua》 2026年第1期1924-1943,共20页
Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address thes... Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios. 展开更多
关键词 Advanced persistent threat(APTs) lateral movement detection continuous-time dynamic graph data enhancement
在线阅读 下载PDF
Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography 被引量:6
4
作者 DONG Yin JIN Gui +1 位作者 DENG Xiangzheng WU Feng 《Journal of Geographical Sciences》 SCIE CSCD 2021年第1期130-148,共19页
Exploring the spatio-temporal dynamics of poverty is important for research on sustainable poverty reduction in China. Based on the perspective of development geography, this paper proposes a panel vector autoregressi... Exploring the spatio-temporal dynamics of poverty is important for research on sustainable poverty reduction in China. Based on the perspective of development geography, this paper proposes a panel vector autoregressive(PVAR) model that combines the human development approach with the global indicator framework for Sustainable Development Goals(SDGs) to identify the poverty-causing and the poverty-reducing factors in China. The aim is to measure the multidimensional poverty index(MPI) of China’s provinces from 2007 to 2017, and use the exploratory spatio-temporal data analysis(ESTDA) method to reveal the characteristics of the spatio-temporal dynamics of multidimensional poverty. The results show the following:(1) The poverty-causing factors in China include the high social gross dependency ratio and crop-to-disaster ratio, and the poverty-reducing factors include the high per capita GDP, per capita social security expenditure, per capita public health expenditure, number of hospitals per 10,000 people, rate of participation in the new rural cooperative medical scheme, vegetation coverage, per capita education expenditure, number of universities, per capita research and development(R&D) expenditure, and funding per capita for cultural undertakings.(2) From 2007 to 2017, provincial income poverty(IP), health poverty(HP), cultural poverty(CP), and multidimensional poverty have been significantly reduced in China, and the overall national poverty has dropped by 5.67% annually. there is a differentiation in poverty along different dimensions in certain provinces.(3) During the study period, the local spatial pattern of multidimensional poverty between provinces showed strong spatial dynamics, and a trend of increase from the eastern to the central and western regions was noted. The MPI among provinces exhibited a strong spatial dependence over time to form a pattern of decrease from northwestern and northeastern China to the surrounding areas.(4) The spatio-temporal networks of multidimensional poverty in adjacent provinces were mainly negatively correlated, with only Shaanxi and Henan, Shaanxi and Ningxia, Qinghai and Gansu, Hubei and Anhui, Sichuan and Guizhou, and Hainan and Guangdong forming spatially strong cooperative poverty reduction relationships. These results have important reference value for the implementation of China’s poverty alleviation strategy. 展开更多
关键词 development geography multidimensional poverty poverty measurement spatio-temporal dynamics collaborative poverty reduction
原文传递
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
5
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
在线阅读 下载PDF
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
6
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
A local-global dynamic hypergraph convolution with multi-head flow attention for traffic flow forecasting
7
作者 ZHANG Hong LI Yang +3 位作者 LUO Shengjun ZHANG Pengcheng ZHANG Xijun YI Min 《High Technology Letters》 2025年第3期246-256,共11页
Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To... Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance. 展开更多
关键词 traffic flow prediction multi-head flow attention graph convolution hypergraph learning dynamic spatio-temporal properties
在线阅读 下载PDF
Dynamic Interaction-Aware Trajectory Prediction with Bidirectional Graph Attention Network
8
作者 Jun Li Kai Xu +4 位作者 Baozhu Chen Xiaohan Yang Mengting Sun Guojun Li HaoJie Du 《Computers, Materials & Continua》 2025年第11期3349-3368,共20页
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte... Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability. 展开更多
关键词 Pedestrian trajectory prediction spatio-temporal modeling bidirectional graph attention network autonomous system
在线阅读 下载PDF
A Dynamic Social Network Graph Anonymity Scheme with Community Structure Protection
9
作者 Yuanjing Hao Xuemin Wang +2 位作者 Liang Chang Long Li Mingmeng Zhang 《Computers, Materials & Continua》 2025年第2期3131-3159,共29页
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ... Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL. 展开更多
关键词 dynamic social network graph k-composition anonymity community structure protection graph publishing security and privacy
在线阅读 下载PDF
Recognition of carrier-based aircraft flight deck operations based on dynamic graph
10
作者 Xingyu GUO Jiaxin LI +3 位作者 Hua WANG Junnan LIU Yafei LI Mingliang XU 《Chinese Journal of Aeronautics》 2025年第3期474-490,共17页
Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-... Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-term and long-term spatial collaborative relationships among support agents and positions from long spatial–temporal trajectories. While the existing methods excel at recognizing collaborative behaviors from short trajectories, they often struggle with long spatial–temporal trajectories. To address this challenge, this paper introduces a dynamic graph method to enhance flight deck operation recognition. First, spatial–temporal collaborative relationships are modeled as a dynamic graph. Second, a discretized and compressed method is proposed to assign values to the states of this dynamic graph. To extract features that represent diverse collaborative relationships among agents and account for the duration of these relationships, a biased random walk is then conducted. Subsequently, the Swin Transformer is employed to comprehend spatial–temporal collaborative relationships, and a fully connected layer is applied to deck operation recognition. Finally, to address the scarcity of real datasets, a simulation pipeline is introduced to generate deck operations in virtual flight deck scenarios. Experimental results on the simulation dataset demonstrate the superior performance of the proposed method. 展开更多
关键词 Carrier-based aircraft Flight deck operation Operation recognition Long spatial-temporal trajectories dynamic graph Biased random walk graph embeddings
原文传递
Investigation of water structure and proton transfer within confined graphene by ab initio molecule dynamics and multiscale data analysis
11
作者 Heng-Su Liu Xi-Ming Zhang +2 位作者 Ge-Hao Liang Shisheng Zheng Jian-Feng Li 《Chinese Journal of Structural Chemistry》 2025年第6期41-49,共9页
The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there r... The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there remains a lack of consensus on fundamental properties such as diffusion behavior and the nature of hydrogen bonding in confined environments.In this work,we investigated the influence of confinement on proton transfer in water confined within graphene sheets at various spacings by ab initio molecule dynamic and multiscale analysis with time evolution of structural properties,graph theory and persistent homology.We found that reducing the graphene interlayer distance while maintaining water density close to that of bulk water leads to a decrease in proton transfer frequency.In contrast,reducing the interlayer distance without maintaining bulk-like water density results in an increase in proton transfer frequency.This difference is mainly due to the confinement conditions:when density is unchanged,the hydrogen bond network remains similar with significant layering,while compressive stress that increases density leads to a more planar hydrogen bond network,promoting faster proton transfer.Our findings elucidate the complex relationship between confinement and proton transfer dynamics,with implications for understanding proton transport in confined environments,relevant to energy storage and material design. 展开更多
关键词 Molecular dynamics graphENE Confined water graph theory Persistent homology
原文传递
Graph neural networks unveil universal dynamics in directed percolation
12
作者 Ji-Hui Han Cheng-Yi Zhang +3 位作者 Gao-Gao Dong Yue-Feng Shi Long-Feng Zhao Yi-Jiang Zou 《Chinese Physics B》 2025年第8期540-545,共6页
Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investig... Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains. 展开更多
关键词 graph neural networks non-equilibrium phase transition directed percolation model nonlinear dynamics
原文传递
A Knowledge Push Method of Complex Product Assembly Process Design Based on Distillation Model-Based Dynamically Enhanced Graph and Bayesian Network
13
作者 Fengque Pei Yaojie Lin +2 位作者 Jianhua Liu Cunbo Zhuang Sikuan Zhai 《Chinese Journal of Mechanical Engineering》 2025年第6期117-134,共18页
Under the paradigm of Industry 5.0,intelligent manufacturing transcends mere efficiency enhancement by emphasizing human-machine collaboration,where human expertise plays a central role in assembly processes.Despite a... Under the paradigm of Industry 5.0,intelligent manufacturing transcends mere efficiency enhancement by emphasizing human-machine collaboration,where human expertise plays a central role in assembly processes.Despite advancements in intelligent and digital technologies,assembly process design still heavily relies on manual knowledge reuse,and inefficiencies and inconsistent quality in process documentation are caused.To address the aforementioned issues,this paper proposes a knowledge push method of complex product assembly process design based on distillation model-based dynamically enhanced graph and Bayesian network.First,an initial knowledge graph is constructed using a BERT-BiLSTM-CRF model trained with integrated human expertise and a fine-tuned large language model.Then,a confidence-based dynamic weighted fusion strategy is employed to achieve dynamic incremental construction of the knowledge graph with low resource consumption.Subsequently,a Bayesian network model is constructed based on the relationships between assembly components,assembly features,and operations.Bayesian network reasoning is used to push assembly process knowledge under different design requirements.Finally,the feasibility of the Bayesian network construction method and the effectiveness of Bayesian network reasoning are verified through a specific example,significantly improving the utilization of assembly process knowledge and the efficiency of assembly process design. 展开更多
关键词 Complex product assembly process Large language model dynamic incremental construction of knowledge graph Bayesian network Knowledge push
在线阅读 下载PDF
Spatio-temporal dynamics of vegetation in Jungar Banner of China during 2000–2017 被引量:5
14
作者 LI Xinhui LEI Shaogang +2 位作者 CHENG Wei LIU Feng WANG Weizhong 《Journal of Arid Land》 SCIE CSCD 2019年第6期837-854,共18页
It is known that the exploitation of opencast coal mines has seriously damaged the environments in the semi-arid areas.Vegetation status can reliably reflect the ecological degeneration and restoration in the opencast... It is known that the exploitation of opencast coal mines has seriously damaged the environments in the semi-arid areas.Vegetation status can reliably reflect the ecological degeneration and restoration in the opencast mining areas in the semi-arid areas.Long-time series MODIS NDVI data are widely used to simulate the vegetation cover to reflect the disturbance and restoration of local ecosystems.In this study, both qualitative(linear regression method and coefficient of variation(CoV)) and quantitative(spatial buffer analysis, and change amplitude and the rate of change in the average NDVI) analyses were conducted to analyze the spatio-temporal dynamics of vegetation during 2000–2017 in Jungar Banner of Inner Mongolia Autonomous Region, China, at the large(Jungar Banner and three mine groups) and small(three types of functional areas: opencast coal mining excavation areas, reclamation areas and natural areas) scales.The results show that the rates of change in the average NDVI in the reclamation areas(20%–60%) and opencast coal mining excavation areas(10%–20%) were considerably higher than that in the natural areas(<7%).The vegetation in the reclamation areas experienced a trend of increase(3–5 a after reclamation)-decrease(the sixth year of reclamation)-stability.The vegetation in Jungar Banner has a spatial heterogeneity under the influences of mining and reclamation activities.The ratio of vegetation improvement area to vegetation degradation area in the west, southwest and east mine groups during 2000–2017 was 8:1, 20:1 and 33:1, respectively.The regions with the high CoV of NDVI above 0.45 were mainly distributed around the opencast coal mining excavation areas, and the regions with the CoV of NDVI above 0.25 were mostly located in areas with low(28.8%) and medium-low(10.2%) vegetation cover.The average disturbance distances of mining activities on vegetation in the three mine groups(west, southwest and east) were 800, 800 and 1000 m, respectively.The greater the scale of mining, the farther the disturbance distances of mining activities on vegetation.We conclude that vegetation reclamation will certainly compensate for the negative impacts of opencast coal mining activities on vegetation.Sufficient attention should be paid to the proportional allocation of plant species(herbs and shrubs) in the reclamation areas, and the restored vegetation in these areas needs to be protected for more than 6 a.Then, as the repair time increased, the vegetation condition of the reclamation areas would exceed that of the natural areas. 展开更多
关键词 NDVI spatio-temporal dynamics linear regression method mining activities opencast coal mining areas reclamation areas Jungar Banner
在线阅读 下载PDF
Dynamic evolution trend of comprehensive transportation green efficiency in China:From a spatio-temporal interaction perspective 被引量:3
15
作者 MA Qifei JIA Peng +1 位作者 SUN Caizhi KUANG Haibo 《Journal of Geographical Sciences》 SCIE CSCD 2022年第3期477-498,共22页
It is urgent and important to explore the dynamic evolution in comprehensive transportation green efficiency(CTGE)in the context of green development.We constructed a social development index that reflects the social ... It is urgent and important to explore the dynamic evolution in comprehensive transportation green efficiency(CTGE)in the context of green development.We constructed a social development index that reflects the social benefits of transportation services,and incorporated it into the comprehensive transportation efficiency evaluation framework as an expected output.Based on the panel data of 30 regions in China from 2003-2018,the CTGE in China was measured using the slacks-based measure-data envelopment analysis(SBM-DEA)model.Further,the dynamic evolution trends of CTGE were determined using the spatial Markov model and exploratory spatio-temporal data analysis(ESTDA)technique from a spatio-temporal perspective.The results showed that the CTGE shows a U-shaped change trend but with an overall low level and significant regional differences.The state transition of CTGE has a strong spatial dependence,and there exists the phenomenon of“club convergence”.Neighbourhood background has a significant impact on the CTGE transition types,and the spatial spillover effect is pronounced.The CTGE has an obvious positive correlation and spatial agglomeration characteristics.The geometric characteristics of the LISA time path show that the evolution process of local spatial structure and local spatial dependence of China’s CTGE is stable,but the integration of spatial evolution is weak.The spatio-temporal transition results of LISA indicate that the CTGE has obvious transfer inertness and has certain path-dependence and spatial locking characteristics,which will become the major difficulty in improving the CTGE. 展开更多
关键词 comprehensive transportation green efficiency spatio-temporal interaction dynamic evolution trend spatial markov model exploratory spatio-temporal data analysis
原文传递
Fusing multi-source data to map spatio-temporal dynamics of winter rape on the Jianghan Plain and Dongting Lake Plain, China 被引量:2
16
作者 TAO Jian-bin LIU Wen-bin +2 位作者 TAN Wen-xia KONG Xiang-bing XU Meng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第10期2393-2407,共15页
Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role... Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties. 展开更多
关键词 WINTER rape spatio-temporal dynamics time-series MODIS data artificial NEURAL network
在线阅读 下载PDF
Analysis of Spatio-Temporal Dynamics of Land Use in the Bouba Ndjidda National Park and Its Adjacent Zone (North Cameroun) 被引量:2
17
作者 José Elvire Boukeng Djiongo André Desrochers +3 位作者 Marie Louise Tiencheu Avana Damase Khasa Louis Zapfack éric Fotsing 《Open Journal of Forestry》 2020年第1期39-57,共19页
We evaluated the dynamics of land use in the Bouba Ndjidda National Park (BNNP) and adjacent areas, in northern Cameroon. Using a maximum likelihood supervised classification of satellite images from 1990 to 2016, cou... We evaluated the dynamics of land use in the Bouba Ndjidda National Park (BNNP) and adjacent areas, in northern Cameroon. Using a maximum likelihood supervised classification of satellite images from 1990 to 2016, coupled with field and a socio-economic survey, we performed a robust land-use classification. Between 1990 and 2016, the area included eight classes of land use, with the largest in 1990 being the woody savannah (42.9%) followed by the gallery forest (20.2%) and the clear forest (16.3%). Between 1990 and 1999, the gallery forest lost 64.8% of its area mostly to the benefit of woody savannahs. Between 1999 and 2016, the largest loss of area was that of the clear forest, which decreased generally by 43.2% in favor of woody savannah. Rates of increase of crop field areas were 59.6% and 78.8% respectively for the periods of 1990 to 1999 and 1999 to 2016 to the detriment of woody savannahs. We attribute the changes in land use observed mainly to the increasing human population and associated agriculture, overgrazing, fuelwood harvesting and bush fires. The exploitation of non-timber forest products and climatic factors may also have changed the vegetation cover. We recommend the implementation of farming techniques with low impact on the environment such as agroforestry. 展开更多
关键词 Remote Sensing spatio-temporal dynamics Bouba Ndjidda National PARK VEGETATION COVER Land Use
在线阅读 下载PDF
Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992–2013 被引量:2
18
作者 XU Pengfei LIN Muying JIN Pingbin 《Chinese Geographical Science》 SCIE CSCD 2021年第1期70-80,共11页
Understanding the dynamics of urbanization is essential to the sustainable development of cities. Meanwhile the analysis of urban development can also provide scientifically and effective information for decision-maki... Understanding the dynamics of urbanization is essential to the sustainable development of cities. Meanwhile the analysis of urban development can also provide scientifically and effective information for decision-making. With the long-term Defense Meteorological Satellite Program’s Operational Linescan System(DMSP/OLS) nighttime light images, a pixel level assessment of urbanization of China from 1992 to 2013 was conducted in this study, and the spatio-temporal dynamics and future trends of urban development were fully detected. The results showed that the urbanization and urban dynamics of China experienced drastic fluctuations from 1992 to 2013, especially for those in the coastal and metropolitan areas. From a regional perspective, it was found that the urban dynamics and increasing trends in North Coast China, East Coast China and South Coast China were much more stable and significant than that in other regions. Moreover, with the sustainability estimating of nighttime light dynamics, the regional agglomeration trends of urban regions were also detected. The light intensity in nearly 50% of lighted pixels may continuously decrease in the future, indicating a severe situation of urbanization within these regions. In this study, The results revealed in this study can provided a new insight in long time urbanization detecting and is thus beneficial to the better understanding of trends and dynamics of urban development. 展开更多
关键词 Defense Meteorological Satellite Program’s Operational Linescan System(DMSP/OLS)nighttime light URBANIZATION pixel level detection spatio-temporal dynamics future trends
在线阅读 下载PDF
Dynamic airspace configuration method based on a weighted graph model 被引量:8
19
作者 Chen Yangzhou Zhang Defu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第4期903-912,共10页
This paper proposes a new method for dynamic airspace configuration based on a weighted graph model. The method begins with the construction of an undirected graph for the given airspace, where the vertices represent ... This paper proposes a new method for dynamic airspace configuration based on a weighted graph model. The method begins with the construction of an undirected graph for the given airspace, where the vertices represent those key points such as airports, waypoints, and the edges represent those air routes. Those vertices are used as the sites of Voronoi diagram, which divides the airspace into units called as cells. Then, aircraft counts of both each cell and of each air-route are computed. Thus, by assigning both the vertices and the edges with those aircraft counts, a weighted graph model comes into being. Accordingly the airspace configuration problem is described as a weighted graph partitioning problem. Then, the problem is solved by a graph partitioning algorithm, which is a mixture of general weighted graph cuts algorithm, an optimal dynamic load balancing algorithm and a heuristic algorithm. After the cuts algorithm partitions the model into sub-graphs, the load balancing algorithm together with the heuristic algorithm transfers aircraft counts to balance workload among sub-graphs. Lastly, airspace configuration is completed by determining the sector boundaries. The simulation result shows that the designed sectors satisfy not only workload balancing condition, but also the constraints such as convexity, connectivity, as well as minimum distance constraint. 展开更多
关键词 Airspace sector Air traffic control dynamic airspace configuration graph partitioning graph theory Weighted graph WORKLOAD
原文传递
The bond graph model of planar flexible multibody mechanical systems and its dynamic principle 被引量:5
20
作者 王中双 陆念力 陈集 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第1期6-11,共6页
In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint o... In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible muhibody mechanical systems by bond graphs and its dynamic principle are deseribed. To overcome the algebraic difficulty brought by differential causality anti nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example. 展开更多
关键词 flexible multibody system coupling dynamics bond graph dynamic principle
在线阅读 下载PDF
上一页 1 2 69 下一页 到第
使用帮助 返回顶部