It is urgent and important to explore the dynamic evolution in comprehensive transportation green efficiency(CTGE)in the context of green development.We constructed a social development index that reflects the social ...It is urgent and important to explore the dynamic evolution in comprehensive transportation green efficiency(CTGE)in the context of green development.We constructed a social development index that reflects the social benefits of transportation services,and incorporated it into the comprehensive transportation efficiency evaluation framework as an expected output.Based on the panel data of 30 regions in China from 2003-2018,the CTGE in China was measured using the slacks-based measure-data envelopment analysis(SBM-DEA)model.Further,the dynamic evolution trends of CTGE were determined using the spatial Markov model and exploratory spatio-temporal data analysis(ESTDA)technique from a spatio-temporal perspective.The results showed that the CTGE shows a U-shaped change trend but with an overall low level and significant regional differences.The state transition of CTGE has a strong spatial dependence,and there exists the phenomenon of“club convergence”.Neighbourhood background has a significant impact on the CTGE transition types,and the spatial spillover effect is pronounced.The CTGE has an obvious positive correlation and spatial agglomeration characteristics.The geometric characteristics of the LISA time path show that the evolution process of local spatial structure and local spatial dependence of China’s CTGE is stable,but the integration of spatial evolution is weak.The spatio-temporal transition results of LISA indicate that the CTGE has obvious transfer inertness and has certain path-dependence and spatial locking characteristics,which will become the major difficulty in improving the CTGE.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
Exploring the spatial evolution patterns of land use in creative urban tourism complexes provides theoretical and decision-making support to foster creative tourism projects.This study focuses on the Hangzhou Leisure ...Exploring the spatial evolution patterns of land use in creative urban tourism complexes provides theoretical and decision-making support to foster creative tourism projects.This study focuses on the Hangzhou Leisure Expo Garden as a case study,utilizing a land use change index model to analyze the spatial evolution characteristics and dynamic processes of creative urban tourism complexes,as well as to explore their spatial differentiation mechanisms.The analysis indicates that Hangzhou Leisure Expo Garden,initially a derelict industrial area dominated by production and residential land use,has evolved into a creative urban tourism complex with tourism comprehensive service land at its core,going through the pattern evolution processes of“constrained sprawl,”“intensive expansion,”and“random integration.”From the perspective of tourism human-land relationships,the formation of land use evolution patterns in creative urban tourism complexes results from various stakeholders(government,tourism enterprises,residents,tourists,etc.),as humanistic factors,continuously adapting to specific urban spaces,which are considered as geographical elements and have locational advantages and are oriented towards economic and social values.Based on the acquisition of stakeholder interests,the transformation of resource-disadvantaged areas into tourism advantage areas is facilitated,thereby achieving the re-creation of tourism creative space and promoting intensive spatial growth.展开更多
The remarkable power of chemistry over description and trans-formation of matters has been significantly enhanced through the development of dynamic chemistry and condensed matter chemistry[1].This progress has furthe...The remarkable power of chemistry over description and trans-formation of matters has been significantly enhanced through the development of dynamic chemistry and condensed matter chemistry[1].This progress has further elevated chemistry to a creative science and a thriving industry.The development of dynamic chemistry,span-ning from supramolecular chemistry to constitutional dynamic chem-istry,has witnessed significant advancements towards adaptive chemistry,which is characterized primarily by its self-adaption to external stimuli.This is particularly achieved in two-or three-dimensional dynamic frameworks.Meanwhile,the multi-phase evolution resulting from the emerging of solid-to-liquid transition plat-form is assuming an increasingly crucial role in condensed matter chemistry[2].展开更多
Rural industrial development and ecological civilization transformation are crucial to China's comprehensive advancement of rural revitalization. However, many regions still face the issue of a conflict between ec...Rural industrial development and ecological civilization transformation are crucial to China's comprehensive advancement of rural revitalization. However, many regions still face the issue of a conflict between economic development and ecological protection. Symbiosis theory provides a new perspective for understanding the interactive relationship of rural industry and ecology(RIE). Jiangxi Province, one of China's first national pilot zones for ecological conservation, exemplifies rural areas' typical challenges in balancing industrial development and ecological protection, and has been selected as the study area. By integrating the characteristics of RIE with symbiosis theory, a comprehensive RIE assessment framework was constructed. The comprehensive model, spatial autocorrelation method, and symbiosis theory model were employed to address the spatio-temporal evolution characteristics of RIE, reveal the symbiotic relationship(SR) and the symbiosis types of RIE, and explore the path of symbiotic development between RIE. Results indicated that:(1) Since 2015, RIE has shown an upward trend, with regional differences in ecological development levels gradually shrinking. Significant spatial correlation and agglomeration characteristics exist, but a coordinated regional development pattern has not yet emerged.(2) Overall, the symbiosis degree(SD) between RIE showed a positive trend with narrowing gaps, the symbiosis coefficient(SC) of industry to ecology converged to 0.5 under a positive asymmetric mutualism(PAM) mode, suggesting that their relationship tended to be coordinated. Specifically, rural ecology grew increasingly influential on industry in most counties.(3) Rural areas were classified into different types led by industry-dominated PAM, and various optimization paths were proposed. Future efforts should promote the equalization of the interaction forces between RIE according to local conditions.展开更多
The development of cost-effective,highly efficient and stable catalysts is critical to promote the industrial alkaline hydrogen evolution reaction(HER).However,single-component catalysts often cannot handle the multip...The development of cost-effective,highly efficient and stable catalysts is critical to promote the industrial alkaline hydrogen evolution reaction(HER).However,single-component catalysts often cannot handle the multiple kinetic steps during hydrogen production.To address this challenge,a heterogeneous catalyst comprising metal Co,CoO and carbon-doped Mo_(2)N(Co–CoO–C/Mo_(2)N/CC)was synthesized by heat treatment of carbon cloth-supported CoMoO_(4) microrods in a mixed reduction atmosphere.The resulting catalyst has rich interfaces,exhibiting excellent initial HER activity with an overpotential of 27 mV at 10 mA·cm^(−2) and a Tafel slope of 37 mV·dec^(−1).Further studies show that the activity and stability of the catalyst can be tailored by the dynamic surface reconfiguration and doping effects.The carbon doping and high crystallinity in Mo_(2)N help to reduce the dissolution of Mo and the surface metal Co is preferentially converted into stable Co(OH)2,thus stabilizing the structure of the catalyst and coordinating various reaction kinetics.In an electrolyzer comprising a heterogeneous Co–CoO–C/Mo_(2)N cathode and NiFe layered double hydroxides(LDH)anode,only 1.58 V is required to achieve a current density of 50 mA·cm^(−2),outperforming Pt/RuO catalysts.After continuous electrolysis for 100 h,the potential increases by merely 19 mV from the initial 1.58 V,indicating excellent stability.This study presents a novel strategy for developing highly active and stable heterogeneous catalysts,offering insights into the dynamic evolution of catalyst structures and laying the groundwork for designing efficient and stable composite catalysts for energy conversion applications.展开更多
Developing efficient and durable alkaline hydrogen evolution reaction(HER)catalysts is crucial for realizing high-performance,practical anion exchange membrane water electrolyzer(AEMWE)operating at ampere-level curren...Developing efficient and durable alkaline hydrogen evolution reaction(HER)catalysts is crucial for realizing high-performance,practical anion exchange membrane water electrolyzer(AEMWE)operating at ampere-level current densities.Although atomically dispersed Platinum(Pt)catalysts offer significant potential for enhancing atom utilization,their HER performance and durability are limited by the inflexibility in valence electron transfer between Pt and the support.In this study,we utilize asymmetrically single-atom copper(Cu)with tunable valence states as a valence electron reservoir(VER)to dynamically regulate the Pt 5d valence states,achieving efficient alkaline HER.In situ synchrotron radiation and theoretical calculations demonstrate that the dynamic evolution of the Pt 5d valence electron configuration optimizes the adsorption strengths of reaction intermediates.Meanwhile,single-atom Cu accelerates the rate-limiting water dissociation,and Pt facilitates subsequent^(*)H coupling.The catalyst requires only 23.5 and 177.2 mV overpotentials to achieve current densities of 10 and 500 mA cm^(-2)in 1 M KOH.Notably,the PtCu/NC exhibits a~57%lower hydrogen evolution barrier than Pt/NC.Moreover,the PtCu/NC-based AEMWE operates for over 600 h at an industrially relevant current density of 500 mA cm^(-2).展开更多
The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectr...The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy(ARPES).Bi2223single crystals with different doping levels are prepared by controlled annealing,which cover the underdoped,optimallydoped and overdoped regions.The electronic phase diagram of Bi2223 is established which describes the Tcdependence on the sample doping level.The doping dependence of the nodal Fermi momentum for the outer(OP)and inner(IP)CuO_(2)planes is determined.Charge distribution imbalance between the OP and IP CuO_(2)planes is quantified,showing enhanced disparity with increasing doping.Nodal band dispersions demonstrate a prominent kink at~94 meV in the IP band,attributed to the unique Cu coordination in the IP plane,while a weaker~60 meV kink is observed in the OP band.The nodal Fermi velocity of both OP and IP bands is nearly constant at~1.62 eV·A independent of doping.These results provide important information to understand the origin of high Tcand superconductivity mechanism in high temperature cuprate superconductors.展开更多
Based on MTS Landmark 370.50 rock dynamic and static load fatigue test system and acoustic emission(AE)monitoring method,the damage characteristics and energy evolution law of high static load coal-rock combination(CR...Based on MTS Landmark 370.50 rock dynamic and static load fatigue test system and acoustic emission(AE)monitoring method,the damage characteristics and energy evolution law of high static load coal-rock combination(CRC)under the influence of dynamic load parameters were studied.The main results are as follows:1)Dynamic load increases the rheological properties and damage fracture development of CRC.With the increase of the amplitude and frequency of the dynamic load,the number of dynamic load cycles required for the failure of the CRC decreases,the irreversible strain increases,and the failure of sample accelerates;2)The AE positioning events during the loading process of the specimen decrease with the increase of the dynamic load amplitude,and increase with the increase of the dynamic load frequency;3)The fractal dimension,total energy and cumulative elastic energy of the broken particles of the CRC increase with the increase of the amplitude and frequency of the dynamic load.The fractal dimension corresponding to the increase of the dynamic load frequency is larger,and the energy and cumulative elastic energy corresponding to the increase of the dynamic load amplitude are larger.展开更多
The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process o...The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process of 2D/3D heterojunction PSC on the stability of PSCs.Moreover,the evolution of the interface and carrier dynamic behavior of the 2D/3D perovskite films with long-term operation has not been systematically developed befo re.In this work,the effects of 2D/3 D heterojunction evolution on the interface of perovskite films and different carrier dynamics during 2D/3D evolution are systematically analyzed for the first time.The decomposition of 2D/3D heterojunction in the perovskite film will have a certain impact on the surface and carrier dynamics behavior of perovskite.During the evolution of 2D/3D heterojunction,PbI_(2)crystals will appear,which will improve the interfacial energy level matching between the electron transport layer and perovskite film.With a long evolution time,some holes will appear on the surface of perovskite film.The open circuit voltage(V_(OC))of PSCs increased from 1.14 to1.18 V and the PCE increased to 23.21%after 300 h storage in the nitrogen atmosphere,and maintained 89%initial performance for with 3000 h stability test in N_(2)box.This discovery has a significant role in promoting the development of inverted heterojunction PSCs and constructing the revolution mechanism of charge carrier dynamic.展开更多
In this study,the hot deformation behavior and microstructural evolution of the GH 4706 alloy under various thermal processing parameters(TPPs)were investigated through hot deformation experiments and electron backsca...In this study,the hot deformation behavior and microstructural evolution of the GH 4706 alloy under various thermal processing parameters(TPPs)were investigated through hot deformation experiments and electron backscatter diffraction(EBSD)microstructural characterization.The findings suggest that increasing hot compression temperature(T)and reducing strain rate(ε)enhance the degree of dynamic recrystallization(DRX),significantly reducing flow stress and weakening texture intensity.Increasing strain(ε)promotes DRX,with the overall texture strength initially increasing before decreasing.During hot compression at 1000−1100℃,discontinuous dynamic recrystallization(DDRX),continuous dynamic recrystallization(CDRX),and twin-induced dynamic recrystallization(TDRX)jointly influence texture development.Among these,DDRX plays a dominant role,with numerous DDRX grains exhibiting dispersed orientations,significantly contributing to texture weakening.The CDRX mechanism induces a limited number of randomly oriented grains within the deformed grains,and its contribution to texture weakening is enhanced with increasingεand decreasing T.The TDRX mechanism generates DRX grains withinΣ3 twin boundaries deviating from their theoretical orientation,and these grains inherit the twin orientation,exerting a limited effect on texture weakening.These findings provide a theoretical foundation for a deeper understanding of DRX behavior and texture evolution in the GH 4706 during hot working.展开更多
Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shr...Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shrinkage and cracking,which can significantly affect its engineering properties and ultimately jeopardize engineering safety.This paper presents a desiccation cracking test of fine-grained coral soil,with a particular focus on the thickness effect.The study involved measuring the water content and recording the evolution of desiccation cracking.Advanced image processing technology is employed to analyze the variations in crack parameters,clod parameters,fractal dimensions,frequency distributions,and desiccation cracking propagation velocities of fine-grained coral soil.Furthermore,the dynamic evolution of desiccation cracking under the influence of layer thickness is analyzed.A comprehensive crack evolution model is proposed,encompassing both top-down and bottom-up crack propagation,as well as internal tensile cracking.This work introduces novel metrics for the propagation velocity of the total crack area,the characteristic propagation velocities of desiccation cracks,and the acceleration of crack propagation.Through data fitting,theoretical formulas for soil water evaporation,propagation velocities of desiccation cracks,and crack propagation acceleration are derived,laying a foundation for future soil cracking theories.展开更多
Earthquakes may inflict varied levels of damage on mountains.Understanding the deformation properties of earthquake-damaged rock masses is critical for evaluating rocky slope stability over time.Taking the phyllite of...Earthquakes may inflict varied levels of damage on mountains.Understanding the deformation properties of earthquake-damaged rock masses is critical for evaluating rocky slope stability over time.Taking the phyllite of the Xinmo Village rockslide as the research object,the degradation features of the phyllite are investigated through laboratory tests,and a discrete-element numerical approach that fully accounts for the progressive rock deterioration is presented.The approach is then used to investigate the evolution characteristics of phyllite under various dynamic and static loading circumstances.Results show that the remaining strength of rock decreases with increasing dynamic cyclic loading(DCL)amplitude and times but increases with increasing frequency.As the dynamic damage degree increases,rock failure modes become more complex,and microcracks expand in a more preferential orientation,as well as a denser spatial distribution.Dynamic damage cracks act as the dominant paths for the macroscopic failure surface of the rock.The results indicate that the input energy and dissipated energy increase with fluctuating and linear trends with the advance of the DCL,respectively.The peak strain energy and acoustic emission(AE)magnitude decrease with increasing dynamic damage degrees,and the distribution of AE events displays temporal dispersion and spatial clustering characteristics,which is attributed to a decrease in the rock's potential for storing energy.展开更多
Designing high-efficiency photocatalysts by the construction of organic/inorganic heterojunctions is considered to be an effective approach for improving photocatalytic hydrogen evolution reaction(HER)activity.This wo...Designing high-efficiency photocatalysts by the construction of organic/inorganic heterojunctions is considered to be an effective approach for improving photocatalytic hydrogen evolution reaction(HER)activity.This work designed and built unique S-scheme heterojunctions by in-situ growing inorganic WO_(3) nanoparticles with excellent oxidation ability on fused-sulfone-modified covalent organic frameworks(FS-COF)with strong reduction ability.It is found that FS-COF and WO_(3) have a well-matched staggered band alignment.The best-designed FS-COF/WO_(3)-20%exhibits a maximum photocatalytic HER rate of 24.7 mmol g^(-1) h^(-1) under visible light irradiation,which is 1.4 times greater than the pure FS-COF.Moreover,photogenerated electron-hole pairs can be separated and utilized more efficiently thanks to the FS-COF/WO_(3) heterojunction's ability to create a favorable internal electric field resulting from the difference in work functions between FS-COF and WO_(3),which speeds up the transfer dynamics of photoinduced electrons from WO_(3) to FS-COF through an additional interfacial electron-transfer channel obeying the directional S-scheme migration mechanism.Furthermore,the S-scheme migration mechanism of photoinduced charge carriers instead of the type-II mechanism was confirmed by the signal intensity of•O_(2)−species from spin-trapping electron paramagnetic resonance spectra over the single component and the formed heterojunction.It ensures the photoexcited electrons maintain on the lowest unoccupied molecular orbital of FS-COF with a strong reduction ability to participate in photocatalytic HER,resulting in a significantly boosted H_(2) evolution rate.Based on organic/inorganic coupling,this work offers a strategy for creating particular S-scheme heterojunction photocatalysts.展开更多
The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50...The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.展开更多
As an efficient method of solving subgame-perfect Nash equilibrium,the backward induction is analyzed from an evolutionary point of view in this paper,replacing a player with a population and turning a game into a pop...As an efficient method of solving subgame-perfect Nash equilibrium,the backward induction is analyzed from an evolutionary point of view in this paper,replacing a player with a population and turning a game into a population game,which shows that equilibrium of a perfect information game is the unique evolutionarily stable outcome for dynamic models in the limit.展开更多
This paper provides a detailed analysis of the factors influencing the evolution of rural settlements, including natural environmental constraints, infrastructure, regional cultural inheritance and integration, urbani...This paper provides a detailed analysis of the factors influencing the evolution of rural settlements, including natural environmental constraints, infrastructure, regional cultural inheritance and integration, urbanization and rural industrial transformation, land use refor- mation and innovation, rural household behavior conversion, macro-control policy factors, and so on. Based on differences between the ways and degree of effect on rural settlement evolution, these factors are classified into basic factors, new-type factors and mutation factors The drive of basic factors mainly focuses on the traditional inheritance of rural settlements, the new-type factors mainly affect rural settlement transition, and the mutation factors may bring about sudden changes. All these factors constitute a "three-wheel" driving mechanism for the evolution of rural settlements, and shape three typical driver paths: slow smooth path under the basic factors, new path to rapid development under the new-type factors, and the sudden change path under the mutation factors. The paper also investigates the overall situation of rural settlement evolution in the aspects of settlement system, settlement scale, settlement morphology, settlement function, settlement culture, settlement environment, etc. The general process of rural settlement evolution is divided into four stages: initial, transi- tional, developmental, and mature stages.展开更多
To study the mechanism of rockburst and its spatio-temporal evolution criterion,a rockburst simulation experiment was performed on granite specimens,each with a prefabricated circular hole,under different lateral load...To study the mechanism of rockburst and its spatio-temporal evolution criterion,a rockburst simulation experiment was performed on granite specimens,each with a prefabricated circular hole,under different lateral loads.Using micro camera,acoustic emission(AE)system,and infrared thermal imager,the AE characteristics and thermal radiation temperature migration were studied during the rockburst process.Then,the failure mode and damage evolution of the surrounding rock were analyzed.The results demonstrate that increasing the lateral load can first increase and then reduce the bearing capacity of the hole.In this experiment,the hole failure process could be divided into four periods:quiet,particle ejection,stability failure and collapse.Correspondingly,the AE signals evolved from a calm stage,to have intermittent appearance;then,they were continuous with a sudden increase,and finally increased dramatically.The failure of the surrounding rock was mainly tensile failure,while shear failure tended to first increase and then decrease.Meanwhile,damage to the hole increased gradually during the particle ejection period,whereas damage to the rockburst mainly occurred in the stability failure period.The thermal radiation temperature migration exhibited warming in shallow parts,inward expansion,cooling in the shallow parts with free surface heating,inward expansion,a sudden rise in temperature of the rockburst pits,and finally specimen failure.The initial reinforcement support should fully contribute to surface support.Furthermore,an appropriate tensile capacity and good energy absorption capacity should be established in support systems for high-stress roadways.展开更多
High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for re...High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographical location, population density, automobile quantity, industrial discharge, and straw burning are the main driving forces of PM_(2.5) concentration in China.展开更多
Dynamic recrystallization of 304N stainless steel was investigated at deformation temperatures of 900- 1 300 ℃ and strain rates of 0.01 10 s by a Gleeble-1500 thermo-mechanical simulator. And the microstructure evol...Dynamic recrystallization of 304N stainless steel was investigated at deformation temperatures of 900- 1 300 ℃ and strain rates of 0.01 10 s by a Gleeble-1500 thermo-mechanical simulator. And the microstructure evolu lions of specimens with different deformation temperatures were observed by using a transmission electron micro scope. Results indicated that compared with conventional AISI 304 austenitie stainless steel, 304N stainless steel has higher deformation resistance force and deformation activation energy under similar conditions. In addition, the flow stress constitutive equation of 304N stainless steel was obtained by regression analysis of experimental stress strain data, and the calculated values proposed by the mathematical model agree well with the experimental results.展开更多
基金National Key Research and Development Program of China(2019YFB1600400)National Natural Science Foundation of China(72174035)+2 种基金National Natural Science Foundation of China(71774018)Liaoning Revitalization Talents Program(XLYC2008030)Liaoning Provincial Natural Science Foundation Shipping Joint Foundation Program(2020-HYLH-20)。
文摘It is urgent and important to explore the dynamic evolution in comprehensive transportation green efficiency(CTGE)in the context of green development.We constructed a social development index that reflects the social benefits of transportation services,and incorporated it into the comprehensive transportation efficiency evaluation framework as an expected output.Based on the panel data of 30 regions in China from 2003-2018,the CTGE in China was measured using the slacks-based measure-data envelopment analysis(SBM-DEA)model.Further,the dynamic evolution trends of CTGE were determined using the spatial Markov model and exploratory spatio-temporal data analysis(ESTDA)technique from a spatio-temporal perspective.The results showed that the CTGE shows a U-shaped change trend but with an overall low level and significant regional differences.The state transition of CTGE has a strong spatial dependence,and there exists the phenomenon of“club convergence”.Neighbourhood background has a significant impact on the CTGE transition types,and the spatial spillover effect is pronounced.The CTGE has an obvious positive correlation and spatial agglomeration characteristics.The geometric characteristics of the LISA time path show that the evolution process of local spatial structure and local spatial dependence of China’s CTGE is stable,but the integration of spatial evolution is weak.The spatio-temporal transition results of LISA indicate that the CTGE has obvious transfer inertness and has certain path-dependence and spatial locking characteristics,which will become the major difficulty in improving the CTGE.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
文摘Exploring the spatial evolution patterns of land use in creative urban tourism complexes provides theoretical and decision-making support to foster creative tourism projects.This study focuses on the Hangzhou Leisure Expo Garden as a case study,utilizing a land use change index model to analyze the spatial evolution characteristics and dynamic processes of creative urban tourism complexes,as well as to explore their spatial differentiation mechanisms.The analysis indicates that Hangzhou Leisure Expo Garden,initially a derelict industrial area dominated by production and residential land use,has evolved into a creative urban tourism complex with tourism comprehensive service land at its core,going through the pattern evolution processes of“constrained sprawl,”“intensive expansion,”and“random integration.”From the perspective of tourism human-land relationships,the formation of land use evolution patterns in creative urban tourism complexes results from various stakeholders(government,tourism enterprises,residents,tourists,etc.),as humanistic factors,continuously adapting to specific urban spaces,which are considered as geographical elements and have locational advantages and are oriented towards economic and social values.Based on the acquisition of stakeholder interests,the transformation of resource-disadvantaged areas into tourism advantage areas is facilitated,thereby achieving the re-creation of tourism creative space and promoting intensive spatial growth.
基金the BAGUI talent program(No.2019AC26001)the National Natural Science Foundation of China(Nos.U23A2080,22371173,22171075).
文摘The remarkable power of chemistry over description and trans-formation of matters has been significantly enhanced through the development of dynamic chemistry and condensed matter chemistry[1].This progress has further elevated chemistry to a creative science and a thriving industry.The development of dynamic chemistry,span-ning from supramolecular chemistry to constitutional dynamic chem-istry,has witnessed significant advancements towards adaptive chemistry,which is characterized primarily by its self-adaption to external stimuli.This is particularly achieved in two-or three-dimensional dynamic frameworks.Meanwhile,the multi-phase evolution resulting from the emerging of solid-to-liquid transition plat-form is assuming an increasingly crucial role in condensed matter chemistry[2].
基金supported by the National Natural Science Foundation of China (No.42361050,42201232)Humanities and Social Sciences Research Project of Jiangxi Colleges and Universities (No.JC24211)+1 种基金Science and Technology Research Project of Jiangxi Provincial Department of Education (No.GJJ2200553)Jiangxi provincial Social Science Foundation of China (No.23JL11)。
文摘Rural industrial development and ecological civilization transformation are crucial to China's comprehensive advancement of rural revitalization. However, many regions still face the issue of a conflict between economic development and ecological protection. Symbiosis theory provides a new perspective for understanding the interactive relationship of rural industry and ecology(RIE). Jiangxi Province, one of China's first national pilot zones for ecological conservation, exemplifies rural areas' typical challenges in balancing industrial development and ecological protection, and has been selected as the study area. By integrating the characteristics of RIE with symbiosis theory, a comprehensive RIE assessment framework was constructed. The comprehensive model, spatial autocorrelation method, and symbiosis theory model were employed to address the spatio-temporal evolution characteristics of RIE, reveal the symbiotic relationship(SR) and the symbiosis types of RIE, and explore the path of symbiotic development between RIE. Results indicated that:(1) Since 2015, RIE has shown an upward trend, with regional differences in ecological development levels gradually shrinking. Significant spatial correlation and agglomeration characteristics exist, but a coordinated regional development pattern has not yet emerged.(2) Overall, the symbiosis degree(SD) between RIE showed a positive trend with narrowing gaps, the symbiosis coefficient(SC) of industry to ecology converged to 0.5 under a positive asymmetric mutualism(PAM) mode, suggesting that their relationship tended to be coordinated. Specifically, rural ecology grew increasingly influential on industry in most counties.(3) Rural areas were classified into different types led by industry-dominated PAM, and various optimization paths were proposed. Future efforts should promote the equalization of the interaction forces between RIE according to local conditions.
基金supported by the National Natural Science Foundation of China(Nos.22379116,U2003130 and U2004210)the Outstanding Youth Foundation of Natural Science Foundation of Hubei Province(No.2020CFA099)+1 种基金the Foundation of Science Research Program from Hubei Provincial Department of Education(No.Q20221101)the Innovation group of Key Research and Development Program of Hubei Province(Nos.2021BAA208 and 2022BCA061).
文摘The development of cost-effective,highly efficient and stable catalysts is critical to promote the industrial alkaline hydrogen evolution reaction(HER).However,single-component catalysts often cannot handle the multiple kinetic steps during hydrogen production.To address this challenge,a heterogeneous catalyst comprising metal Co,CoO and carbon-doped Mo_(2)N(Co–CoO–C/Mo_(2)N/CC)was synthesized by heat treatment of carbon cloth-supported CoMoO_(4) microrods in a mixed reduction atmosphere.The resulting catalyst has rich interfaces,exhibiting excellent initial HER activity with an overpotential of 27 mV at 10 mA·cm^(−2) and a Tafel slope of 37 mV·dec^(−1).Further studies show that the activity and stability of the catalyst can be tailored by the dynamic surface reconfiguration and doping effects.The carbon doping and high crystallinity in Mo_(2)N help to reduce the dissolution of Mo and the surface metal Co is preferentially converted into stable Co(OH)2,thus stabilizing the structure of the catalyst and coordinating various reaction kinetics.In an electrolyzer comprising a heterogeneous Co–CoO–C/Mo_(2)N cathode and NiFe layered double hydroxides(LDH)anode,only 1.58 V is required to achieve a current density of 50 mA·cm^(−2),outperforming Pt/RuO catalysts.After continuous electrolysis for 100 h,the potential increases by merely 19 mV from the initial 1.58 V,indicating excellent stability.This study presents a novel strategy for developing highly active and stable heterogeneous catalysts,offering insights into the dynamic evolution of catalyst structures and laying the groundwork for designing efficient and stable composite catalysts for energy conversion applications.
基金supported by the Ningbo Top-Talent Team Program,Program for the National Natural Science Foundation of China(22106166)the Yongjiang Innovative Individual Introduction of China,and the China Postdoctoral Science Foundation(2022M723253)。
文摘Developing efficient and durable alkaline hydrogen evolution reaction(HER)catalysts is crucial for realizing high-performance,practical anion exchange membrane water electrolyzer(AEMWE)operating at ampere-level current densities.Although atomically dispersed Platinum(Pt)catalysts offer significant potential for enhancing atom utilization,their HER performance and durability are limited by the inflexibility in valence electron transfer between Pt and the support.In this study,we utilize asymmetrically single-atom copper(Cu)with tunable valence states as a valence electron reservoir(VER)to dynamically regulate the Pt 5d valence states,achieving efficient alkaline HER.In situ synchrotron radiation and theoretical calculations demonstrate that the dynamic evolution of the Pt 5d valence electron configuration optimizes the adsorption strengths of reaction intermediates.Meanwhile,single-atom Cu accelerates the rate-limiting water dissociation,and Pt facilitates subsequent^(*)H coupling.The catalyst requires only 23.5 and 177.2 mV overpotentials to achieve current densities of 10 and 500 mA cm^(-2)in 1 M KOH.Notably,the PtCu/NC exhibits a~57%lower hydrogen evolution barrier than Pt/NC.Moreover,the PtCu/NC-based AEMWE operates for over 600 h at an industrially relevant current density of 500 mA cm^(-2).
基金supported by the National Natural Science Foundation of China(Grant Nos.12488201 by X.J.Z.,12374066 by L.Z.,and 12374154 by X.T.L.)the National Key Research and Development Program of China(Grant Nos.2021YFA1401800 by X.J.Z.,2022YFA1604200 by L.Z.,2022YFA1403900 by G.D.L.and 2023YFA1406000by X.T.L.)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000by X.J.Z.)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800 by X.J.Z.)the Youth Innovation Promotion Association of CAS(Grant No.Y2021006 by L.Z.)the Synergetic Extreme Condition User Facility(SECUF)。
文摘The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy(ARPES).Bi2223single crystals with different doping levels are prepared by controlled annealing,which cover the underdoped,optimallydoped and overdoped regions.The electronic phase diagram of Bi2223 is established which describes the Tcdependence on the sample doping level.The doping dependence of the nodal Fermi momentum for the outer(OP)and inner(IP)CuO_(2)planes is determined.Charge distribution imbalance between the OP and IP CuO_(2)planes is quantified,showing enhanced disparity with increasing doping.Nodal band dispersions demonstrate a prominent kink at~94 meV in the IP band,attributed to the unique Cu coordination in the IP plane,while a weaker~60 meV kink is observed in the OP band.The nodal Fermi velocity of both OP and IP bands is nearly constant at~1.62 eV·A independent of doping.These results provide important information to understand the origin of high Tcand superconductivity mechanism in high temperature cuprate superconductors.
基金Project(51874281)supported by the National Natural Science Foundation of ChinaProject(2024M752698)supported by China Postdoctoral Science FoundationProject(2025WLKXJ041)supported by the Graduate Innovation Program of China University of Mining and Technology。
文摘Based on MTS Landmark 370.50 rock dynamic and static load fatigue test system and acoustic emission(AE)monitoring method,the damage characteristics and energy evolution law of high static load coal-rock combination(CRC)under the influence of dynamic load parameters were studied.The main results are as follows:1)Dynamic load increases the rheological properties and damage fracture development of CRC.With the increase of the amplitude and frequency of the dynamic load,the number of dynamic load cycles required for the failure of the CRC decreases,the irreversible strain increases,and the failure of sample accelerates;2)The AE positioning events during the loading process of the specimen decrease with the increase of the dynamic load amplitude,and increase with the increase of the dynamic load frequency;3)The fractal dimension,total energy and cumulative elastic energy of the broken particles of the CRC increase with the increase of the amplitude and frequency of the dynamic load.The fractal dimension corresponding to the increase of the dynamic load frequency is larger,and the energy and cumulative elastic energy corresponding to the increase of the dynamic load amplitude are larger.
基金financial support provided by the Sichuan Science and Technology Program(No.2022NSFSC0226)Sichuan Science and Technology Program(No.2023ZYD0163)+6 种基金the Production-Education Integration Demonstration Project of Sichuan Provincethe Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province(Sichuan Financial Education[2022]No.106)China Tianfu Yongxing Laboratory Science and Technology Key Project(2023KJGG15)National Key Research and Development Program of China(2022YFB3803300)Beijing Natural Science Foundation(IS23037)the Department for Energy Security and Net Zero(project ID:NEXTCCUS)the ACT program(Accelerating CCS Technologies,Horizon2020 project NO.691712)。
文摘The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process of 2D/3D heterojunction PSC on the stability of PSCs.Moreover,the evolution of the interface and carrier dynamic behavior of the 2D/3D perovskite films with long-term operation has not been systematically developed befo re.In this work,the effects of 2D/3 D heterojunction evolution on the interface of perovskite films and different carrier dynamics during 2D/3D evolution are systematically analyzed for the first time.The decomposition of 2D/3D heterojunction in the perovskite film will have a certain impact on the surface and carrier dynamics behavior of perovskite.During the evolution of 2D/3D heterojunction,PbI_(2)crystals will appear,which will improve the interfacial energy level matching between the electron transport layer and perovskite film.With a long evolution time,some holes will appear on the surface of perovskite film.The open circuit voltage(V_(OC))of PSCs increased from 1.14 to1.18 V and the PCE increased to 23.21%after 300 h storage in the nitrogen atmosphere,and maintained 89%initial performance for with 3000 h stability test in N_(2)box.This discovery has a significant role in promoting the development of inverted heterojunction PSCs and constructing the revolution mechanism of charge carrier dynamic.
基金Project(2022YFB3705103)supported by the National Key R&D Program,China。
文摘In this study,the hot deformation behavior and microstructural evolution of the GH 4706 alloy under various thermal processing parameters(TPPs)were investigated through hot deformation experiments and electron backscatter diffraction(EBSD)microstructural characterization.The findings suggest that increasing hot compression temperature(T)and reducing strain rate(ε)enhance the degree of dynamic recrystallization(DRX),significantly reducing flow stress and weakening texture intensity.Increasing strain(ε)promotes DRX,with the overall texture strength initially increasing before decreasing.During hot compression at 1000−1100℃,discontinuous dynamic recrystallization(DDRX),continuous dynamic recrystallization(CDRX),and twin-induced dynamic recrystallization(TDRX)jointly influence texture development.Among these,DDRX plays a dominant role,with numerous DDRX grains exhibiting dispersed orientations,significantly contributing to texture weakening.The CDRX mechanism induces a limited number of randomly oriented grains within the deformed grains,and its contribution to texture weakening is enhanced with increasingεand decreasing T.The TDRX mechanism generates DRX grains withinΣ3 twin boundaries deviating from their theoretical orientation,and these grains inherit the twin orientation,exerting a limited effect on texture weakening.These findings provide a theoretical foundation for a deeper understanding of DRX behavior and texture evolution in the GH 4706 during hot working.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2022CDJQY-012)the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-cxttX0003).
文摘Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shrinkage and cracking,which can significantly affect its engineering properties and ultimately jeopardize engineering safety.This paper presents a desiccation cracking test of fine-grained coral soil,with a particular focus on the thickness effect.The study involved measuring the water content and recording the evolution of desiccation cracking.Advanced image processing technology is employed to analyze the variations in crack parameters,clod parameters,fractal dimensions,frequency distributions,and desiccation cracking propagation velocities of fine-grained coral soil.Furthermore,the dynamic evolution of desiccation cracking under the influence of layer thickness is analyzed.A comprehensive crack evolution model is proposed,encompassing both top-down and bottom-up crack propagation,as well as internal tensile cracking.This work introduces novel metrics for the propagation velocity of the total crack area,the characteristic propagation velocities of desiccation cracks,and the acceleration of crack propagation.Through data fitting,theoretical formulas for soil water evaporation,propagation velocities of desiccation cracks,and crack propagation acceleration are derived,laying a foundation for future soil cracking theories.
基金the financial support from the National Natural Science Foundation of China(Grant No.U22A20603)the National Key Research and Development Program of China(Grant No.2023YFC3008300).
文摘Earthquakes may inflict varied levels of damage on mountains.Understanding the deformation properties of earthquake-damaged rock masses is critical for evaluating rocky slope stability over time.Taking the phyllite of the Xinmo Village rockslide as the research object,the degradation features of the phyllite are investigated through laboratory tests,and a discrete-element numerical approach that fully accounts for the progressive rock deterioration is presented.The approach is then used to investigate the evolution characteristics of phyllite under various dynamic and static loading circumstances.Results show that the remaining strength of rock decreases with increasing dynamic cyclic loading(DCL)amplitude and times but increases with increasing frequency.As the dynamic damage degree increases,rock failure modes become more complex,and microcracks expand in a more preferential orientation,as well as a denser spatial distribution.Dynamic damage cracks act as the dominant paths for the macroscopic failure surface of the rock.The results indicate that the input energy and dissipated energy increase with fluctuating and linear trends with the advance of the DCL,respectively.The peak strain energy and acoustic emission(AE)magnitude decrease with increasing dynamic damage degrees,and the distribution of AE events displays temporal dispersion and spatial clustering characteristics,which is attributed to a decrease in the rock's potential for storing energy.
文摘Designing high-efficiency photocatalysts by the construction of organic/inorganic heterojunctions is considered to be an effective approach for improving photocatalytic hydrogen evolution reaction(HER)activity.This work designed and built unique S-scheme heterojunctions by in-situ growing inorganic WO_(3) nanoparticles with excellent oxidation ability on fused-sulfone-modified covalent organic frameworks(FS-COF)with strong reduction ability.It is found that FS-COF and WO_(3) have a well-matched staggered band alignment.The best-designed FS-COF/WO_(3)-20%exhibits a maximum photocatalytic HER rate of 24.7 mmol g^(-1) h^(-1) under visible light irradiation,which is 1.4 times greater than the pure FS-COF.Moreover,photogenerated electron-hole pairs can be separated and utilized more efficiently thanks to the FS-COF/WO_(3) heterojunction's ability to create a favorable internal electric field resulting from the difference in work functions between FS-COF and WO_(3),which speeds up the transfer dynamics of photoinduced electrons from WO_(3) to FS-COF through an additional interfacial electron-transfer channel obeying the directional S-scheme migration mechanism.Furthermore,the S-scheme migration mechanism of photoinduced charge carriers instead of the type-II mechanism was confirmed by the signal intensity of•O_(2)−species from spin-trapping electron paramagnetic resonance spectra over the single component and the formed heterojunction.It ensures the photoexcited electrons maintain on the lowest unoccupied molecular orbital of FS-COF with a strong reduction ability to participate in photocatalytic HER,resulting in a significantly boosted H_(2) evolution rate.Based on organic/inorganic coupling,this work offers a strategy for creating particular S-scheme heterojunction photocatalysts.
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(20090161110027)supported by the Doctoral Fund of Ministry of Education of ChinaProject(2011BAG03B02)supported by National Key Technology R&D Program during the 12th Five-Year Plan Period,China
文摘The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.
文摘As an efficient method of solving subgame-perfect Nash equilibrium,the backward induction is analyzed from an evolutionary point of view in this paper,replacing a player with a population and turning a game into a population game,which shows that equilibrium of a perfect information game is the unique evolutionarily stable outcome for dynamic models in the limit.
基金National Social Science Foundation of China, No.07BJL033 Youth Foundation of Hunan Normal University, No.Z080625 Key Subject of Hunan Normal University about Human Geography
文摘This paper provides a detailed analysis of the factors influencing the evolution of rural settlements, including natural environmental constraints, infrastructure, regional cultural inheritance and integration, urbanization and rural industrial transformation, land use refor- mation and innovation, rural household behavior conversion, macro-control policy factors, and so on. Based on differences between the ways and degree of effect on rural settlement evolution, these factors are classified into basic factors, new-type factors and mutation factors The drive of basic factors mainly focuses on the traditional inheritance of rural settlements, the new-type factors mainly affect rural settlement transition, and the mutation factors may bring about sudden changes. All these factors constitute a "three-wheel" driving mechanism for the evolution of rural settlements, and shape three typical driver paths: slow smooth path under the basic factors, new path to rapid development under the new-type factors, and the sudden change path under the mutation factors. The paper also investigates the overall situation of rural settlement evolution in the aspects of settlement system, settlement scale, settlement morphology, settlement function, settlement culture, settlement environment, etc. The general process of rural settlement evolution is divided into four stages: initial, transi- tional, developmental, and mature stages.
基金Project(2017YFC0603003)supported by the National Key Research and Development Project of ChinaProjects(51974009,51674008)supported by the National Natural Science Foundation of China+3 种基金Project(201904a07020010)supported by the Key Research and Development Program of Anhui Province,ChinaProject(2018D187)supported by the Leading Talent Project of Anhui“Special Support Program”,Anhui Provincial Academic and Technology Leaders Research Activities Funding,ChinaProject(gxbjZD2016051)supported by the Excellence Talent Training Program of High School,ChinaProject(2019CX2008)supported by the Graduate Innovation Fund of Anhui University of Science and Technology,China。
文摘To study the mechanism of rockburst and its spatio-temporal evolution criterion,a rockburst simulation experiment was performed on granite specimens,each with a prefabricated circular hole,under different lateral loads.Using micro camera,acoustic emission(AE)system,and infrared thermal imager,the AE characteristics and thermal radiation temperature migration were studied during the rockburst process.Then,the failure mode and damage evolution of the surrounding rock were analyzed.The results demonstrate that increasing the lateral load can first increase and then reduce the bearing capacity of the hole.In this experiment,the hole failure process could be divided into four periods:quiet,particle ejection,stability failure and collapse.Correspondingly,the AE signals evolved from a calm stage,to have intermittent appearance;then,they were continuous with a sudden increase,and finally increased dramatically.The failure of the surrounding rock was mainly tensile failure,while shear failure tended to first increase and then decrease.Meanwhile,damage to the hole increased gradually during the particle ejection period,whereas damage to the rockburst mainly occurred in the stability failure period.The thermal radiation temperature migration exhibited warming in shallow parts,inward expansion,cooling in the shallow parts with free surface heating,inward expansion,a sudden rise in temperature of the rockburst pits,and finally specimen failure.The initial reinforcement support should fully contribute to surface support.Furthermore,an appropriate tensile capacity and good energy absorption capacity should be established in support systems for high-stress roadways.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA19040401China Postdoctoral Science Foundation,No.2016M600121+1 种基金National Natural Science Foundation of China,No.41701173,No.41501137The State Key Laboratory of Resources and Environmental Information System
文摘High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographical location, population density, automobile quantity, industrial discharge, and straw burning are the main driving forces of PM_(2.5) concentration in China.
基金Item Sponsored by High-Tech Research and Development Program(863 Program)of China(2006AA03Z525)
文摘Dynamic recrystallization of 304N stainless steel was investigated at deformation temperatures of 900- 1 300 ℃ and strain rates of 0.01 10 s by a Gleeble-1500 thermo-mechanical simulator. And the microstructure evolu lions of specimens with different deformation temperatures were observed by using a transmission electron micro scope. Results indicated that compared with conventional AISI 304 austenitie stainless steel, 304N stainless steel has higher deformation resistance force and deformation activation energy under similar conditions. In addition, the flow stress constitutive equation of 304N stainless steel was obtained by regression analysis of experimental stress strain data, and the calculated values proposed by the mathematical model agree well with the experimental results.