期刊文献+
共找到658篇文章
< 1 2 33 >
每页显示 20 50 100
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
1
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
A Remote Sensing Image Semantic Segmentation Method by Combining Deformable Convolution with Conditional Random Fields 被引量:13
2
作者 Zongcheng ZUO Wen ZHANG Dongying ZHANG 《Journal of Geodesy and Geoinformation Science》 2020年第3期39-49,共11页
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a... Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset. 展开更多
关键词 high-resolution remote sensing image semantic segmentation deformable convolution network conditions random fields
在线阅读 下载PDF
Multi-Layer Feature Extraction with Deformable Convolution for Fabric Defect Detection 被引量:1
3
作者 Jielin Jiang Chao Cui +1 位作者 Xiaolong Xu Yan Cui 《Intelligent Automation & Soft Computing》 2024年第4期725-744,共20页
In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.... In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.Traditional fabric defect detection algorithms can only detect specific materials and specific fabric defect types;in addition,their detection efficiency is low,and their detection results are relatively poor.Deep learning-based methods have many advantages in the field of fabric defect detection,however,such methods are less effective in identifying multiscale fabric defects and defects with complex shapes.Therefore,we propose an effective algorithm,namely multilayer feature extraction combined with deformable convolution(MFDC),for fabric defect detection.In MFDC,multi-layer feature extraction is used to fuse the underlying location features with high-level classification features through a horizontally connected top-down architecture to improve the detection of multi-scale fabric defects.On this basis,a deformable convolution is added to solve the problem of the algorithm’s weak detection ability of irregularly shaped fabric defects.In this approach,Roi Align and Cascade-RCNN are integrated to enhance the adaptability of the algorithm in materials with complex patterned backgrounds.The experimental results show that the MFDC algorithm can achieve good detection results for both multi-scale fabric defects and defects with complex shapes,at the expense of a small increase in detection time. 展开更多
关键词 Fabric defect detection multi-layer features deformable convolution
在线阅读 下载PDF
An Arrhythmia Intelligent Recognition Method Based on a Multimodal Information and Spatio-Temporal Hybrid Neural Network Model
4
作者 Xinchao Han Aojun Zhang +6 位作者 Runchuan Li Shengya Shen Di Zhang Bo Jin Longfei Mao Linqi Yang Shuqin Zhang 《Computers, Materials & Continua》 2025年第2期3443-3465,共23页
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to... Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness. 展开更多
关键词 Multimodal learning spatio-temporal hybrid graph convolutional network data imbalance ECG classification
在线阅读 下载PDF
A local-global dynamic hypergraph convolution with multi-head flow attention for traffic flow forecasting
5
作者 ZHANG Hong LI Yang +3 位作者 LUO Shengjun ZHANG Pengcheng ZHANG Xijun YI Min 《High Technology Letters》 2025年第3期246-256,共11页
Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To... Traffic flow prediction is a crucial element of intelligent transportation systems.However,accu-rate traffic flow prediction is quite challenging because of its highly nonlinear,complex,and dynam-ic characteristics.To address the difficulties in simultaneously capturing local and global dynamic spatiotemporal correlations in traffic flow,as well as the high time complexity of existing models,a multi-head flow attention-based local-global dynamic hypergraph convolution(MFA-LGDHC)pre-diction model is proposed.which consists of multi-head flow attention(MHFA)mechanism,graph convolution network(GCN),and local-global dynamic hypergraph convolution(LGHC).MHFA is utilized to extract the time dependency of traffic flow and reduce the time complexity of the model.GCN is employed to catch the spatial dependency of traffic flow.LGHC utilizes down-sampling con-volution and isometric convolution to capture the local and global spatial dependencies of traffic flow.And dynamic hypergraph convolution is used to model the dynamic higher-order relationships of the traffic road network.Experimental results indicate that the MFA-LGDHC model outperforms current popular baseline models and exhibits good prediction performance. 展开更多
关键词 traffic flow prediction multi-head flow attention graph convolution hypergraph learning dynamic spatio-temporal properties
在线阅读 下载PDF
CW-HRNet:Constrained Deformable Sampling and Wavelet-Guided Enhancement for Lightweight Crack Segmentation
6
作者 Dewang Ma 《Journal of Electronic Research and Application》 2025年第5期269-280,共12页
This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two ke... This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks. 展开更多
关键词 Crack segmentation Lightweight semantic segmentation deformable convolution Wavelet transform Road infrastructure
在线阅读 下载PDF
Improved spatio-temporal alignment measurement method for hull deformation
7
作者 XU Dongsheng YU Yuanjin +1 位作者 ZHANG Xiaoli PENG Xiafu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期485-494,共10页
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar... In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist. 展开更多
关键词 inertial measurement spatio-temporal alignment hull deformation
在线阅读 下载PDF
Land cover classification from remote sensing images based on multi-scale fully convolutional network 被引量:17
8
作者 Rui Li Shunyi Zheng +2 位作者 Chenxi Duan Libo Wang Ce Zhang 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第2期278-294,共17页
Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propos... Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN. 展开更多
关键词 spatio-temporal remote sensing images Multi-Scale Fully convolutional Network land cover classification
原文传递
Optical Flow with Learning Feature for Deformable Medical Image Registration 被引量:1
9
作者 Jinrong Hu Lujin Li +3 位作者 Ying Fu Maoyang Zou Jiliu Zhou Shanhui Sun 《Computers, Materials & Continua》 SCIE EI 2022年第5期2773-2788,共16页
Deformable medical image registration plays a vital role in medical image applications,such as placing different temporal images at the same time point or different modality images into the same coordinate system.Vari... Deformable medical image registration plays a vital role in medical image applications,such as placing different temporal images at the same time point or different modality images into the same coordinate system.Various strategies have been developed to satisfy the increasing needs of deformable medical image registration.One popular registration method is estimating the displacement field by computing the optical flow between two images.The motion field(flow field)is computed based on either gray-value or handcrafted descriptors such as the scale-invariant feature transform(SIFT).These methods assume that illumination is constant between images.However,medical images may not always satisfy this assumption.In this study,we propose a metric learning-based motion estimation method called Siamese Flow for deformable medical image registration.We train metric learners using a Siamese network,which produces an image patch descriptor that guarantees a smaller feature distance in two similar anatomical structures and a larger feature distance in two dissimilar anatomical structures.In the proposed registration framework,the flow field is computed based on such features and is close to the real deformation field due to the excellent feature representation ability of the Siamese network.Experimental results demonstrate that the proposed method outperforms the Demons,SIFT Flow,Elastix,and VoxelMorph networks regarding registration accuracy and robustness,particularly with large deformations. 展开更多
关键词 deformation registration feature extraction optical flow convolutional neural network
在线阅读 下载PDF
An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
10
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期506-520,共15页
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc... Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment. 展开更多
关键词 Anomaly detection spatio-temporal informa-tion Multivariate time series signals Attention graph convolution Stacked autoencoder
原文传递
A Deformable Network with Attention Mechanism for Retinal Vessel Segmentation
11
作者 Xiaolong Zhu Wenjian Li +2 位作者 Weihang Zhang Dongwei Li Huiqi Li 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期186-193,共8页
The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segm... The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segmentation networks fail to extract features in fundus image sufficiently,we propose a novel network(DSeU-net)based on deformable convolution and squeeze excitation residual module.The deformable convolution is utilized to dynamically adjust the receptive field for the feature extraction of retinal vessel.And the squeeze excitation residual module is used to scale the weights of the low-level features so that the network learns the complex relationships of the different feature layers efficiently.We validate the DSeU-net on three public retinal vessel segmentation datasets including DRIVE,CHASEDB1,and STARE,and the experimental results demonstrate the satisfactory segmentation performance of the network. 展开更多
关键词 retinal vessel segmentation deformable convolution attention mechanism deep learning
暂未订购
DSD-MatchingNet:Deformable sparse-to-dense feature matching for learning accurate correspondences
12
作者 Yicheng ZHAO Han ZHANG +3 位作者 Ping LU Ping LI Enhua WU Bin SHENG 《Virtual Reality & Intelligent Hardware》 2022年第5期432-443,共12页
Background Exploring correspondences across multiview images is the basis of various computer vision tasks.However,most existing methods have limited accuracy under challenging conditions.Method To learn more robust a... Background Exploring correspondences across multiview images is the basis of various computer vision tasks.However,most existing methods have limited accuracy under challenging conditions.Method To learn more robust and accurate correspondences,we propose DSD-MatchingNet for local feature matching in this study.First,we develop a deformable feature extraction module to obtain multilevel feature maps,which harvest contextual information from dynamic receptive fields.The dynamic receptive fields provided by the deformable convolution network ensure that our method obtains dense and robust correspondence.Second,we utilize sparse-to-dense matching with symmetry of correspondence to implement accurate pixel-level matching,which enables our method to produce more accurate correspondences.Result Experiments show that our proposed DSD-MatchingNet achieves a better performance on the image matching benchmark,as well as on the visual localization benchmark.Specifically,our method achieved 91.3%mean matching accuracy on the HPatches dataset and 99.3%visual localization recalls on the Aachen Day-Night dataset. 展开更多
关键词 Image matching deformable convolution network Sparse-to-dense matching
在线阅读 下载PDF
Deep Bi-Directional Adaptive Gating Graph Convolutional Networks for Spatio-Temporal Traffic Forecasting
13
作者 Xin Wang Jianhui Lv +5 位作者 Madini O.Alassafi Fawaz E.Alsaadi B.D.Parameshachari Longhao Zou Gang Feng Zhonghua Liu 《Tsinghua Science and Technology》 2025年第5期2060-2080,共21页
With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adapt... With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning. 展开更多
关键词 traffic forecasting spatio-temporal modeling Graph convolutional Networks(GCNs) adaptive gating
原文传递
Pore network modeling of gas-water two-phase flow in deformed multi-scale fracture-porous media
14
作者 Dai-Gang Wang Yu-Shan Ma +6 位作者 Zhe Hu Tong Wu Ji-Rui Hou Zhen-Chang Jiang Xin-Xuan Qi Kao-Ping Song Fang-zhou Liu 《Petroleum Science》 2025年第5期2096-2108,共13页
Two actual rocks drilled from a typical ultra-deep hydrocarbon reservoir in the Tarim Basin are selected to conduct in-situ stress-loading micro-focus CT scanning experiments.The gray images of rock microstructure at ... Two actual rocks drilled from a typical ultra-deep hydrocarbon reservoir in the Tarim Basin are selected to conduct in-situ stress-loading micro-focus CT scanning experiments.The gray images of rock microstructure at different stress loading stages are obtained.The U-Net fully convolutional neural network is utilized to achieve fine semantic segmentation of rock skeleton,pore space,and microfractures based on CT slice images of deep rocks.The three-dimensional digital rock models of deformed multiscale fractured-porous media at different stress loading stages are thereafter reconstructed,and the equivalent fracture-pore network models are finally extracted to explore the underlying mechanisms of gas-water two-phase flow at the pore-scale.Results indicate that,in the process of insitu stress loading,both the deep rocks have experienced three stages:linear elastic deformation,nonlinear plastic deformation,and shear failure.The micro-mechanical behavior greatly affects the dynamic deformation of rock microstructure and gas-water two-phase flow.In the linear elastic deformation stage,with the increase in in-situ stress,both the deep rocks are gradually compacted,leading to decreases in average pore radius,pore throat ratio,tortuosity,and water-phase relative permeability,while the coordination number nearly remains unchanged.In the plastic deformation stage,the synergistic influence of rock compaction and existence of micro-fractures typically exert a great effect on pore-throat topological properties and gas-water relative permeability.In the shear failure stage,due to the generation and propagation of micro-fractures inside the deep rock,the topological connectivity becomes better,fluid flow paths increase,and flow conductivity is promoted,thus leading to sharp increases in average pore radius and coordination number,rapid decreases in pore throat ratio and tortuosity,as well as remarkable improvement in relative permeability of gas phase and waterphase. 展开更多
关键词 Ultra-deep reservoir In-situ stress loading U-Netfully convolutional neural network CTscanning Microstructure deformation Pore-scalefluid flow
原文传递
基于多注意力机制的脊柱病灶MRI影像识别模型
15
作者 周慧 宋新景 《计算机科学与探索》 北大核心 2026年第1期291-300,共10页
人工检测脊柱病变是一项耗时的工作,并且高度依赖于该领域的专家,因此脊柱病灶的自动识别是非常必要的。然而,因为脊柱病灶的大小、位置和结构存在着广泛的差异,同时脊柱肿瘤与稀有病布鲁氏菌在影像上高度相似,所以脊柱病灶的准确定位... 人工检测脊柱病变是一项耗时的工作,并且高度依赖于该领域的专家,因此脊柱病灶的自动识别是非常必要的。然而,因为脊柱病灶的大小、位置和结构存在着广泛的差异,同时脊柱肿瘤与稀有病布鲁氏菌在影像上高度相似,所以脊柱病灶的准确定位和分类是一项具有挑战性的工作。为了应对这些挑战,提出了一种改进的脊柱病灶MRI影像识别模型。引入以ResNet-101为基础的双向特征金字塔主干网络,利用可变卷积在不同层替代传统的卷积神经网络,从特征层中获得更多的特征信息。在不同的模块中加入了多重注意力,包括自注意力机制和柔性注意力机制,有效地融合特征中贡献较大的部分。为了克服脊柱肿瘤、感染性病变、稀有病布鲁氏菌的数据不平衡问题,引入了改进的平衡交叉熵损失函数。在大连某医院提供的临床数据集上进行验证,识别精确率达到了94.2%,识别召回率达到90.8%。与其他识别模型进行对比实验,结果说明了该方法相对于其他模型识别性能更好。 展开更多
关键词 脊柱病灶识别 双向特征金字塔 多注意力机制 可变卷积 多特征融合
在线阅读 下载PDF
应用跨领域适应和偏移量引导的毛竹林分割算法
16
作者 叶李波 季志利 +3 位作者 朱珊 宋俊锋 叶振 王国相 《东北林业大学学报》 北大核心 2026年第1期61-67,90,共8页
为解决由于无人机视角下毛竹林的形状和纹理复杂,现有方法在分割精度和鲁棒性方面表现不佳的问题,提出了一种应用跨领域适应和偏移量引导的毛竹林分割网络——BFSNet。以百山祖国家公园为试验区,利用无人机拍摄周边毛竹林图像构建数据... 为解决由于无人机视角下毛竹林的形状和纹理复杂,现有方法在分割精度和鲁棒性方面表现不佳的问题,提出了一种应用跨领域适应和偏移量引导的毛竹林分割网络——BFSNet。以百山祖国家公园为试验区,利用无人机拍摄周边毛竹林图像构建数据集。为增强模型的特征提取能力,提出跨领域适应模块以有效利用源模型的强特征提取能力,并结合自主学习提取适用于毛竹林分割任务的特征,利用两者的优势进行互补。为提高模型对于不同形状毛竹林的识别和定位能力,结合可变形卷积的偏移量引导模块,引入可学习的偏移量参数,以适应不同形状的毛竹林目标。将BFSNet在DeepGlobe Land Cover Classification Challenge和自制数据集上进行模型训练和测试,并与多种主流图像分割方法进行对比。结果表明:BFSNet在交并比、Dice系数、精确率和召回率4项指标上均取得了最优的性能表现,分别获得了76.04%和71.93%的交并比。与多种主流的图像分割模型相比,BFSNet在毛竹林的分割效果方面表现最为出色,对毛竹林形状的精确建模能力能够有效地应对不同形态的毛竹林。 展开更多
关键词 毛竹林分割 跨领域适应 偏移量引导 可变形卷积
在线阅读 下载PDF
BurdenNet:先验信息导引的复杂环境下高炉多态料面目标检测网络
17
作者 倪梓明 陈先中 +1 位作者 侯庆文 张洁 《工程科学学报》 北大核心 2026年第1期26-38,共13页
传统的单一状态料面目标检测网络未能考虑高炉冶炼状态的交替变化,在复杂环境下整体准确度较低,针对上述问题,本文提出一种先验信息导引的多态料面目标检测网络BurdenNet.首先,提出基于原始信号距离向精度的图像预分类方法,构建三类典... 传统的单一状态料面目标检测网络未能考虑高炉冶炼状态的交替变化,在复杂环境下整体准确度较低,针对上述问题,本文提出一种先验信息导引的多态料面目标检测网络BurdenNet.首先,提出基于原始信号距离向精度的图像预分类方法,构建三类典型状态的料面图像数据集,并以预分类的状态为先验信息对网络通路进行剪枝.其次,将料面细长低曲率的形状特征与雷达采样信号的稀疏性质作为先验信息,提出空洞垂直偏移卷积(Atrous vertical deformable convolution,AVDC)模块提取多态料面特征.在此基础上,利用机械探尺数据构建先验空间注意力特征图,提出先验聚焦注意力(Prior focusing attention,PFA)模块,使网络优先聚焦于图像中的料面区域.最后对于边界框的回归,提出条带交并比(Band intersection over union,BIOU)损失函数进一步提升目标检测的速度与准确性.在钢铁公司高炉的实测数据上进行实验,结果表明,本文的BurdenNet相较于单一状态目标检测网络,在多态料面数据集上整体精确率提升了13.9%与5.2%,综合性能(F1-Score)提升了8.1%与4.3%,为复杂环境下多态料面图像的目标检测提供更准确的方法. 展开更多
关键词 多态料面 先验信息 空洞垂直偏移卷积 先验聚焦注意力 网络剪枝
在线阅读 下载PDF
基于可变形卷积和注意力机制的生丝疵点检测算法
18
作者 易娇娇 孙卫红 +1 位作者 梁曼 邵铁锋 《棉纺织技术》 2026年第1期36-42,共7页
针对生丝疵点小且形态多变导致检测中出现错检漏检的问题,提出一种基于可变形卷积和注意力机制的生丝疵点检测算法。以YOLOv8n为基准模型,首先在主干网络部分将可变形卷积DCNv2融入C2f中形成新的C2f-DCN模块,利用可变形卷积的任意采样... 针对生丝疵点小且形态多变导致检测中出现错检漏检的问题,提出一种基于可变形卷积和注意力机制的生丝疵点检测算法。以YOLOv8n为基准模型,首先在主干网络部分将可变形卷积DCNv2融入C2f中形成新的C2f-DCN模块,利用可变形卷积的任意采样形状特性自适应拟合疵点的几何形状,提升模型对不规则疵点的特征提取能力;其次在主干网络末端加入ECA注意力机制,通过跨通道交互抑制背景噪声等无用信息,提高模型对疵点特征信息的关注度;最后在颈部添加一个P2检测头获取浅层语义信息,构建四分支检测层结构,增强对小目标的响应能力。试验结果表明:与原始算法相比,该算法mAP@0.5和mAP@0.5∶0.95达到95.4%、75.9%,分别提升了3.3个百分点和9.0个百分点,模型推理速度达到65.2帧/s。该算法能够有效实现疵点检测,降低疵点的错检漏检现象,同时具有较好的检测速度,满足实时检测要求。 展开更多
关键词 疵点检测 可变形卷积 YOLOv8n 注意力机制 目标检测
在线阅读 下载PDF
An intelligent singular value diagnostic method for concrete dam deformation monitoring 被引量:5
19
作者 Jie Yang Xu-dong Qu Meng Chang 《Water Science and Engineering》 EI CAS CSCD 2019年第3期205-212,共8页
Extracting implicit anomaly information through deformation monitoring data mining is highly significant to determining dam safety status.As an intelligent singular value diagnostic method for concrete dam deformation... Extracting implicit anomaly information through deformation monitoring data mining is highly significant to determining dam safety status.As an intelligent singular value diagnostic method for concrete dam deformation monitoring, shallow neural network models result in local optima and overfitting, and require manual feature extraction.To obtain an intelligent singular value diagnosis model that can be used for dam safety monitoring, a convolutional neural network (CNN) model that has advantages of deep learning (DL), such as automatic feature extraction, good model fitting, and strong generalizability, was trained in this study.An engineering example shows that the predicted result of the intelligent singular value diagnostic method based on CNN is highly compatible with the confusion matrix, with a precision of 92.41%, receiver operating characteristic (ROC) coordinates of (0.03, 0.97), an area-under-curve (AUC) value of 0.99, and an F1-score of 0.91.Moreover, the performance of the CNN model is better than those of models based on decision tree (DT) and k-nearest neighbor (KNN) methods.Therefore, the intelligent singular value diagnostic method based on CNN is simple to operate, highly intelligent, and highly reliable, and it has a high potential for application in engineering. 展开更多
关键词 SINGULAR VALUE diagnosis convolutional NEURAL network Artificial INTELLIGENCE deformATION monitoring Concrete DAM
在线阅读 下载PDF
Video super-resolution reconstruction based on deep convolutional neural network and spatio-temporal similarity 被引量:1
20
作者 Li Linghui Du Junping +2 位作者 Liang Meiyu Ren Nan Fan Dan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第5期68-81,共14页
Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of ... Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of learning-based algorithms to video SR field, a novel video SR reconstruction algorithm based on deep convolutional neural network (CNN) and spatio-temporal similarity (STCNN-SR) was proposed in this paper. It is a deep learning method for video SR reconstruction, which considers not onlv the mapping relationship among associated low-resolution (LR) and high-resolution (HR) image blocks, but also the spatio-temporal non-local complementary and redundant information between adjacent low-resolution video frames. The reconstruction speed can be improved obviously with the pre-trained end-to-end reconstructed coefficients. Moreover, the performance of video SR will be further improved by the optimization process with spatio-temporal similarity. Experimental results demonstrated that the proposed algorithm achieves a competitive SR quality on both subjective and objective evaluations, when compared to other state-of-the-art algorithms. 展开更多
关键词 video SR reconstruction deep convolutional neural network spatio-temporal siruilarity Zernike moment feature
原文传递
上一页 1 2 33 下一页 到第
使用帮助 返回顶部