DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This...With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.展开更多
This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can e...This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.展开更多
False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail...False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.展开更多
The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pr...The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.展开更多
With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis o...With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.展开更多
Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe...Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.展开更多
In section‘Track decoding’of this article,one of the paragraphs was inadvertently missed out after the text'…shows the flow diagram of the Tr2-1121 track mode.'The missed paragraph is provided below.
Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to huma...Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).展开更多
The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utilit...The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.展开更多
Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics o...Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.展开更多
By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline...By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha...Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20...Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).展开更多
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to...Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.展开更多
In the health field,longitudinal studies involve the recording of clinical observations of the same sample of pa-tients over successive periods,referred to as waves.This type of database serves as a valuable source of...In the health field,longitudinal studies involve the recording of clinical observations of the same sample of pa-tients over successive periods,referred to as waves.This type of database serves as a valuable source of infor-mation and insights,particularly when examining the temporal aspect,allowing the extraction of relevant and non-obvious knowledge.The triadic concept analysis theory has been proposed to describe the ternary re-lationships between objects,attributes,and conditions.In this study,we present a methodology for exploring longitudinal health databases using both the triadic theory and triadic rules,which are similar to association rules but incorporate temporal relations.Through four case studies,we demonstrate the potential of applying triadic analysis to longitudinal databases to identify risk patterns,enhance decision-making processes,and deepen our understanding of temporal dynamics.These findings suggest a promising approach for describing longitudinal databases and obtaining insights to improve clinical decision-support systems for disease treatment.展开更多
The identification of specific galaxy populations in large-scale spectroscopic surveys represents an essential yet challenging task,particularly for rare or anomalous galaxies that deviate from the typical galaxy dist...The identification of specific galaxy populations in large-scale spectroscopic surveys represents an essential yet challenging task,particularly for rare or anomalous galaxies that deviate from the typical galaxy distributions.Traditional methods based on template-fitting or predefining spectral features face challenges in addressing the complexity and scale of modern astronomical data sets.To overcome these limitations,we propose GalSpecEncoder-KB,a modular and flexible framework that combines deep learning with knowledge base retrieval to enable efficient and interpretable analysis of galaxy spectra.The framework integrates a Transformerbased feature encoder,GalSpecEncoder,pre-trained with masked-modeling strategy to capture semantically rich and context-aware spectral representations.By leveraging a Retrieval-Augmented Analysis approach,the knowledge base constructed from catalogs enables metadata retrieval and weighted voting for target galaxy identification.Using the Sloan Digital Sky Survey as a comprehensive case study,we demonstrate the capabilities of the framework for target galaxy search.Experimental results demonstrate the exceptional generalizability and adaptability across diverse galaxy search tasks,including identification of LINERs,Strong Gravitational Lenses,and detection of Outliers,while maintaining robust performance and interpretable spectral analysis capabilities.展开更多
Strong sensitivity of satellite microwave remote sensing to the change of surface dielectric properties,as well as the insensitivity to air pollution and solar illumination effects,makes it very suitable for monitorin...Strong sensitivity of satellite microwave remote sensing to the change of surface dielectric properties,as well as the insensitivity to air pollution and solar illumination effects,makes it very suitable for monitoring freeze-thaw conditions.The freeze-thaw cycle changes in the Qinghai-Xizang Plateau have an important impact on the ecological environment and infrastructure.Based on the Scanning Multi-channel Microwave Radiometer(SMMR)and other sensors of microwave satellite,the freeze-thaw cycle data of permafrost in the Qinghai-Xizang Plateau in the past 40 years from 1981 to 2020 was obtained.The changes of soil freeze-thaw conditions in different seasons of 2020 and in the same season of 1990,2000,2010 and 2020 were compared,and the annual variation trend of soil freeze-thaw area in the four years was analyzed.Further,the linear regression analysis was carried out on the duration of soil freezing/thawing/transition and the interannual variation trend under different area conditions from 1981 to 2020.The results show that the freeze-thaw changes in different years are similar.In winter,it is mainly frozen for about 110 days.Spring and autumn are transitional periods,lasting for 170 days.In summer,it is mainly thawed for about 80 days.From 1981 to 2020,the freezing period and the average freezing area of the Qinghai-Xizang Plateau decreased at a rate of 0.22 days and 1986 km^(2) per year,respectively,while the thawing period and the average thawing area increased at a rate of 0.07 days and 3187 km^(2) per year,respectively.The research results provide important theoretical support for the ecological environment and permafrost protection of the Qinghai-Xizang Plateau.展开更多
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
文摘With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.
文摘This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies.
基金supported by National Key Research and Development Plan of China(No.2022YFB3103304).
文摘False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.
文摘The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.
文摘With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.
基金supported in part by the National Key Research and Development Program of China under Grant 2024YFE0200600in part by the National Natural Science Foundation of China under Grant 62071425+3 种基金in part by the Zhejiang Key Research and Development Plan under Grant 2022C01093in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LR23F010005in part by the National Key Laboratory of Wireless Communications Foundation under Grant 2023KP01601in part by the Big Data and Intelligent Computing Key Lab of CQUPT under Grant BDIC-2023-B-001.
文摘Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.
文摘In section‘Track decoding’of this article,one of the paragraphs was inadvertently missed out after the text'…shows the flow diagram of the Tr2-1121 track mode.'The missed paragraph is provided below.
基金supported by a project funded by the Hebei Provincial Central Guidance Local Science and Technology Development Fund(236Z7714G)。
文摘Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).
基金by the National Key Research and Development Program of China(2023YFC3303701-02 and 2024YFC3306701)the National Natural Science Foundation of China(T2425014 and 32270667)+3 种基金the Natural Science Foundation of Fujian Province of China(2023J06013)the Major Project of the National Social Science Foundation of China granted to Chuan-Chao Wang(21&ZD285)Open Research Fund of State Key Laboratory of Genetic Engineering at Fudan University(SKLGE-2310)Open Research Fund of Forensic Genetics Key Laboratory of the Ministry of Public Security(2023FGKFKT07).
文摘The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources.
基金Supported by the National Natural Science Foundation of China (40971275, 50811120111)
文摘Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.
文摘By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金supported by STI 2030-Major Projects 2021ZD0200400National Natural Science Foundation of China(62276233 and 62072405)Key Research Project of Zhejiang Province(2023C01048).
文摘Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
基金Supported by the Fundamental Research Funds for the Central Universities(Nos.202341017,202313024)。
文摘Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).
基金supported by The Henan Province Science and Technology Research Project(242102211046)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25A520039)+1 种基金theNatural Science Foundation project of Zhongyuan Institute of Technology(K2025YB011)the Zhongyuan University of Technology Graduate Education and Teaching Reform Research Project(JG202424).
文摘Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.
文摘In the health field,longitudinal studies involve the recording of clinical observations of the same sample of pa-tients over successive periods,referred to as waves.This type of database serves as a valuable source of infor-mation and insights,particularly when examining the temporal aspect,allowing the extraction of relevant and non-obvious knowledge.The triadic concept analysis theory has been proposed to describe the ternary re-lationships between objects,attributes,and conditions.In this study,we present a methodology for exploring longitudinal health databases using both the triadic theory and triadic rules,which are similar to association rules but incorporate temporal relations.Through four case studies,we demonstrate the potential of applying triadic analysis to longitudinal databases to identify risk patterns,enhance decision-making processes,and deepen our understanding of temporal dynamics.These findings suggest a promising approach for describing longitudinal databases and obtaining insights to improve clinical decision-support systems for disease treatment.
基金supported by the National Key R&D Program of China(2022YFF0711500)National Natural Science Foundation of China(NSFC,Grant Nos.12273077,12403102,12373110,and 12103070)+4 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550101)supported by China National Astronomical Data Center(NADC)CAS Astronomical Data CenterChinese Virtual Observatory(China-VO)supported by Astronomical Big Data Joint Research Center,co-founded by National Astronomical Observatories,Chinese Academy of Sciences and Alibaba Cloud.
文摘The identification of specific galaxy populations in large-scale spectroscopic surveys represents an essential yet challenging task,particularly for rare or anomalous galaxies that deviate from the typical galaxy distributions.Traditional methods based on template-fitting or predefining spectral features face challenges in addressing the complexity and scale of modern astronomical data sets.To overcome these limitations,we propose GalSpecEncoder-KB,a modular and flexible framework that combines deep learning with knowledge base retrieval to enable efficient and interpretable analysis of galaxy spectra.The framework integrates a Transformerbased feature encoder,GalSpecEncoder,pre-trained with masked-modeling strategy to capture semantically rich and context-aware spectral representations.By leveraging a Retrieval-Augmented Analysis approach,the knowledge base constructed from catalogs enables metadata retrieval and weighted voting for target galaxy identification.Using the Sloan Digital Sky Survey as a comprehensive case study,we demonstrate the capabilities of the framework for target galaxy search.Experimental results demonstrate the exceptional generalizability and adaptability across diverse galaxy search tasks,including identification of LINERs,Strong Gravitational Lenses,and detection of Outliers,while maintaining robust performance and interpretable spectral analysis capabilities.
基金National Natural Science foundation of China(No.42271432)Foundation of Shanxi Vocational University of Engineering Science and Technology(No.KJ 202426).
文摘Strong sensitivity of satellite microwave remote sensing to the change of surface dielectric properties,as well as the insensitivity to air pollution and solar illumination effects,makes it very suitable for monitoring freeze-thaw conditions.The freeze-thaw cycle changes in the Qinghai-Xizang Plateau have an important impact on the ecological environment and infrastructure.Based on the Scanning Multi-channel Microwave Radiometer(SMMR)and other sensors of microwave satellite,the freeze-thaw cycle data of permafrost in the Qinghai-Xizang Plateau in the past 40 years from 1981 to 2020 was obtained.The changes of soil freeze-thaw conditions in different seasons of 2020 and in the same season of 1990,2000,2010 and 2020 were compared,and the annual variation trend of soil freeze-thaw area in the four years was analyzed.Further,the linear regression analysis was carried out on the duration of soil freezing/thawing/transition and the interannual variation trend under different area conditions from 1981 to 2020.The results show that the freeze-thaw changes in different years are similar.In winter,it is mainly frozen for about 110 days.Spring and autumn are transitional periods,lasting for 170 days.In summer,it is mainly thawed for about 80 days.From 1981 to 2020,the freezing period and the average freezing area of the Qinghai-Xizang Plateau decreased at a rate of 0.22 days and 1986 km^(2) per year,respectively,while the thawing period and the average thawing area increased at a rate of 0.07 days and 3187 km^(2) per year,respectively.The research results provide important theoretical support for the ecological environment and permafrost protection of the Qinghai-Xizang Plateau.