The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
In this paper,the entity_relation data model for integrating spatio_temporal data is designed.In the design,spatio_temporal data can be effectively stored and spatiao_temporal analysis can be easily realized.
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently...Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.展开更多
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to...Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.展开更多
False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail...False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.展开更多
Inspired by recent significant agricultural yield losses in the eastern China and a missing operational monitoring system,we developed a comprehensive drought monitoring model to better understand the impact of indivi...Inspired by recent significant agricultural yield losses in the eastern China and a missing operational monitoring system,we developed a comprehensive drought monitoring model to better understand the impact of individual key factors contributing to this issue.The resulting model,the‘Humidity calibrated Drought Condition Index’(HcDCI)was applied for the years 2001 to 2019 in form of a case study to Weihai County,Shandong Province in East China.Design and development are based on a linear combination of the Vegetation Condition Index(VCI),the Temperature Condition Index(TCI),and the Rainfall Condition Index(RCI)using multi-source satellite data to create a basic Drought Condition Index(DCI).VCI and TCI were derived from MODIS(Moderate Resolution Imaging Spectroradiometer)data,while precipitation is taken from CHIRPS(Climate Hazards Group InfraRed Precipitation with Station data)data.For reasons of accuracy,the decisive coefficients were determined by the relative humidity of soils at depth of 10-20 cm of particular areas collected by an agrometeorological ground station.The correlation between DCI and soil humidity was optimized with the factors of 0.53,0.33,and 0.14 for VCI,TCI,and RCI,respectively.The model revealed,light agricultural droughts from 2003 to 2013 and in 2018,while more severe droughts occurred in 2001 and 2002,2014-2017,and 2019.The droughts were most severe in January,March,and December,and our findings coincide with historical records.The average temperature during 2012-2019 is 1℃ higher than that during the period 2001-2011 and the average precipitation during 2014-2019 is 192.77 mm less than that during 2008-2013.The spatio-temporal accuracy of the HcDCI model was positively validated by correlation with agricultural crop yield quantities.The model thus,demonstrates its capability to reveal drought periods in detail,its transferability to other regions and its usefulness to take future measures.展开更多
Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are st...Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.展开更多
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution ...High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution in the main urban area of Chongqing, based on realtime traffic data from 820 RFID detectors covering 454 roads, and the differences in spatiotemporal emission characteristics between inner and outer districts were analysed. The result showed that the daily vehicular emission intensities of CO, hydrocarbons, PM2.5, PM10,and NO_(x) were 30.24, 3.83, 0.18, 0.20, and 8.65 kg/km per day, respectively, in the study area during 2018. The pollutants emission intensities in inner district were higher than those in outer district. Light passenger cars(LPCs) were the main contributors of all-day CO emissions in the inner and outer districts, from which the contributors of NO_(x) emissions were different. Diesel and natural gas buses were major contributors of daytime NO_(x) emissions in inner districts, accounting for 40.40%, but buses and heavy duty trucks(HDTs) were major contributors in outer districts. At nighttime, due to the lifting of truck restrictions and suspension of buses, HDTs become the main NO_(x) contributor in both inner and outer districts,and its three NO_(x) emission peak hours were found, which are different to the peak hours of total NO_(x) emission by all vehicles. Unlike most other cities, bridges and connecting channels are always emission hotspots due to long-time traffic congestion. This knowledge will help fully understand vehicular emissions characteristics and is useful for policymakers to design precise prevention and control measures.展开更多
This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic...This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic DMSP”dataset,from 1992 to 2020,to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang,China.Then,this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique.Results reveal that(1)total carbon emissions continued to grow,while the growth rate slowed down in the past five years.(2)Large regional differences exist in total carbon emissions across various regions.Total carbon emissions of these regions in descending order are the northern slope of the Tianshan(Mountains)>the southern slope of the Tianshan>the three prefectures in southern Xinjiang>the northern part of Xinjiang.(3)Economic growth,population size,and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions.The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’spatial differentiation.This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps.展开更多
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has prov...Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability.展开更多
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ...This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.展开更多
Taking cities as objects being observed,urban remote sensing is an important branch of remote sensing.Given the complexity of the urban scenes,urban remote sensing observation requires data with a high temporal resolu...Taking cities as objects being observed,urban remote sensing is an important branch of remote sensing.Given the complexity of the urban scenes,urban remote sensing observation requires data with a high temporal resolution,high spatial resolution,and high spectral resolution.To the best of our knowledge,however,no satellite owns all the above character-istics.Thus,it is necessary to coordinate data from existing remote sensing satellites to meet the needs of urban observation.In this study,we abstracted the urban remote sensing observation process and proposed an urban spatio-temporal-spectral observation model,filling the gap of no existing urban remote sensing framework.In this study,we present four applications to elaborate on the specific applications of the proposed model:1)a spatiotemporal fusion model for synthesizing ideal data,2)a spatio-spectral observation model for urban vegetation biomass estimation,3)a temporal-spectral observation model for urban flood mapping,and 4)a spatio-temporal-spectral model for impervious surface extraction.We believe that the proposed model,although in a conceptual stage,can largely benefit urban observation by providing a new data fusion paradigm.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role...Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties.展开更多
Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most cruci...Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.展开更多
Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of th...Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.展开更多
In a complex urban scene,observation from a single sensor unavoidably leads to voids in observations,failing to describe urban objects in a comprehensive manner.In this paper,we propose a spatio-temporal-spectral-angu...In a complex urban scene,observation from a single sensor unavoidably leads to voids in observations,failing to describe urban objects in a comprehensive manner.In this paper,we propose a spatio-temporal-spectral-angular observation model to integrate observations from UAV and mobile mapping vehicle platform,realizing a joint,coordinated observation operation from both air and ground.We develop a multi-source remote sensing data acquisition system to effectively acquire multi-angle data of complex urban scenes.Multi-source data fusion solves the missing data problem caused by occlusion and achieves accurate,rapid,and complete collection of holographic spatial and temporal information in complex urban scenes.We carried out an experiment on Baisha Town,Chongqing,China and obtained multi-sensor,multi-angle data from UAV and mobile mapping vehicle.We first extracted the point cloud from UAV and then integrated the UAV and mobile mapping vehicle point cloud.The inte-grated results combined both the characteristics of UAV and mobile mapping vehicle point cloud,confirming the practicability of the proposed joint data acquisition platform and the effectiveness of spatio-temporal-spectral-angular observation model.Compared with the observation from UAV or mobile mapping vehicle alone,the integrated system provides an effective data acquisition solution toward comprehensive urban monitoring.展开更多
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models bas...This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions.The proposed Dynamic Gaussian Process Regression(DGPR)consists of a sequence of local surrogate models related to each other.In DGPR,the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns,where the temporal information is used as the prior information for training the spatial-surrogate model.The DGPR is robust and especially suitable for the loosely coupled model structure,also allowing for parallel computation.The numerical results of the test function show the effectiveness of DGPR.Furthermore,the shock tube problem is successfully approximated under different phenomenon complexity.展开更多
The study aimed to develop a customized Data Governance Maturity Model (DGMM) for the Ministry of Defence (MoD) in Kenya to address data governance challenges in military settings. Current frameworks lack specific req...The study aimed to develop a customized Data Governance Maturity Model (DGMM) for the Ministry of Defence (MoD) in Kenya to address data governance challenges in military settings. Current frameworks lack specific requirements for the defence industry. The model uses Key Performance Indicators (KPIs) to enhance data governance procedures. Design Science Research guided the study, using qualitative and quantitative methods to gather data from MoD personnel. Major deficiencies were found in data integration, quality control, and adherence to data security regulations. The DGMM helps the MOD improve personnel, procedures, technology, and organizational elements related to data management. The model was tested against ISO/IEC 38500 and recommended for use in other government sectors with similar data governance issues. The DGMM has the potential to enhance data management efficiency, security, and compliance in the MOD and guide further research in military data governance.展开更多
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
基金Project supported by the National Surveying Technical Fund(No.200_07)
文摘In this paper,the entity_relation data model for integrating spatio_temporal data is designed.In the design,spatio_temporal data can be effectively stored and spatiao_temporal analysis can be easily realized.
基金supported by the National Key Basic Research and Development Program of China under contract No.2006CB701305the National Natural Science Foundation of China under coutract No.40571129the National High-Technology Program of China under contract Nos 2002AA639400,2003AA604040 and 2003AA637030.
文摘Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.
基金supported by The Henan Province Science and Technology Research Project(242102211046)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25A520039)+1 种基金theNatural Science Foundation project of Zhongyuan Institute of Technology(K2025YB011)the Zhongyuan University of Technology Graduate Education and Teaching Reform Research Project(JG202424).
文摘Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.
基金supported by National Key Research and Development Plan of China(No.2022YFB3103304).
文摘False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.
基金Under the auspices of Shenzhen Science and Technology Program(No.KQTD20180410161218820)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515012600)。
文摘Inspired by recent significant agricultural yield losses in the eastern China and a missing operational monitoring system,we developed a comprehensive drought monitoring model to better understand the impact of individual key factors contributing to this issue.The resulting model,the‘Humidity calibrated Drought Condition Index’(HcDCI)was applied for the years 2001 to 2019 in form of a case study to Weihai County,Shandong Province in East China.Design and development are based on a linear combination of the Vegetation Condition Index(VCI),the Temperature Condition Index(TCI),and the Rainfall Condition Index(RCI)using multi-source satellite data to create a basic Drought Condition Index(DCI).VCI and TCI were derived from MODIS(Moderate Resolution Imaging Spectroradiometer)data,while precipitation is taken from CHIRPS(Climate Hazards Group InfraRed Precipitation with Station data)data.For reasons of accuracy,the decisive coefficients were determined by the relative humidity of soils at depth of 10-20 cm of particular areas collected by an agrometeorological ground station.The correlation between DCI and soil humidity was optimized with the factors of 0.53,0.33,and 0.14 for VCI,TCI,and RCI,respectively.The model revealed,light agricultural droughts from 2003 to 2013 and in 2018,while more severe droughts occurred in 2001 and 2002,2014-2017,and 2019.The droughts were most severe in January,March,and December,and our findings coincide with historical records.The average temperature during 2012-2019 is 1℃ higher than that during the period 2001-2011 and the average precipitation during 2014-2019 is 192.77 mm less than that during 2008-2013.The spatio-temporal accuracy of the HcDCI model was positively validated by correlation with agricultural crop yield quantities.The model thus,demonstrates its capability to reveal drought periods in detail,its transferability to other regions and its usefulness to take future measures.
基金Foundation: National Natural Science Foundation of China, No.41171328, No.41201184, No.41101537 National Basic Program of China, No.2010CB951502
文摘Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
基金supported by the National Key Research Program(No.2018YFB1601105,No.2018YFB1601102)the Natural Science Foundation of China(No.41975165,No.U1811463)Chongqing Science and Technology Project(No.cstc2019jscxfxydX0035)。
文摘High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution in the main urban area of Chongqing, based on realtime traffic data from 820 RFID detectors covering 454 roads, and the differences in spatiotemporal emission characteristics between inner and outer districts were analysed. The result showed that the daily vehicular emission intensities of CO, hydrocarbons, PM2.5, PM10,and NO_(x) were 30.24, 3.83, 0.18, 0.20, and 8.65 kg/km per day, respectively, in the study area during 2018. The pollutants emission intensities in inner district were higher than those in outer district. Light passenger cars(LPCs) were the main contributors of all-day CO emissions in the inner and outer districts, from which the contributors of NO_(x) emissions were different. Diesel and natural gas buses were major contributors of daytime NO_(x) emissions in inner districts, accounting for 40.40%, but buses and heavy duty trucks(HDTs) were major contributors in outer districts. At nighttime, due to the lifting of truck restrictions and suspension of buses, HDTs become the main NO_(x) contributor in both inner and outer districts,and its three NO_(x) emission peak hours were found, which are different to the peak hours of total NO_(x) emission by all vehicles. Unlike most other cities, bridges and connecting channels are always emission hotspots due to long-time traffic congestion. This knowledge will help fully understand vehicular emissions characteristics and is useful for policymakers to design precise prevention and control measures.
基金The Third Xinjiang Scientific Expedition Program(2021xjkk0905)GDAS Special Project of Science and Technology Development(2020GDASYL-20200301003)+2 种基金GDAS Special Project of Science and Technology Development(2020GDASYL-20200102002)National Natural Science Foundation of China(41501144)Project of Department of Natural Resources of Guangdong Province(GDZRZYKJ2022005)。
文摘This essay combines the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)nighttime light data and the Visible Infrared Imaging Radiometer Suite(VIIRS)nighttime light data into a“synthetic DMSP”dataset,from 1992 to 2020,to retrieve the spatio-temporal variations in energy-related carbon emissions in Xinjiang,China.Then,this paper analyzes several influencing factors for spatial differentiation of carbon emissions in Xinjiang with the application of geographical detector technique.Results reveal that(1)total carbon emissions continued to grow,while the growth rate slowed down in the past five years.(2)Large regional differences exist in total carbon emissions across various regions.Total carbon emissions of these regions in descending order are the northern slope of the Tianshan(Mountains)>the southern slope of the Tianshan>the three prefectures in southern Xinjiang>the northern part of Xinjiang.(3)Economic growth,population size,and energy consumption intensity are the most important factors of spatial differentiation of carbon emissions.The interaction between economic growth and population size as well as between economic growth and energy consumption intensity also enhances the explanatory power of carbon emissions’spatial differentiation.This paper aims to help formulate differentiated carbon reduction targets and strategies for cities in different economic development stages and those with different carbon intensities so as to achieve the carbon peak goals in different steps.
基金partially supported by the National Natural Science Foundation of China(62271485)the SDHS Science and Technology Project(HS2023B044)
文摘Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability.
基金sponsored by the U.S.Department of Housing and Urban Development(Grant No.NJLTS0027-22)The opinions expressed in this study are the authors alone,and do not represent the U.S.Depart-ment of HUD’s opinions.
文摘This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.
基金This work is supported by the National Key Research and Development Program of China[grant number 2018YFB2100501]the Key Research and Development Program of Yunnan province in China[grant number 2018IB023]+2 种基金the Research Project from the Ministry of Natural Resources of China[grant number 4201⁃⁃240100123]the National Natural Science Foundation of China[grant numbers 41771452,41771454,41890820,and 41901340]the Natural Science Fund of Hubei Province in China[grant number 2018CFA007].
文摘Taking cities as objects being observed,urban remote sensing is an important branch of remote sensing.Given the complexity of the urban scenes,urban remote sensing observation requires data with a high temporal resolution,high spatial resolution,and high spectral resolution.To the best of our knowledge,however,no satellite owns all the above character-istics.Thus,it is necessary to coordinate data from existing remote sensing satellites to meet the needs of urban observation.In this study,we abstracted the urban remote sensing observation process and proposed an urban spatio-temporal-spectral observation model,filling the gap of no existing urban remote sensing framework.In this study,we present four applications to elaborate on the specific applications of the proposed model:1)a spatiotemporal fusion model for synthesizing ideal data,2)a spatio-spectral observation model for urban vegetation biomass estimation,3)a temporal-spectral observation model for urban flood mapping,and 4)a spatio-temporal-spectral model for impervious surface extraction.We believe that the proposed model,although in a conceptual stage,can largely benefit urban observation by providing a new data fusion paradigm.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
基金supported by the Natural Science Foundation of Hubei Province, China (2017CFB434)the National Natural Science Foundation of China (41506208 and 61501200)the Basic Research Funds for Yellow River Institute of Hydraulic Research, China (HKYJBYW-2016-06)
文摘Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties.
文摘Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.
基金supported By Grant (PLN2022-14) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)。
文摘Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.
基金This work is supported by the National Natural Science Foundation of China[grant numbers 42090012,41771452,41771454,and 41901340].
文摘In a complex urban scene,observation from a single sensor unavoidably leads to voids in observations,failing to describe urban objects in a comprehensive manner.In this paper,we propose a spatio-temporal-spectral-angular observation model to integrate observations from UAV and mobile mapping vehicle platform,realizing a joint,coordinated observation operation from both air and ground.We develop a multi-source remote sensing data acquisition system to effectively acquire multi-angle data of complex urban scenes.Multi-source data fusion solves the missing data problem caused by occlusion and achieves accurate,rapid,and complete collection of holographic spatial and temporal information in complex urban scenes.We carried out an experiment on Baisha Town,Chongqing,China and obtained multi-sensor,multi-angle data from UAV and mobile mapping vehicle.We first extracted the point cloud from UAV and then integrated the UAV and mobile mapping vehicle point cloud.The inte-grated results combined both the characteristics of UAV and mobile mapping vehicle point cloud,confirming the practicability of the proposed joint data acquisition platform and the effectiveness of spatio-temporal-spectral-angular observation model.Compared with the observation from UAV or mobile mapping vehicle alone,the integrated system provides an effective data acquisition solution toward comprehensive urban monitoring.
基金co-supported by the National Natural Science Foundation of China(No.12101608)the NSAF(No.U2230208)the Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX20220034).
文摘This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions.The proposed Dynamic Gaussian Process Regression(DGPR)consists of a sequence of local surrogate models related to each other.In DGPR,the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns,where the temporal information is used as the prior information for training the spatial-surrogate model.The DGPR is robust and especially suitable for the loosely coupled model structure,also allowing for parallel computation.The numerical results of the test function show the effectiveness of DGPR.Furthermore,the shock tube problem is successfully approximated under different phenomenon complexity.
文摘The study aimed to develop a customized Data Governance Maturity Model (DGMM) for the Ministry of Defence (MoD) in Kenya to address data governance challenges in military settings. Current frameworks lack specific requirements for the defence industry. The model uses Key Performance Indicators (KPIs) to enhance data governance procedures. Design Science Research guided the study, using qualitative and quantitative methods to gather data from MoD personnel. Major deficiencies were found in data integration, quality control, and adherence to data security regulations. The DGMM helps the MOD improve personnel, procedures, technology, and organizational elements related to data management. The model was tested against ISO/IEC 38500 and recommended for use in other government sectors with similar data governance issues. The DGMM has the potential to enhance data management efficiency, security, and compliance in the MOD and guide further research in military data governance.