期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Spatio-temporal correlation-based incomplete time-series traffic prediction for LEO satellite networks
1
作者 Liang PENG Jie YAN +1 位作者 Peng WEI Xiaoxiang WANG 《Frontiers of Information Technology & Electronic Engineering》 2025年第5期788-804,共17页
Accurate short-term traffic prediction is essential for improving the efficiency of data transmission in low Earth orbit(LEO)satellite networks.However,traffic values may be missing due to collector failures,transmiss... Accurate short-term traffic prediction is essential for improving the efficiency of data transmission in low Earth orbit(LEO)satellite networks.However,traffic values may be missing due to collector failures,transmission errors,and memory failures in complex space environments.Incomplete traffic time series prevent the efficient utilization of data,which can significantly reduce the traffic prediction accuracy.To overcome this problem,we propose a novel spatio-temporal correlation-based incomplete time-series traffic prediction(ITP-ST)model,which consists of two phases:reconstituting incomplete time series by missing data imputation and making traffic prediction based on the reconstructed time series.In the first phase,we propose a novel missing data imputation model based on the improved denoising autoencoder(IDAE-MDI).Specifically,we combine DAE with the Gramian angular summation field(GASF)to establish the temporal correlation between different time intervals and extract the structural patterns from the time series.Taking advantage of the unique spatio-temporal correlation of the LEO satellite network traffic,we focus on improving the missing data initialization method for DAE.In the second phase,we propose a traffic prediction model based on a multi-channel attention convolutional neural network(TP-CACNN)by combining the spatio-temporally correlated traffic of the LEO satellite network.Finally,to achieve the ideal structure of these models,we use the multi-verse optimizer(MVO)algorithm to select the optimal combination of model parameters.Experiments show that the ITP-ST model outperforms the baseline models in terms of traffic prediction accuracy at different data missing rates,which demonstrates the effectiveness of our proposed model. 展开更多
关键词 Incomplete time series Denoising autoencoder(DAE) spatio-temporal correlation Traffic prediction LEO satellite networks
原文传递
融合像素互相关的Transformer跟踪算法
2
作者 薛紫涵 葛海波 +1 位作者 杨雨迪 田攀帅 《计算机工程与应用》 北大核心 2025年第12期279-290,共12页
Siamese网络互相关操作的局部匹配性无法有效获得全局上下文信息,而Transformer网络依赖全局关系获得语义信息,但需要更多的局部边缘信息来区分目标和背景。因此,提出了一种结合像素互相关(pixel-wise crosscorrelation,PW-Corr)和Trans... Siamese网络互相关操作的局部匹配性无法有效获得全局上下文信息,而Transformer网络依赖全局关系获得语义信息,但需要更多的局部边缘信息来区分目标和背景。因此,提出了一种结合像素互相关(pixel-wise crosscorrelation,PW-Corr)和Transformer的目标跟踪算法。构建并行编码器并采用非线性重加权注意力(non-linear reweighting attention,NRA)提高Transformer获取全局上下文的能力;设计解码器并融合像素互相关从空间和通道两方面的交互提高特征融合的精确度,过滤多余背景干扰。分类回归任务使用一个基于多层感知器(multi-layer perceptron,MLP)的分类头和具有全局上下文感知模块(global context awareness module,GCAM)的回归头,捕捉全局信息同时提取目标局部信息,促进算法对跟踪目标的准确定位。实验结果表明,改进后的算法在OTB100数据集上成功率和准确率分别可达70.6%、92.1%,提高了跟踪的成功率和准确率。 展开更多
关键词 Transformer网络 像素互相关 注意力机制 全局上下文感知
在线阅读 下载PDF
Nonlinear Prediction with Deep Recurrent Neural Networks for Non-Blind Audio Bandwidth Extension 被引量:2
3
作者 Lin Jiang Ruimin Hu +2 位作者 Xiaochen Wang Weiping Tu Maosheng Zhang 《China Communications》 SCIE CSCD 2018年第1期72-85,共14页
Non-blind audio bandwidth extension is a standard technique within contemporary audio codecs to efficiently code audio signals at low bitrates. In existing methods, in most cases high frequencies signal is usually gen... Non-blind audio bandwidth extension is a standard technique within contemporary audio codecs to efficiently code audio signals at low bitrates. In existing methods, in most cases high frequencies signal is usually generated by a duplication of the corresponding low frequencies and some parameters of high frequencies. However, the perception quality of coding will significantly degrade if the correlation between high frequencies and low frequencies becomes weak. In this paper, we quantitatively analyse the correlation via computing mutual information value. The analysis results show the correlation also exists in low frequency signal of the context dependent frames besides the current frame. In order to improve the perception quality of coding, we propose a novel method of high frequency coarse spectrum generation to improve the conventional replication method. In the proposed method, the coarse high frequency spectrums are generated by a nonlinear mapping model using deep recurrent neural network. The experiments confirm that the proposed method shows better performance than the reference methods. 展开更多
关键词 AUDIO CODING non-blind audiobandwidth EXTENSION context correlation deeprecurrent neural network
在线阅读 下载PDF
基于上下文聚类变换的端到端图像压缩方法 被引量:1
4
作者 罗英国 陈芬 +2 位作者 韦玮 张鹏 彭宗举 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第6期22-30,共9页
针对基于卷积神经网络(Convolutional Neural Network,CNN)变换的端到端图像压缩方法存在图像局部相似特征交互不足的问题,本研究提出一种基于上下文聚类变换的端到端图像压缩方法。首先,上下文聚类的变换网络将图像转化为含有坐标的特... 针对基于卷积神经网络(Convolutional Neural Network,CNN)变换的端到端图像压缩方法存在图像局部相似特征交互不足的问题,本研究提出一种基于上下文聚类变换的端到端图像压缩方法。首先,上下文聚类的变换网络将图像转化为含有坐标的特征点,并将特征点分成几簇;然后,通过对每一簇内特征点进行聚合和再分配的方式学习图像特征;最后,引入量化器、超先验网络和基于空间-通道联合上下文的熵编码,以构建完整的端到端图像压缩模型。实验结果表明,与基于CNN变换的端到端图像压缩方法相比,所提方法在Kodak、CLIC测试集上BD-rate分别节省了2.75%、4.20%,并取得了不错的主观视觉效果。本研究方法实现了局部相似特征的交互,充分考虑了相邻像素间的相关性,从而获得较为满意的率失真性能。 展开更多
关键词 深度学习 图像压缩 相关性 上下文聚类 变换网络
在线阅读 下载PDF
Spatio-temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms 被引量:12
5
作者 Xiaochong Dong Yingyun Sun +2 位作者 Ye Li Xinying Wang Tianjiao Pu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期388-398,共11页
The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power fore... The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power forecasting of mul-tiple wind farms,determining the spatio-temporal correlation of multiple wind farms is critical for improving the forecasting accuracy.This paper proposes a spatio-temporal convolutional network(STCN)that utilizes a directed graph convolutional structure.A temporal convolutional network is also adopted to characterize the temporal features of wind power.Historical data from 15 wind farms in Australia are used in the case study.The forecasting results show that the proposed model has higher accuracy than the existing methods.Based on the structure of the STCN,asymmetric spatial correlation at different temporal scales can be observed,which shows the effectiveness of the proposed model. 展开更多
关键词 Deep learning spatio-temporal correlation wind power forecasting graph conventional network(GCN).
原文传递
基于可靠多播网络下的上下文相关性网络编码方案 被引量:2
6
作者 周艳玲 马林山 《廊坊师范学院学报(自然科学版)》 2017年第3期26-31,共6页
网络编码可以提高多播网络吞吐量,但传统的网络编码算法中节点的编译码很明显地增加了时间和空间的复杂度。文章给出的方案中,信源节点增加了编码功能,具有编码能力的节点对所接受到的信息进行简单的线性编码,不需要复杂的局部编码矩阵... 网络编码可以提高多播网络吞吐量,但传统的网络编码算法中节点的编译码很明显地增加了时间和空间的复杂度。文章给出的方案中,信源节点增加了编码功能,具有编码能力的节点对所接受到的信息进行简单的线性编码,不需要复杂的局部编码矩阵和全局编码向量的计算过程,中间节点和链路对所接受的信息块只提供存储和转发的功能,目的节点不需要考虑网络的拓扑结构和接受到数据块的次序问题,只要能够接收到足够的信息块,就可以在极短的时间内成功译码,恢复原信息。实验证明,基于上下文相关性的网络编码在多播网络中不仅使得多播传输达到理论的传输容量,并且降低了时间和空间复杂度,提高了网络可靠性。 展开更多
关键词 上下文相关性 线性网络编码 可靠多播 时间复杂度 空间复杂度
在线阅读 下载PDF
Research on traffic flow prediction method based on adaptive multichannel graph convolutional neural networks
7
作者 Zhengzheng Xu Junhua Gu 《Advances in Engineering Innovation》 2024年第2期41-47,共7页
In order to address the issues of predefined adjacency matrices inadequately representing information in road networks,insufficiently capturing spatial dependencies of traffic networks,and the potential problem of exc... In order to address the issues of predefined adjacency matrices inadequately representing information in road networks,insufficiently capturing spatial dependencies of traffic networks,and the potential problem of excessive smoothing or neglecting initial node information as the layers of graph convolutional neural networks increase,thus affecting traffic prediction performance,this paper proposes a prediction model based on Adaptive Multi-channel Graph Convolutional Neural Networks(AMGCN).The model utilizes an adaptive adjacency matrix to automatically learn implicit graph structures from data,introduces a mixed skip propagation graph convolutional neural network model,which retains the original node states and selectively acquires outputs of convolutional layers,thus avoiding the loss of node initial states and comprehensively capturing spatial correlations of traffic flow.Finally,the output is fed into Long Short-Term Memory networks to capture temporal correlations.Comparative experiments on two real datasets validate the effectiveness of the proposed model. 展开更多
关键词 traffic flow prediction spatio-temporal correlations graph convolutional neural network adaptive adjacency matrix
在线阅读 下载PDF
基于逐帧和逐段时空交互记忆网络的高效视频目标分割
8
作者 党吉圣 郑慧诚 +3 位作者 王笔美 李俊成 丁恒辉 赖剑煌 《中国科学:信息科学》 北大核心 2025年第1期80-93,共14页
视频目标分割旨在自动分割视频中感兴趣的目标,在视频编辑、机器人导航以及自动驾驶等领域均有着广泛的应用前景.现有的视频目标分割方法大多依赖于独立帧表观记忆,这在处理严重遮挡或表观相似的复杂视频场景时常显不足.为应对这些挑战... 视频目标分割旨在自动分割视频中感兴趣的目标,在视频编辑、机器人导航以及自动驾驶等领域均有着广泛的应用前景.现有的视频目标分割方法大多依赖于独立帧表观记忆,这在处理严重遮挡或表观相似的复杂视频场景时常显不足.为应对这些挑战,本文提出了一种基于逐帧和逐段时空交互记忆网络(frame-wise and segment-wise spatio-temporal interaction memory,FSSTIM)的视频目标分割方法.FSSTIM引入逐帧和逐段时空交互记忆构建模块,通过构建时空上下文图网络提取逐段时空记忆特征图,并与逐帧记忆特征图进行交互增强,显著提高了网络处理相似表观和目标遮挡的能力.此外,引入动态采样记忆读取器实现了高效的多粒度历史信息读取,加快了推理速度并提高了分割精度.在DAVIS,YouTube-VOS和MOSE主流视频目标分割数据集上的实验表明,本文方法在保持实时处理速度的同时取得了先进的分割性能,且具有较强的泛化能力. 展开更多
关键词 视频目标分割 逐帧和逐段时空交互 记忆网络 时空上下文关联网络 动态采样记忆读取
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部