We propose the new experimental method for investigating and approximating the organization and structure of movements with given accuracy. The composition of approximating trajectories illuminating the movement trait...We propose the new experimental method for investigating and approximating the organization and structure of movements with given accuracy. The composition of approximating trajectories illuminating the movement traits discloses the level of movement expertise in dancers and golf players. The method allows estimating the level of movement expertise, drawing the detailed structure of movements, and classifying movements into a given repertoire automatically.展开更多
Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LM...Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships w...Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.展开更多
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro...With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
Objective This study aimed to study the effects of different crystalline states of Sheng Shigao(raw gypsum,RG)and its inorganic elements on the antipyretic efficacy of Baihu Decoction(BHT).Methods RG samples calcined ...Objective This study aimed to study the effects of different crystalline states of Sheng Shigao(raw gypsum,RG)and its inorganic elements on the antipyretic efficacy of Baihu Decoction(BHT).Methods RG samples calcined at different temperatures were prepared.The phase composition of RG and Duan Shigao(calcination of gypsum,CG)as well as the changes in phase composition before and after adding water to RG calcined at specific temperatures,were determined using X-ray diffraction(XRD).A fever model was established by subcutaneously injecting 20%yeast suspension(10 mL·kg~(-1))into the backs of rats.The effects of BHT containing RG in different crystalline states on rat body temperature were measured.Serum levels of IL-1β,IL-6,and hypothalamic prostaglandin E2(PGE_2)were detected using ELISA.Serum Ca~(2+)levels were measured using a microplate method.The content of trace elements in RG and CG and the corresponding freeze-dried BHT powder was determined using inductively coupled plasma mass spectrometry(ICP-MS).The complexation of representative inorganic elements with mangiferin,a major active component in BHT,was investigated using UV-Vis spectroscopy and fluorescence spectroscopy.A validation model was established using RAW264.7 mouse macrophages.Drug-containing serum of BHT with different inorganic elements was prepared,and the nitric oxide(NO)levels in the cell supernatant of different treatment groups were measured using the Griess method.The mRNA levels of IL-6,TNF-α,and PGE2in each group were detected using qPCR(real-time fluorescent quantitative PCR).Results After calcination,the phase composition of RG changed,and the content of inorganic elements in RG,CG170(RG calcined at 170°C),and CG350(RG calcined at 350°C)showed similar trends.Compared with RG,the content of Ca,Sr,Al,and Na in CG changed significantly.Compared with BHT,the content of Ca,Sr,Si,and Na in CG changed significantly when incorporated into the formula.Intermolecular interactions confirmed strong binding between mangiferin and Cu~(2+)and Al~(3+).Cu~(2+)and Fe~(3+)exhibited fluorescence quenching effects on mangiferin solution,while Al~(3+)and Zn~(2+)showed strong fluorescence enhancement,with fluorescence intensity increasing by 120-fold and 30-fold,respectively.In vitro evaluation of synergistic anti-inflammatory effects confirmed that Ca,Fe,Cr,Al,and Si exhibited synergistic anti-inflammatory effects.Conclusion The crystalline state of RG has little effect on its antipyretic properties,while Ca,Sr,Na,Fe,and Al are likely the key material bases influencing its efficacy.展开更多
Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions ...Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.展开更多
Scientific knowledge on the chemical compositions of fine particulate matter(PM_(2.5)) is essential for properly assessing its health and climate effects,and for decisionmakers to develop efficient mitigation strategi...Scientific knowledge on the chemical compositions of fine particulate matter(PM_(2.5)) is essential for properly assessing its health and climate effects,and for decisionmakers to develop efficient mitigation strategies.A high-resolution PM_(2.5) chemical composition dataset(CAQRA-aerosol)is developed in this study,which provides hourly maps of organic carbon,black carbon,ammonium,nitrate,and sulfate in China from 2013 to 2020 with a horizontal resolution of 15 km.This paper describes the method,access,and validation results of this dataset.It shows that CAQRA-aerosol has good consistency with observations and achieves higher or comparable accuracy with previous PM_(2.5) composition datasets.Based on CAQRA-aerosol,spatiotemporal changes of different PM_(2.5) compositions were investigated from a national viewpoint,which emphasizes different changes of nitrate from other compositions.The estimated annual rate of population-weighted concentrations of nitrate is 0.23μg m^(−3)yr^(−1) from 2015 to 2020,compared with−0.19 to−1.1μg m^(−3)yr^(−1) for other compositions.The whole dataset is freely available from the China Air Pollution Data Center(https://doi.org/10.12423/capdb_PKU.2023.DA).展开更多
Gas hydrate(GH)is an unconventional resource estimated at 1000-120,000 trillion m^(3)worldwide.Research on GH is ongoing to determine its geological and flow characteristics for commercial produc-tion.After two large-...Gas hydrate(GH)is an unconventional resource estimated at 1000-120,000 trillion m^(3)worldwide.Research on GH is ongoing to determine its geological and flow characteristics for commercial produc-tion.After two large-scale drilling expeditions to study the GH-bearing zone in the Ulleung Basin,the mineral composition of 488 sediment samples was analyzed using X-ray diffraction(XRD).Because the analysis is costly and dependent on experts,a machine learning model was developed to predict the mineral composition using XRD intensity profiles as input data.However,the model’s performance was limited because of improper preprocessing of the intensity profile.Because preprocessing was applied to each feature,the intensity trend was not preserved even though this factor is the most important when analyzing mineral composition.In this study,the profile was preprocessed for each sample using min-max scaling because relative intensity is critical for mineral analysis.For 49 test data among the 488 data,the convolutional neural network(CNN)model improved the average absolute error and coefficient of determination by 41%and 46%,respectively,than those of CNN model with feature-based pre-processing.This study confirms that combining preprocessing for each sample with CNN is the most efficient approach for analyzing XRD data.The developed model can be used for the compositional analysis of sediment samples from the Ulleung Basin and the Korea Plateau.In addition,the overall procedure can be applied to any XRD data of sediments worldwide.展开更多
The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu...The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.展开更多
An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition b...An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition behavior of a composite propellant(CP)comprising ammonium nitrate(AN)as an oxidizer and magnesium(Mg)as a fuel.Optimization of the propellant formulation was conducted using Chemical Equilibrium with Applications-National Aeronautics and Space Administration(CEA-NASA)software,which demonstrated an increase in specific impulse by 12.09 s when the binder contained 50%NC.Fourier-transform infrared spectroscopy(FTIR)analysis confirmed the excellent compatibility between the components,and density measurements revealed an increase of 6.4%with a higher NC content.Morphological analysis using optical microscopy showed that NC doping improved the uniformity and compactness of the surface,reduced cavities,and achieved a more homogeneous particle distribution.Differential scanning calorimetry(DSC)analysis indicated a decrease in the decomposition temperature of the propellant as the NC content increased,while kinetic studies revealed a 48.68%reduction in the activation energy when 50%NC was incorporated into the binder.These findings suggest that the addition of NC enhances combustion efficiency and improves overall propellant performance.This study highlights the potential of the new HTPB-NC energetic binder as a promising approach for advancing solid propellant technology.展开更多
Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB ...Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB incidence were mapped using heat maps and hierarchical clustering.Socioenvironmental influencing factors were evaluated using a Bayesian spatiotemporal conditional autoregressive(ST-CAR)model.Results Annual incidence of TB in Guangdong decreased from 91.85/100,000 in 2010 to 53.06/100,000in 2019.Spatial hotspots were found in northeastern Guangdong,particularly in Heyuan,Shanwei,and Shantou,while Shenzhen,Dongguan,and Foshan had the lowest rates in the Pearl River Delta.The STCAR model showed that the TB risk was lower with higher per capita Gross Domestic Product(GDP)[Relative Risk(RR),0.91;95%Confidence Interval(CI):0.86–0.98],more the ratio of licensed physicians and physician(RR,0.94;95%CI:0.90-0.98),and higher per capita public expenditure(RR,0.94;95%CI:0.90–0.97),with a marginal effect of population density(RR,0.86;95%CI:0.86–1.00).Conclusion The incidence of TB in Guangdong varies spatially and temporally.Areas with poor economic conditions and insufficient healthcare resources are at an increased risk of TB infection.Strategies focusing on equitable health resource distribution and economic development are the key to TB control.展开更多
This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in So...This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in Sonipat have undergone notable transformation,as open spaces and agricultural lands are increasingly converted into residential colonies,commercial hubs,and industrial zones.While such changes reflect economic development and urban growth,they also raise critical concerns about sustainability,especially in terms of food security,groundwater depletion,and environmental degradation.The study examines land use changes between 2000 and 2024 using remote sensing techniques and spatial analysis.It further incorporates secondary data and insights from community-level interactions to assess the socio-economic and ecological impacts of this transformation.The findings indicate rising land fragmentation,loss of agricultural livelihoods,pressure on civic infrastructure,and increasing pollution—factors that threaten long-term regional sustainability.The study underscores the urgent need to reconcile urban development with environmental and social sustainability.By offering a detailed case study of Sonipat,this research contributes to the broader discourse on India’s urbanisation pathways.It aims to provide policymakers,planners,and researchers with evidence-based recommendations to manage land transitions more responsibly,promoting urban growth models that ensure ecological integrity,equitable development,and long-term resilience.展开更多
As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limi...As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios.展开更多
The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(...The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.展开更多
Sandfly fever is a viral infectious disease transmitted by sand flies that is widely prevalent in tropical and subtropical regions.Previous studies on its infection mechanism,immune response and diagnosis and treatmen...Sandfly fever is a viral infectious disease transmitted by sand flies that is widely prevalent in tropical and subtropical regions.Previous studies on its infection mechanism,immune response and diagnosis and treatment methods were lack of systematic.This study applied spatio-temporal omics technology to comprehensively explain the dynamic changes of immunity in the incubation period,exacerbation period,peak period and recovery period of Sandfl y fever,and integrated with diff erent coping strategies.To provide new research ideas for its overall research.展开更多
Agriculture holds a pivotal position in the economic fabric of every nation,yet concerns about agricultural carbon emission intensity(ACI)have become a major hurdle to achieving global economic sustainability.Focusing...Agriculture holds a pivotal position in the economic fabric of every nation,yet concerns about agricultural carbon emission intensity(ACI)have become a major hurdle to achieving global economic sustainability.Focusing on 31 provincial-level regions in China,this study uses the Exploratory Spatio-temporal Data Analysis(ESTDA)and Panel Quantile Regression(PQR)model to analyze the spatio-temporal interaction characteristics and influencing factors of ACI in China from 2004 to 2023.The findings are as follows:(1)ACI showed an overall downward trend,and the spatial distribution pattern was characterized by“high in the western region and low along the southeastern coast”.Although the overall disparity tended to converge,some high-carbon-intensity regions exhibited extreme trends.ACI displayed clear spatial directionality,with the spatial center shifting steadily toward the northeast.(2)Regions in the northwest,northeast,and central-south parts exhibited strong local spatial structural dynamics,and the local spatial dependence of ACI in each region showed a nonlinear trend.Generally speaking,the spatial association pattern demonstrated a certain degree of inertia in spatial transfer,reflecting strong path dependence or spatial lock-in characteristics.(3)Optimization of industrial structure and improvement in agricultural mechanization will increase ACI,while economic development can effectively reduce it.The impact of urbanization on ACI exhibits a nonlinear pattern.The coordinated development of economic growth and urbanization significantly reduces ACI,with a stronger emission reduction observed in regions with low ACI.The optimization of industrial structure,when combined with urbanization and environmental regulation,contributes to significant emission reductions particularly in high-ACI areas.Similarly,the synergy between agricultural mechanization and urbanization effectively lowers emissions in low-ACI regions,though this effect diminishes in areas with higher ACI.展开更多
Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing...Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing factors in China is imperative for the efficient utilization of farmland and the optimization of land space.We used land use transfer matrix,geographically weighted regression model and geographical detector to conduct this study.Results showed that sloping farmland in China firstly decreased and then increased from 2000 to 2020.The proportion of sloping farmland decreased radially outward from Sichuan basin to the surrounding areas.Change rates of sloping farmland with different slopes varied and the slope with 6°-15°underwent the fastest changes.The influencing factors of farmland at various slope degrees were different.For sloping farmland below 15°,land use intensity and elevation had the greatest contribution.For sloping farmland between 15°and 25°,elevation,land use intensity,and population density were the main influencing factors.Sloping farmland above 25°was mostly affected by natural factors.This study can provide scientific basis for rational development and protection of sloping farmland.展开更多
Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decode...Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods.展开更多
文摘We propose the new experimental method for investigating and approximating the organization and structure of movements with given accuracy. The composition of approximating trajectories illuminating the movement traits discloses the level of movement expertise in dancers and golf players. The method allows estimating the level of movement expertise, drawing the detailed structure of movements, and classifying movements into a given repertoire automatically.
基金National Natural Science Foundation of China,No.42161006Yunnan Fundamental Research Projects No.202201AT070094,No.202301BF070001-004+1 种基金Special Project for High-level Talents of Yunnan Province for Young Top Talents,No.C6213001159European Research Council(ERC)Starting-Grant STORIES,No.101040939。
文摘Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
文摘Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.
基金supported by the Surface Project of Local De-velopment in Science and Technology Guided by Central Govern-ment(No.2021ZYD0041)the National Natural Science Founda-tion of China(Nos.52377026 and 52301192)+3 种基金the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Special Financial of Shandong Province(Struc-tural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Tal-ent Teams)the“Sanqin Scholars”Innovation Teams Project of Shaanxi Province(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金Joint Fund Project of the Henan Provincial Science and Technology Research and Development Plan(222301420060)。
文摘Objective This study aimed to study the effects of different crystalline states of Sheng Shigao(raw gypsum,RG)and its inorganic elements on the antipyretic efficacy of Baihu Decoction(BHT).Methods RG samples calcined at different temperatures were prepared.The phase composition of RG and Duan Shigao(calcination of gypsum,CG)as well as the changes in phase composition before and after adding water to RG calcined at specific temperatures,were determined using X-ray diffraction(XRD).A fever model was established by subcutaneously injecting 20%yeast suspension(10 mL·kg~(-1))into the backs of rats.The effects of BHT containing RG in different crystalline states on rat body temperature were measured.Serum levels of IL-1β,IL-6,and hypothalamic prostaglandin E2(PGE_2)were detected using ELISA.Serum Ca~(2+)levels were measured using a microplate method.The content of trace elements in RG and CG and the corresponding freeze-dried BHT powder was determined using inductively coupled plasma mass spectrometry(ICP-MS).The complexation of representative inorganic elements with mangiferin,a major active component in BHT,was investigated using UV-Vis spectroscopy and fluorescence spectroscopy.A validation model was established using RAW264.7 mouse macrophages.Drug-containing serum of BHT with different inorganic elements was prepared,and the nitric oxide(NO)levels in the cell supernatant of different treatment groups were measured using the Griess method.The mRNA levels of IL-6,TNF-α,and PGE2in each group were detected using qPCR(real-time fluorescent quantitative PCR).Results After calcination,the phase composition of RG changed,and the content of inorganic elements in RG,CG170(RG calcined at 170°C),and CG350(RG calcined at 350°C)showed similar trends.Compared with RG,the content of Ca,Sr,Al,and Na in CG changed significantly.Compared with BHT,the content of Ca,Sr,Si,and Na in CG changed significantly when incorporated into the formula.Intermolecular interactions confirmed strong binding between mangiferin and Cu~(2+)and Al~(3+).Cu~(2+)and Fe~(3+)exhibited fluorescence quenching effects on mangiferin solution,while Al~(3+)and Zn~(2+)showed strong fluorescence enhancement,with fluorescence intensity increasing by 120-fold and 30-fold,respectively.In vitro evaluation of synergistic anti-inflammatory effects confirmed that Ca,Fe,Cr,Al,and Si exhibited synergistic anti-inflammatory effects.Conclusion The crystalline state of RG has little effect on its antipyretic properties,while Ca,Sr,Na,Fe,and Al are likely the key material bases influencing its efficacy.
基金supported by the Fundamental Research Funds of Chinese Academy of Forestry(Nos.CAFYBB2022SY037,CAFYBB2021ZA002 and CAFYBB2022QC002)the Basic Research Foundation of Yunnan Province(Grant No.202201AT070264).
文摘Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.
基金support from the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)sponsored by the National Natural Science Foundation of China (Grant Nos. 42175132, 92044303, and 42205119)+2 种基金the National Key R&D Program (Grant Nos. 2020YFA0607802 and 2022YFC3703003)the CAS Information Technology Program (Grant No. CAS-WX2021SF-0107-02)the fellowship of China Postdoctoral Science Foundation (Grant No. 2022M723093)
文摘Scientific knowledge on the chemical compositions of fine particulate matter(PM_(2.5)) is essential for properly assessing its health and climate effects,and for decisionmakers to develop efficient mitigation strategies.A high-resolution PM_(2.5) chemical composition dataset(CAQRA-aerosol)is developed in this study,which provides hourly maps of organic carbon,black carbon,ammonium,nitrate,and sulfate in China from 2013 to 2020 with a horizontal resolution of 15 km.This paper describes the method,access,and validation results of this dataset.It shows that CAQRA-aerosol has good consistency with observations and achieves higher or comparable accuracy with previous PM_(2.5) composition datasets.Based on CAQRA-aerosol,spatiotemporal changes of different PM_(2.5) compositions were investigated from a national viewpoint,which emphasizes different changes of nitrate from other compositions.The estimated annual rate of population-weighted concentrations of nitrate is 0.23μg m^(−3)yr^(−1) from 2015 to 2020,compared with−0.19 to−1.1μg m^(−3)yr^(−1) for other compositions.The whole dataset is freely available from the China Air Pollution Data Center(https://doi.org/10.12423/capdb_PKU.2023.DA).
基金supported by the Gas Hydrate R&D Organization and the Korea Institute of Geoscience and Mineral Resources(KIGAM)(GP2021-010)supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2021R1C1C1004460)Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korean government(MOTIE)(20214000000500,Training Program of CCUS for Green Growth).
文摘Gas hydrate(GH)is an unconventional resource estimated at 1000-120,000 trillion m^(3)worldwide.Research on GH is ongoing to determine its geological and flow characteristics for commercial produc-tion.After two large-scale drilling expeditions to study the GH-bearing zone in the Ulleung Basin,the mineral composition of 488 sediment samples was analyzed using X-ray diffraction(XRD).Because the analysis is costly and dependent on experts,a machine learning model was developed to predict the mineral composition using XRD intensity profiles as input data.However,the model’s performance was limited because of improper preprocessing of the intensity profile.Because preprocessing was applied to each feature,the intensity trend was not preserved even though this factor is the most important when analyzing mineral composition.In this study,the profile was preprocessed for each sample using min-max scaling because relative intensity is critical for mineral analysis.For 49 test data among the 488 data,the convolutional neural network(CNN)model improved the average absolute error and coefficient of determination by 41%and 46%,respectively,than those of CNN model with feature-based pre-processing.This study confirms that combining preprocessing for each sample with CNN is the most efficient approach for analyzing XRD data.The developed model can be used for the compositional analysis of sediment samples from the Ulleung Basin and the Korea Plateau.In addition,the overall procedure can be applied to any XRD data of sediments worldwide.
基金Supported by Natural Science Foundation of Guangdong Province in China(2018KTSCX161)。
文摘The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.
文摘An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition behavior of a composite propellant(CP)comprising ammonium nitrate(AN)as an oxidizer and magnesium(Mg)as a fuel.Optimization of the propellant formulation was conducted using Chemical Equilibrium with Applications-National Aeronautics and Space Administration(CEA-NASA)software,which demonstrated an increase in specific impulse by 12.09 s when the binder contained 50%NC.Fourier-transform infrared spectroscopy(FTIR)analysis confirmed the excellent compatibility between the components,and density measurements revealed an increase of 6.4%with a higher NC content.Morphological analysis using optical microscopy showed that NC doping improved the uniformity and compactness of the surface,reduced cavities,and achieved a more homogeneous particle distribution.Differential scanning calorimetry(DSC)analysis indicated a decrease in the decomposition temperature of the propellant as the NC content increased,while kinetic studies revealed a 48.68%reduction in the activation energy when 50%NC was incorporated into the binder.These findings suggest that the addition of NC enhances combustion efficiency and improves overall propellant performance.This study highlights the potential of the new HTPB-NC energetic binder as a promising approach for advancing solid propellant technology.
基金supported by the Guangdong Provincial Clinical Research Center for Tuberculosis(No.2020B1111170014)。
文摘Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB incidence were mapped using heat maps and hierarchical clustering.Socioenvironmental influencing factors were evaluated using a Bayesian spatiotemporal conditional autoregressive(ST-CAR)model.Results Annual incidence of TB in Guangdong decreased from 91.85/100,000 in 2010 to 53.06/100,000in 2019.Spatial hotspots were found in northeastern Guangdong,particularly in Heyuan,Shanwei,and Shantou,while Shenzhen,Dongguan,and Foshan had the lowest rates in the Pearl River Delta.The STCAR model showed that the TB risk was lower with higher per capita Gross Domestic Product(GDP)[Relative Risk(RR),0.91;95%Confidence Interval(CI):0.86–0.98],more the ratio of licensed physicians and physician(RR,0.94;95%CI:0.90-0.98),and higher per capita public expenditure(RR,0.94;95%CI:0.90–0.97),with a marginal effect of population density(RR,0.86;95%CI:0.86–1.00).Conclusion The incidence of TB in Guangdong varies spatially and temporally.Areas with poor economic conditions and insufficient healthcare resources are at an increased risk of TB infection.Strategies focusing on equitable health resource distribution and economic development are the key to TB control.
文摘This study examines the effects of rapid land use changes in India,with a specific focus on Sonipat District in Haryana—a region undergoing significant urban expansion.Over the past two decades,rural landscapes in Sonipat have undergone notable transformation,as open spaces and agricultural lands are increasingly converted into residential colonies,commercial hubs,and industrial zones.While such changes reflect economic development and urban growth,they also raise critical concerns about sustainability,especially in terms of food security,groundwater depletion,and environmental degradation.The study examines land use changes between 2000 and 2024 using remote sensing techniques and spatial analysis.It further incorporates secondary data and insights from community-level interactions to assess the socio-economic and ecological impacts of this transformation.The findings indicate rising land fragmentation,loss of agricultural livelihoods,pressure on civic infrastructure,and increasing pollution—factors that threaten long-term regional sustainability.The study underscores the urgent need to reconcile urban development with environmental and social sustainability.By offering a detailed case study of Sonipat,this research contributes to the broader discourse on India’s urbanisation pathways.It aims to provide policymakers,planners,and researchers with evidence-based recommendations to manage land transitions more responsibly,promoting urban growth models that ensure ecological integrity,equitable development,and long-term resilience.
基金supported by National Natural Science Foundation of China(Nos.62477026,62177029,61807020)Humanities and Social Sciences Research Program of the Ministry of Education of China(No.23YJAZH047)the Startup Foundation for Introducing Talent of Nanjing University of Posts and Communications under Grant NY222034.
文摘As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios.
基金Supported by Sichuan Science and Technology Program (No.2022ZYD0010)。
文摘The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.
基金College Students Innovation and Entrepreneurship Training Program(X202511049398)College Students Innovation and Entrepreneurship Training Program(X202511049201)+1 种基金College Students Innovation and Entrepreneurship Training Program(X202511258005S)University-Level Research Funding Program of Hainan Science and Technology Vocational University(HKKY2024-87)。
文摘Sandfly fever is a viral infectious disease transmitted by sand flies that is widely prevalent in tropical and subtropical regions.Previous studies on its infection mechanism,immune response and diagnosis and treatment methods were lack of systematic.This study applied spatio-temporal omics technology to comprehensively explain the dynamic changes of immunity in the incubation period,exacerbation period,peak period and recovery period of Sandfl y fever,and integrated with diff erent coping strategies.To provide new research ideas for its overall research.
基金National Natural Science Foundation of China,No.42230106,No.42171250State Key Laboratory of Earth Surface Processes and Resource Ecology,No.2022-ZD-04。
文摘Agriculture holds a pivotal position in the economic fabric of every nation,yet concerns about agricultural carbon emission intensity(ACI)have become a major hurdle to achieving global economic sustainability.Focusing on 31 provincial-level regions in China,this study uses the Exploratory Spatio-temporal Data Analysis(ESTDA)and Panel Quantile Regression(PQR)model to analyze the spatio-temporal interaction characteristics and influencing factors of ACI in China from 2004 to 2023.The findings are as follows:(1)ACI showed an overall downward trend,and the spatial distribution pattern was characterized by“high in the western region and low along the southeastern coast”.Although the overall disparity tended to converge,some high-carbon-intensity regions exhibited extreme trends.ACI displayed clear spatial directionality,with the spatial center shifting steadily toward the northeast.(2)Regions in the northwest,northeast,and central-south parts exhibited strong local spatial structural dynamics,and the local spatial dependence of ACI in each region showed a nonlinear trend.Generally speaking,the spatial association pattern demonstrated a certain degree of inertia in spatial transfer,reflecting strong path dependence or spatial lock-in characteristics.(3)Optimization of industrial structure and improvement in agricultural mechanization will increase ACI,while economic development can effectively reduce it.The impact of urbanization on ACI exhibits a nonlinear pattern.The coordinated development of economic growth and urbanization significantly reduces ACI,with a stronger emission reduction observed in regions with low ACI.The optimization of industrial structure,when combined with urbanization and environmental regulation,contributes to significant emission reductions particularly in high-ACI areas.Similarly,the synergy between agricultural mechanization and urbanization effectively lowers emissions in low-ACI regions,though this effect diminishes in areas with higher ACI.
基金supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02)Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Changes,Faculty of Geography,Yunnan Normal University(PGPEC2304)China Scholarship Council。
文摘Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing factors in China is imperative for the efficient utilization of farmland and the optimization of land space.We used land use transfer matrix,geographically weighted regression model and geographical detector to conduct this study.Results showed that sloping farmland in China firstly decreased and then increased from 2000 to 2020.The proportion of sloping farmland decreased radially outward from Sichuan basin to the surrounding areas.Change rates of sloping farmland with different slopes varied and the slope with 6°-15°underwent the fastest changes.The influencing factors of farmland at various slope degrees were different.For sloping farmland below 15°,land use intensity and elevation had the greatest contribution.For sloping farmland between 15°and 25°,elevation,land use intensity,and population density were the main influencing factors.Sloping farmland above 25°was mostly affected by natural factors.This study can provide scientific basis for rational development and protection of sloping farmland.
基金support for this work was supported by Key Lab of Intelligent and Green Flexographic Printing under Grant ZBKT202301.
文摘Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods.