期刊文献+
共找到386篇文章
< 1 2 20 >
每页显示 20 50 100
Risk Prediction of Tunnel Water and Mud Inrush Based on Decision-Level Fusion of Multisource Data
1
作者 Shi-shu Zhang Peng Wang +4 位作者 Hua-bo Xiao Huai-bing Wang Yi-guo Xue Wei-dong Chen Kai Zhang 《Applied Geophysics》 2025年第2期472-487,559,560,共18页
This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data.A risk prediction indicator system was... This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data.A risk prediction indicator system was established for water and mud inrush in tunnels by analyzing advanced prediction data for specifi c tunnel segments.Additionally,the indicator weights were determined using the analytic hierarchy process combined with the Huber weighting method.Subsequently,a multisource data decision-layer fusion algorithm was utilized to generate fused imaging results for tunnel water and mud inrush risk predictions.Meanwhile,risk analysis was performed for different tunnel sections to achieve spatial and temporal complementarity within the indicator system and optimize redundant information.Finally,model feasibility was validated using the CZ Project Sejila Mountain Tunnel segment as a case study,yielding favorable risk prediction results and enabling effi cient information fusion and support for construction decision-making. 展开更多
关键词 Tunnel water and mud inrush prediction methods risk indicators multisource data decision-level fusion
在线阅读 下载PDF
Optimized air-ground data fusion method for mine slope modeling
2
作者 LIU Dan HUANG Man +4 位作者 TAO Zhigang HONG Chenjie WU Yuewei FAN En YANG Fei 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2130-2139,共10页
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact... Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model. 展开更多
关键词 Air-ground data fusion method Mini batch K-Medoids algorithm Ebow rule Optimal cluster number 3D laser scanning UAV tilt photogrammetry
原文传递
Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids
3
作者 Tong Zu Fengyong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1395-1417,共23页
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u... False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness. 展开更多
关键词 False data injection attacks smart grid deep learning self-attention mechanism spatio-temporal fusion
在线阅读 下载PDF
Parameter Estimation of a Valve-Controlled Cylinder System Model Based on Bench Test and Operating Data Fusion
4
作者 Deying Su Shaojie Wang +3 位作者 Haojing Lin Xiaosong Xia Yubing Xu Liang Hou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期247-263,共17页
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ... The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies. 展开更多
关键词 Valve-controlled cylinder system Parameter estimation The Bayesian theory data fusion method Weight coefficients
在线阅读 下载PDF
A heuristic cabin-type component alignment method based on multi-source data fusion 被引量:1
5
作者 Hao YU Fuzhou DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第8期2242-2256,共15页
In cabin-type component alignment, digital measurement technology is usually adopted to provide guidance for assembly. Depending on the system of measurement, the alignment process can be divided into measurement-assi... In cabin-type component alignment, digital measurement technology is usually adopted to provide guidance for assembly. Depending on the system of measurement, the alignment process can be divided into measurement-assisted assembly(MAA) and force-driven assembly. In MAA,relative pose between components is directly measured to guide assembly, while in force-driven assembly, only contact state can be recognized according to measured six-dimensional force and torque(6 D F/T) and the process is completed based on preset assembly strategy. Aiming to improve the efficiency of force-driven cabin-type component alignment, this paper proposed a heuristic alignment method based on multi-source data fusion. In this method, measured 6 D F/T, pose data and geometric information of components are fused to calculate the relative pose between components and guide the movement of pose adjustment platform. Among these data types, pose data and measured 6 D F/T are combined as data set. To collect the data sets needed for data fusion, dynamic gravity compensation method and hybrid motion control method are designed. Then the relative pose calculation method is elaborated, which transforms collected data sets into discrete geometric elements and calculates the relative poses based on the geometric information of components.Finally, experiments are conducted in simulation environment and the results show that the proposed alignment method is feasible and effective. 展开更多
关键词 Alignment strategy Force-driven assembly Heuristic alignment method Multi-source data fusion Relative pose calculation
原文传递
Consistent fusion for distributed multi-rate multi-sensor linear systems with unknown correlated measurement noises
6
作者 Peng WANG Hongbing JI +1 位作者 Yongquan ZHANG Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第7期389-407,共19页
This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer mult... This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy. 展开更多
关键词 Distributed multi-rate multisensor system Sensor data fusion Correlated measurement noise Equivalent measurement Consistent method
原文传递
ADAPTIVE FUSION ALGORITHMS BASED ON WEIGHTED LEAST SQUARE METHOD 被引量:9
7
作者 SONG Kaichen NIE Xili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期451-454,共4页
Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coeff... Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms. 展开更多
关键词 Weighted least square method data fusion Measurement noise Correlation
在线阅读 下载PDF
Data Fusion with Optimized Block Kernels in LS-SVM for Protein Classification
8
作者 Li Liao 《Engineering(科研)》 2013年第10期223-236,共14页
In this work, we developed a method to efficiently optimize the kernel function for combined data of various different sources with their corresponding kernels being already available. The vectorization of the combine... In this work, we developed a method to efficiently optimize the kernel function for combined data of various different sources with their corresponding kernels being already available. The vectorization of the combined data is achieved by a weighted concatenation of the existing data vectors. This induces a kernel matrix composed of the existing kernels as blocks along the main diagonal, weighted according to the corresponding the subspaces span by the data. The induced block kernel matrix is optimized in the platform of least-squares support vector machines simultaneously as the LS-SVM is being trained, by solving an extended set of linear equations, other than a quadratically constrained quadratic programming as in a previous method. The method is tested on a benchmark dataset, and the performance is significantly improved from the highest ROC score 0.84 using individual data source to ROC score 0.92 with data fusion. 展开更多
关键词 data fusion KERNEL method Support VECTOR MACHINES Protein Classification
在线阅读 下载PDF
基于多数据融合的水电机组劣化趋势概率区间预测 被引量:1
9
作者 王淑青 翟宇胜 +2 位作者 胡文庆 盛世龙 刘东 《水电能源科学》 北大核心 2025年第2期201-205,共5页
传统的基于单一测点的预测模型无法全面反映水电机组的健康状态,这导致难以实现机组劣化状态的准确评估。对此,提出了一种基于多测点数据融合与概率区间预测的水电机组劣化趋势预测模型。首先,选取机组不同测点在各工况下健康运行的数... 传统的基于单一测点的预测模型无法全面反映水电机组的健康状态,这导致难以实现机组劣化状态的准确评估。对此,提出了一种基于多测点数据融合与概率区间预测的水电机组劣化趋势预测模型。首先,选取机组不同测点在各工况下健康运行的数据构成数据集,采用期望最大化—高斯混合模型(EM-GMM)拟合机组健康运行状态下的各监测量的概率密度分布;然后,计算待估样本在给定机组健康状态分布下的负对数似然概率,以作为劣化度指标;其次,采用熵权法计算各测点劣化度指标的权重,通过加权得到综合劣化度指标;最后,为确保预测结果的可靠性,利用多目标遗传算法(MOGA)优化高斯过程回归(GPR)模型代替传统的点预测模型,并使用不同的预测模型进行对比和评估,证明本文提出的模型具有更高的预测精度。 展开更多
关键词 水电机组 多数据融合 EM-GMM健康模型 劣化度指标 熵权法 概率区间预测模型
原文传递
基于机器学习融合模型的页岩气藏测井曲线构建方法 被引量:1
10
作者 王鸣川 岳明 《中国科技论文》 2025年第3期255-266,共12页
针对页岩气藏多数开发井台测井曲线缺失给页岩气藏的精细表征与建模带来困难、单一机器学习模型构建测井曲线的精度无法满足需求且泛化性低的问题,提出了一套基于机器学习融合模型的页岩气藏测井曲线构建方法。在已知测井曲线预处理的... 针对页岩气藏多数开发井台测井曲线缺失给页岩气藏的精细表征与建模带来困难、单一机器学习模型构建测井曲线的精度无法满足需求且泛化性低的问题,提出了一套基于机器学习融合模型的页岩气藏测井曲线构建方法。在已知测井曲线预处理的基础上,建立训练数据集,输入到深度神经网络(deep neural net⁃work,DNN)、卷积神经网络(convolutional neural network,CNN)、长短期记忆神经网络(long short-term memory,LSTM)和随机森林(random forest,RF)4个个体学习器进行初步训练,从测井数据的序列特征、空间信息、细粒度特征等获取数据间的非线性映射关系。接着根据验证集数据进行模型参数调整,并获取各模型的预测精度。然后基于预测效果为各学习器分配权重,并对预测结果进行加权融合,从而形成精度高且泛化性强的测井曲线并构建融合模型。选取四川盆地X区块4口盲井进行应用效果验证,4口井构建的测井曲线,与原始的测井曲线相比,平均精度在90%以上。结果表明,新方法不仅能准确构建不同性质的测井曲线,而且泛化性强,能为页岩气藏的精细表征与建模提供较为可靠的测井曲线数据。 展开更多
关键词 页岩气藏 测井曲线 机器学习 融合模型 数据处理 构建方法
在线阅读 下载PDF
物联网环境下异步多传感器数据深度融合算法研究
11
作者 殷存举 张薇 《传感技术学报》 北大核心 2025年第7期1321-1326,共6页
在物联网环境中,现有方法未考虑异步多传感器数据融合过程中权重和偏置的计算,从而导致信息出现缺失,降低融合结果的质量。为了改善这个问题,提出了一种考虑引入权重和偏置计算的异步多传感器数据深度融合算法。首先采用经验小波变换方... 在物联网环境中,现有方法未考虑异步多传感器数据融合过程中权重和偏置的计算,从而导致信息出现缺失,降低融合结果的质量。为了改善这个问题,提出了一种考虑引入权重和偏置计算的异步多传感器数据深度融合算法。首先采用经验小波变换方法对异步多传感器数据展开重构处理,提高数据质量;其次利用逐步回归特征选择方法选取出最有信息量的特征,以减少冗余信息降低维度;最后,通过计算选择特征在深度融合过程中的权重与偏置,并结合深度自动编码器网络(DAEN网络),完成对异步多传感器数据的深度融合。结果表明,所提算法均方误差可维持在1.0 dB以下,平均绝对百分比误差在3.5%以下,拟合度为0.96,融合耗时在8.5s以下,具有较好的融合效果和效率。 展开更多
关键词 异步多传感器 数据融合 经验小波变换方法 逐步回归特征选择 DAEN网络
在线阅读 下载PDF
基于旋转运动激励的线角振动传感器动态校准方法
12
作者 陈光贵 董昱 +1 位作者 胡波 杨明 《计量学报》 北大核心 2025年第8期1150-1155,共6页
为建立统一的线角振动校准系统,研究了一种基于旋转运动激励装置运动控制的校准系统,通过控制旋转运动激励装置在宽低频范围内产生高准确度的线角激励,进而实现高效且可靠的线角振动校准。与传统的线与角振动校准方法相比,所提出方法减... 为建立统一的线角振动校准系统,研究了一种基于旋转运动激励装置运动控制的校准系统,通过控制旋转运动激励装置在宽低频范围内产生高准确度的线角激励,进而实现高效且可靠的线角振动校准。与传统的线与角振动校准方法相比,所提出方法减小重复安装引入的误差因素,构建了统一的线角振动校准体系。在0.01~5 Hz范围内线角振动传感器灵敏度的最大相对标准差分别为0.021%与0.206%。 展开更多
关键词 振动计量 线角振动传感器 动态校准 灵敏度 正弦逼近法 旋转运动 数据融合
在线阅读 下载PDF
某平原土坝坝体裂缝分布特征与成因分析
13
作者 李承中 孙翊博 《河南科技》 2025年第19期44-49,共6页
【目的】针对某平原型土坝出现的结构性裂缝问题,通过多源数据融合揭示裂缝系统的空间分布规律,阐明其成因机制。【方法】对坝体进行地质调查,并采取高密度电法、地质雷达法、中间梯度法等地球物理勘探方法,以及勘探和试验验证,综合分... 【目的】针对某平原型土坝出现的结构性裂缝问题,通过多源数据融合揭示裂缝系统的空间分布规律,阐明其成因机制。【方法】对坝体进行地质调查,并采取高密度电法、地质雷达法、中间梯度法等地球物理勘探方法,以及勘探和试验验证,综合分析坝体裂缝分布特征与成因。【结果】研究表明:裂缝系统呈现显著分层特征,浅层(≤4 m)裂缝占比82.2%,最大发育深度7.2 m与坝高一致;横向裂缝占优(63.0%),倾角双峰分布(34°~86°)反映碾压不连续导致的剪切-张拉复合破裂;成因分析表明,填筑不均和压实度不足是主导因素。【结论】本研究实现了坝体裂缝成因分析,对今后类似工程的地质勘察和设计具有重要的借鉴作用。 展开更多
关键词 土坝裂缝 高密度电法 地质雷达 多源数据融合 地质勘探
在线阅读 下载PDF
融合概率积分法与SBAS-InSAR的开采沉陷计算方法 被引量:2
14
作者 丁星丞 李培现 +3 位作者 康新亮 王明亮 张涛 郝登程 《矿业科学学报》 北大核心 2025年第1期48-56,共9页
针对开采沉陷概率积分法参数反演过程中存在容易陷入局部最优解、反演结果无法准确预计边缘沉降的问题,提出将蜣螂优化算法应用于概率积分法参数反演,结合SBAS-InSAR沉降监测值获取矿区整体沉降信息。首先依据SBAS-InSAR技术监测形变的... 针对开采沉陷概率积分法参数反演过程中存在容易陷入局部最优解、反演结果无法准确预计边缘沉降的问题,提出将蜣螂优化算法应用于概率积分法参数反演,结合SBAS-InSAR沉降监测值获取矿区整体沉降信息。首先依据SBAS-InSAR技术监测形变的梯度信息获取可靠的矿区小梯度形变区域沉降值;然后将寻优能力强、准确度高的蜣螂优化算法应用于概率积分法参数反演,计算获取矿区大梯度形变区域沉降值;最后基于距离平方加权法将概率积分法预计沉降值与SBAS-InSAR沉降监测值融合计算,得到开采沉陷变形信息。以山西省古交市马兰矿10604工作面作为研究对象,采用实地62个水准监测点数据与25景Sentinel-1A数据进行实验分析。结果表明,蜣螂优化算法参数反演结果优异,数据融合后可获取准确的沉降信息,计算精度相对于单独使用SBAS-InSAR和概率积分法分别提高59%与32%。 展开更多
关键词 开采沉陷 概率积分法 蜣螂优化算法 SBAS-InSAR 数据融合
在线阅读 下载PDF
视觉与AIS融合的桥区水域船舶自动监测方法
15
作者 杜子俊 贺益雄 +3 位作者 于德清 赵兴亚 张锐 黄立文 《中国航海》 北大核心 2025年第1期34-42,共9页
为保障桥区通航安全,提出一种视觉与船舶自动识别系统(Automatic Identification System,AIS)融合的船舶自动监测方法。基于YOLOv5(You Only Look Once version 5)目标检测算法和Canny算法提取船舶图像轮廓信息,构建桥区水域目标距离、... 为保障桥区通航安全,提出一种视觉与船舶自动识别系统(Automatic Identification System,AIS)融合的船舶自动监测方法。基于YOLOv5(You Only Look Once version 5)目标检测算法和Canny算法提取船舶图像轮廓信息,构建桥区水域目标距离、方位和高度视觉测量模型与方法,实现船舶三维定位。利用融合视觉与AIS的船舶航行态势数据建立异常行为检测模型,自动识别、监测桥区水域危险船舶。试验结果表明:在单、多船的情况下视觉与AIS数据关联准确率分别达到98.45%、91.29%;能有效监测桥区船舶的运动状态。本研究可为保障船舶和桥梁的安全提供有效方法。 展开更多
关键词 船舶自动监测方法 目标检测 数据融合 异常行为检测
在线阅读 下载PDF
公路滑坡预警中的多模态数据融合与评估模型优化研究
16
作者 王继波 张智纲 +2 位作者 邵景干 王俊超 周喻 《中国安全生产科学技术》 北大核心 2025年第9期184-190,共7页
为了及时准确评估和预警公路边坡滑坡风险,保障公路交通基础设施安全与运营效率,通过改进的DRNN卷积神经网络模型,整合地形地貌、水文条件、土壤植被等10个影响因素,提出1种多模态数据融合的公路滑坡风险评估与预警方法。该方法聚焦公... 为了及时准确评估和预警公路边坡滑坡风险,保障公路交通基础设施安全与运营效率,通过改进的DRNN卷积神经网络模型,整合地形地貌、水文条件、土壤植被等10个影响因素,提出1种多模态数据融合的公路滑坡风险评估与预警方法。该方法聚焦公路滑坡的多因素耦合影响规律,在传统DRNN卷积神经网络中替换主干网络、引入注意力机制、增设条形池分支模块,强化模型对公路滑坡关键风险因素及其交互关系的学习。研究结果表明:改进的DRNN卷积神经网络可融合多模态滑坡风险因素评估与预测公路滑坡风险,评估精度高于传统DRNN卷积神经网络的评估预测,且准确率、召回率、精确度以及F值更高,在公路滑坡风险评估预警过程中具有更强的泛化能力。研究结果可为公路滑坡风险的监测预警提供方法支撑。 展开更多
关键词 公路边坡 滑坡风险 多模态数据融合 风险评估 预警方法
在线阅读 下载PDF
时频电磁(TFEM)法:回顾与展望
17
作者 何展翔 董卫斌 +2 位作者 刘雪军 王志刚 唐必晏 《石油地球物理勘探》 北大核心 2025年第5期1326-1340,共15页
时频电磁(TFEM)法是一种新兴的电磁勘探方法,二十一世纪初从油气勘探领域发展和兴起,融合了时域和频域电磁方法的优点,能够在复杂地质条件下提供更高分辨率和更精确的地下结构成像和多电磁参数约束,在油气勘探中发挥了重要作用,已推广... 时频电磁(TFEM)法是一种新兴的电磁勘探方法,二十一世纪初从油气勘探领域发展和兴起,融合了时域和频域电磁方法的优点,能够在复杂地质条件下提供更高分辨率和更精确的地下结构成像和多电磁参数约束,在油气勘探中发挥了重要作用,已推广到地热和金属矿勘探领域。文中系统回顾了TFEM技术的发展历程:从早期CSAMT方法的局限性,到通过仪器创新(如宽频带发射系统、节点式接收装备)和智能化升级(5G云采集、OpenHarmony系统)实现高精度探测;针对复杂目标,提出了多方位同步激发、井地联合观测等采集技术,并发展了时—频数据融合处理与激电效应反演方法,有效提升了油气检测成功率(达75%以上)。实际应用方面,TFEM已在全球150余个勘探目标中累计完成超过4.7万公里剖面,成功应用于碎屑岩、岩性圈闭等多类型储层目标的探测。TFEM技术未来的突破方向是智能化装备、AI解释、多场耦合反演等,其应用将拓展至半航空电磁、海洋勘探及地热/环境监测等领域,为深地资源开发提供更高效、更精准的技术支撑。 展开更多
关键词 时频电磁法 深部资源勘探 数据融合 激电效应 人工智能解释 发展历程 应用前景
在线阅读 下载PDF
融合多传感器大数据的工业巡检机器人动态避障规划方法研究
18
作者 孙琳 邢宏根 刘梦君 《传感技术学报》 北大核心 2025年第10期1839-1845,共7页
工业巡检环境中存在动态移动人员、固定设备等障碍物,环境的变化和不确定性较高,降低了机器人的避障精度。为此,提出融合多传感器大数据的工业机器人动态避障规划方法。利用多传感器采集工业巡检机器人运动速度及角度及位置等基础运动... 工业巡检环境中存在动态移动人员、固定设备等障碍物,环境的变化和不确定性较高,降低了机器人的避障精度。为此,提出融合多传感器大数据的工业机器人动态避障规划方法。利用多传感器采集工业巡检机器人运动速度及角度及位置等基础运动学信息,明确机器人在工业巡检环境中的运动状态。采用扩展卡尔曼滤波器对采集信息展开融合处理,有效地消除噪声和不确定性,实现更准确的工业巡检机器人位置估计。引入人工势场法,并改进斥力函数进行动态避障规划,使工业巡检机器人能够更灵活、高效地规避障碍物。仿真结果表明,所提方法可将工业巡检机器人与规定的5个障碍物坐标基本一致,动态避障定位误差控制在±0.02,障碍物碰撞率为1.28%,位移误差率为0.49%。 展开更多
关键词 多传感器大数据融合 工业巡检机器人 动态避障规划 扩展卡尔曼滤波器 人工势场法
在线阅读 下载PDF
基于数据融合的光散射法与β射线粉尘检测技术研究 被引量:1
19
作者 魏海天 王杰 陈述斌 《矿业安全与环保》 北大核心 2025年第2期82-87,共6页
使用光散射法长时间测量粉尘浓度时,会因光学镜头被污染而造成测量精度下降。在分析光散射与β射线检测粉尘原理的优缺点基础上,提出一种基于光散射与β射线法相融合的粉尘检测技术,使用卡尔曼滤波数据融合算法提高测量精度,并采用Matla... 使用光散射法长时间测量粉尘浓度时,会因光学镜头被污染而造成测量精度下降。在分析光散射与β射线检测粉尘原理的优缺点基础上,提出一种基于光散射与β射线法相融合的粉尘检测技术,使用卡尔曼滤波数据融合算法提高测量精度,并采用Matlab软件进行数值模拟分析。结果表明:卡尔曼滤波数据融合算法使样本数据方差减小55.5%;融合算法测量值平均相对误差ξ≤10.00%,比单一使用光散射法的平均相对误差减小3.16%。 展开更多
关键词 粉尘检测 光散射法 Β射线法 数据融合 卡尔曼滤波 数值模拟
在线阅读 下载PDF
基于物联网技术的猪舍环境适宜度评价系统研究 被引量:1
20
作者 刘志豪 荣丽红 +2 位作者 仝志民 班浩 范俊岭 《黑龙江畜牧兽医》 北大核心 2025年第7期50-57,共8页
为了解决中小型猪舍环境监测精确度低、环境适宜性精确评价困难等问题,本研究结合中小型猪舍的实际生产需求,设计了一套基于物联网的猪舍环境适宜性评价系统,系统包括传感器节点、头节点和汇聚节点,各节点以ESP32为主控芯片,以星型拓扑... 为了解决中小型猪舍环境监测精确度低、环境适宜性精确评价困难等问题,本研究结合中小型猪舍的实际生产需求,设计了一套基于物联网的猪舍环境适宜性评价系统,系统包括传感器节点、头节点和汇聚节点,各节点以ESP32为主控芯片,以星型拓扑结构进行搭建并利用WiFi无线通信技术实现数据传输。在此基础上通过引入支持度函数对猪舍内同类型环境参数进行数据融合,同时为了能够更加客观地对猪舍环境进行评价,在模糊综合评价模型中引入了CRITIC权重确定方法并将其与层次分析法结合。结果表明:传感器节点可以实现同时采集猪舍内的温度、相对湿度、二氧化碳浓度、氨气浓度和硫化氢浓度等数据,在MATLAB/Simulink中根据采集的猪舍环境相对湿度数据进行了仿真试验,与算术平均法、加权数据融合算法相比,本研究算法的均方误差最小,在0.08~0.09之间,满足猪舍环境监测精度的要求。说明汇聚节点基于改进算法的综合评价模型能够准确评价猪舍环境适宜情况,适合于中小型猪舍环境适宜度评价。 展开更多
关键词 猪舍 无线传感器网络 数据融合技术 权重计算方法 综合评价系统
原文传递
上一页 1 2 20 下一页 到第
使用帮助 返回顶部