Brain lesions,such as those caused by stroke or traumatic brain injury(TBI),frequently result in persistent motor and cognitive impairments that significantly affect the individual patient's quality of life.Despit...Brain lesions,such as those caused by stroke or traumatic brain injury(TBI),frequently result in persistent motor and cognitive impairments that significantly affect the individual patient's quality of life.Despite differences in the mechanisms of injury,both conditions share a high prevalence of motor and cognitive impairments.These deficits show only limited natural recovery.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
The Yellow River Basin in Sichuan Province(YRS)is undergoing severe soil erosion and exacerbated ecological vulnerability,which collectively pose formidable challenges for regional water conservation(WC)and sustainabl...The Yellow River Basin in Sichuan Province(YRS)is undergoing severe soil erosion and exacerbated ecological vulnerability,which collectively pose formidable challenges for regional water conservation(WC)and sustainable development.While effectively enhancing WC necessitates a comprehensive understanding of its driving factors and corresponding intervention strategies,existing studies have largely neglected the spatiotemporal heterogeneity of both natural and socio-economic drivers.Therefore,this study explored the spatiotemporal heterogeneity of WC drivers in YRS using multi-scale geographically weighted regression(MGWR)and geographically and temporally weighted regression(GTWR)models from an eco-hydrological perspective.We discovered that downstream regions,which are more developed,achieved significantly better WC than upstream regions.The results also demonstrated that the influence of temperature and wind speed is consistently dominant and temporally stable due to climate stability,while the influence of vegetation shifted from negative to positive around 2010,likely indicating greater benefits from understory vegetation.Economic growth positively impacted WC in upstream regions but had a negative effect in the more developed downstream regions.These findings highlight the importance of targeted water conservation strategies,including locally appropriate revegetation,optimization of agricultural and economic structures,and the establishment of eco-compensation mechanisms for ecological conservation and sustainable development.展开更多
Freezing–thawing indices serve as a comprehensive indicator of both the duration of the freezing/thawing periods and the degree of cold and heat in a given region.In-depth analysis of the freezing-thawing indices not...Freezing–thawing indices serve as a comprehensive indicator of both the duration of the freezing/thawing periods and the degree of cold and heat in a given region.In-depth analysis of the freezing-thawing indices not only enables the prediction of permafrost distribution and its dynamic changes,but also facilitates the assessment of damage risk to infrastructure under freeze-thaw action.In this paper,the air/ground freezing–thawing indices from 1987 to 2017,based on daily temperature observations from meteorological stations along the China–Nepal Highway(CNH),were calculated,and their spatial and temporal variation patterns were analyzed.The results showed that:(1)Both mean annual air temperature and mean annual ground surface temperature along the CNH fluctuated upward,with climate tendency rates of 0.43 and 0.52.C·(10a)~(-1),respectively;(2)The number of days with negative air temperature and ground temperature showed fluctuated downward,with change rates of-8.6 and-8.3 d·(10a)~(-1),respectively;(3)The ranges of air freezing index,air thawing index,ground freezing index,and ground thawing index over the years were 157.05-458.88°C·d,2034.20-2560.73°C·d,108.78-396.83°C·d,and 3515.25-4288.67°C·d,respectively.The climate tendency rates were-5.42,10.22,-6.79,and 12.14.C·d·a-1,respectively,showing a general warming trend;(4)The air freezing index,ground freezing index,and ground thawing index changed abruptly in 1999,2000,and 2002,respectively,evincing significant changes after 2002.The research results can provide a basis for the risk assessment of freezing–thawing erosion and the prevention and control of permafrost engineering diseases along the CNH.展开更多
Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass,both of which are essential for maintaining ecosystem health and stability.However...Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass,both of which are essential for maintaining ecosystem health and stability.However,the spatiotemporal variations of tenebrionid beetle assemblages in the Gobi desert remain poorly understood.In this study,the monthly dynamics of tenebrionid beetles in the central part of the Hexi Corridor,Northwest China,a representative area of the Gobi desert ecosystems,were monitored using pitfall trapping during 2015-2020.The following results were showed:(1)monthly activity of tenebrionid beetles was observed from March to October,with monthly activity peaking in spring and summer,and monthly activity periods and peak of tenebrionid beetle species exhibited interspecific differences that varied from year to year;(2)spatial distribution of tenebrionid beetle community was influenced by structural factors.Specifically,at a spatial scale of 24.00 m,tenebrionid beetle community was strongly and positively correlated with the dominant species,with distinct spatial distribution patterns observed for Blaps gobiensis and Microdera kraatzi alashanica;(3)abundance of tenebrionid beetles was positively correlated with monthly mean precipitation and monthly mean temperature,whereas monthly abundance of B.gobiensis and M.kraatzi alashanica was positively correlated with monthly mean precipitation;and(4)the cover of Reaumuria soongarica(Pall.)Maxim.and Nitraria sphaerocarpa Maxim.had a positive influence on the number of tenebrionid beetles captured.In conclusion,monthly variation in precipitation significantly influences the community dynamic of tenebrionid beetles,with precipitation and shrub cover jointly determining the spatial distribution pattern of these beetles in the Gobi desert ecosystems.展开更多
Eutrophic shallow lakes are generally considered as a contributor to the emission of nitrous oxide(N_(2)O),while regional and global estimates have remained imprecise.This due to a lack of data and insufficient unders...Eutrophic shallow lakes are generally considered as a contributor to the emission of nitrous oxide(N_(2)O),while regional and global estimates have remained imprecise.This due to a lack of data and insufficient understanding of the multiple contributing factors.This study characterized the spatiotemporal variability in N_(2)O concentrations and N_(2)O diffusive fluxes and the contributing factors in LakeWuliangsuhai,a typical shallow eutrophic and seasonally frozen lake in Inner Mongolia with cold and arid climate.Dissolved N_(2)O concentrations of the lake exhibited a range of 4.5 to 101.2 nmol/L,displaying significant spatiotemporal variations.The lowest and highest concentrations were measured in summer and winter,respectively.The spatial distribution of N_(2)Ofluxwas consistent with that of N_(2)O concentrations.Additionally,the hotspots of N_(2)O emissions were detected within close to the main inflow of lake.The wide spatial and temporal variation in N_(2)O emissions indicate the complexity and its relative importance of factors influencing emissions.N_(2)O emissions in different lake zones and seasons were regulated by diverse factors.Factors influencing the spatial and temporal distribution of N_(2)O concentrations and fluxes were identified as WT,WD,DO,Chl-a,SD and COD.Interestingly,the same factor demonstrated opposing effects on N_(2)O emission in various seasons or zones.This research improves our understanding of N_(2)O emissions in shallow eutrophic lakes in cold and arid areas.展开更多
Global forest cover is undergoing significant transformations due to anthropogenic activities and natural disturbances,profoundly impacting hydrological processes.However,the inherent spatial heterogeneity within wate...Global forest cover is undergoing significant transformations due to anthropogenic activities and natural disturbances,profoundly impacting hydrological processes.However,the inherent spatial heterogeneity within watersheds leads to varied hydrological responses across spatiotemporal scales,challenging comprehensive assessment of logging impacts at the watershed scale.Here,we developed multiple forest logging scenarios using the soil and water assessment tool(SWAT)model for the Le'an River watershed,a 5,837 km2 subtropical watershed in China,to quantify the hydrological effects of forest logging across different spatiotemporal scales.Our results demonstrate that increasing forest logging ratios from 1.54% to 9.25% consistently enhanced ecohydrological sensitivity.However,sensitivity varied across spatiotemporal scales,with the rainy season(15.30%-15.81%)showing higher sensitivity than annual(11.56%-12.07%)and dry season(3.38%-5.57%)periods.Additionally,the ecohydrological sensitivity of logging varied significantly across the watershed,with midstream areas exhibiting the highest sensitivity(13.13%-13.25%),followed by downstream(11.87%-11.98%)and upstream regions(9.96%-10.05%).Furthermore,the whole watershed exhibited greater hydrological resilience to logging compared to upstream areas,with attenuated runoff changes due to scale effects.Scale effects were more pronounced during dry seasons((-8.13 to -42.13)×10^(4) m^(3)·month^(-1))than in the rainy season((-11.11 to -26.65)×10^(4) m^(3)·month^(-1)).These findings advance understanding of logging impacts on hydrology across different spatiotemporal scales in subtropical regions,providing valuable insights for forest management under increasing anthropogenic activities and climate change.展开更多
The coupling of water and fertilizer is the only way for high yield, efficiency, sugar on sugarcane. On sugarcane production, the spatial and temporal controlling technology of fertigation is an important direction of...The coupling of water and fertilizer is the only way for high yield, efficiency, sugar on sugarcane. On sugarcane production, the spatial and temporal controlling technology of fertigation is an important direction of the sustainable and healthy development of ecological agriculture in cane area of China. This paper reviews main achievements and advances on the coupling effect of water and fertilizer on sugarcane from time and space at home or abroad in recent years, analyzes the application prospects of the temporal and spatial coupling effect of water and fertilizer on sugarcane and puts forward some problems which need further research in future.展开更多
The cloud-to-ground lightning data between 2007 and 2008 were collected by lightning detection and location system,which was composed of four lightning detectors in four different sites of Dalian area.The spatio-tempo...The cloud-to-ground lightning data between 2007 and 2008 were collected by lightning detection and location system,which was composed of four lightning detectors in four different sites of Dalian area.The spatio-temporal distribution of cloud-to-ground lightning in surrounding areas of Dalian was analyzed from several aspects of polarity distribution,diurnal variation,lightning intensity and lightning density.The results showed that the number of negative lightning accounted for 93.9% of the total number of lightning,and its average lightning intensity was 27.99 kA.The number of positive lightning accounted for 6.1% of the total number of lightning,and its average lightning intensity was 35.56 kA.The diurnal variation of lightning frequency showed an obvious structure of two peaks (17:00-18:00 and 04:00-05:00) and two valleys (09:00-10:00 and 00:00-01:00).The number of lightning between May and September was 91.5% of the annual number,and the lightning occurred the most frequently between June and August.Most of positive and negative lightning was at the intensity of 15-35 kA,80.0% lower than 40 kA,and 99.3% lower than 100 kA.The lightning density had obvious regional differences in distribution,high in the Liaodong Bay and the Dalian Bay and low in inland areas.Therefore,coastal areas should attract more attention in lightning disaster defense in the surrounding areas of Dalian.展开更多
Climate change will have important implications in water shore regions,such as Huang-Huai-Hai(3H) plain,where expected warmer and drier conditions might augment crop water demand.Sensitivity analysis is important in...Climate change will have important implications in water shore regions,such as Huang-Huai-Hai(3H) plain,where expected warmer and drier conditions might augment crop water demand.Sensitivity analysis is important in understanding the relative importance of climatic variables to the variation in reference evapotranspiration(ET 0).In this study,the 51-yr ET 0 during winter wheat and summer maize growing season were calculated from a data set of daily climate variables in 40 meteorological stations.Sensitivity maps for key climate variables were estimated according to Kriging method and the spatial pattern of sensitivity coefficients for these key variables was plotted.In addition,the slopes of the linear regression lines for sensitivity coefficients were obtained.Results showed that ET 0 during winter wheat growing season accounted for the largest proportion of annual ET 0,due to its long phenological days,while ET 0 was detected to decrease significantly with the magnitude of 0.5 mm yr-1in summer maize growing season.Solar radiation is considered to be the most sensitive and primarily controlling variable for negative trend in ET 0 for summer maize season,and higher sensitive coefficient value of ET 0 to solar radiation and temperature were detected in east part and southwest part of 3H plain respectively.Relative humidity was demonstrated as the most sensitive factor for ET 0 in winter wheat growing season and declining relativity humidity also primarily controlled a negative trend in ET 0,furthermore the sensitivity coefficient to relative humidity increased from west to southeast.The eight sensitivity centrals were all found located in Shandong Province.These ET 0 along with its sensitivity maps under winter wheat-summer maize rotation system can be applied to predict the agricultural water demand and will assist water resources planning and management for this region.展开更多
Background Cervical cancer is the only cancer that can be eliminated worldwide.Tracking the latest burden of cervical cancer is critical toward the targets set by World Health Organization(WHO)to eliminate cervical ca...Background Cervical cancer is the only cancer that can be eliminated worldwide.Tracking the latest burden of cervical cancer is critical toward the targets set by World Health Organization(WHO)to eliminate cervical cancer as a major public health problem.Methods All data were extracted from the Global Cancer Observatory(GLOBOCAN)2022.Age-standardized incidence rate(ASIR)and mortality rates(ASMR)of cervical cancer were compared and linked to Human Development Index(HDI)between populations.The estimated annual percentage changes(EAPCs)were used to characterize the temporal trend in ASIR/ASMR,and demographic estimates were projected up to 2050.Results Globally,an estimated 662,044 cases(ASIR:14.12/100,000)and 348,709 deaths(ASMR:7.08/100,000)from cervical cancer occurred in 2022,corresponding to the fourth cause of cancer morbidity and mortality in women worldwide.Specifically,42%of cases and 39%of deaths occurred in China(23%and 16%)and India(19%and 23%).Both ASIR and ASMR of cervical cancer decreased with HDI,and similar decreasing links were observed for both early-onset(0–39 years)and late-onset(≥40 years)cervical cancer.Both ASIR and ASMR of overall cervical cancer showed decreasing trends during 2003–2012(EAPC:0.04%and-1.03%);however,upward trends were observed for early-onset cervical cancer(EAPC:1.16%and 0.57%).If national rates in 2022 remain stable,the estimated cases and deaths from cervical cancer are projected to increase by 56.8%and 80.7%up to 2050.Moreover,the projected increase of early-onset cervical cancer is mainly observed in transitioning countries,while decreased burden is expected in transitioned countries.Conclusions Cervical cancer remains a common cause of cancer death in many countries,especially in transitioning countries.Unless scaling-up preventive interventions,human papillomavirus(HPV)vaccination and cervical cancer screening,as well as systematic cooperation within government,civil societies,and private enterprises,the global burden of cervical cancer would be expected to increase in the future.展开更多
Spatio-temporal changes in the differentiation characteristics of eight consecutive phenological periods and their corresponding lengths were quantitatively analyzed based on long-term phenological observation data fr...Spatio-temporal changes in the differentiation characteristics of eight consecutive phenological periods and their corresponding lengths were quantitatively analyzed based on long-term phenological observation data from 114 agro-meteorological stations in four maize growing zones in China. Results showed that average air temperature and growing degree-days (GDD) during maize growing seasons showed an increasing trend from 1981 to 2010, while precipitation and sunshine duration showed a decreasing trend. Maize phenology has significantly changed under climate change: spring maize phenology was mainly advanced, especially in northwest and southwest maize zones, while summer and spring-summer maize phenology was delayed. The delay trend observed for summer maize in the northwest maize zone was more pronounced than in the Huang-Huai spring-summer maize zone. Variations in maize phenology changed the corresponding growth stages length: the vegetative growth period (days from sowing date to tasseling date) was generally shortened in spring, summer, and spring-summer maize, although to different degrees, while the reproductive growth period (days from tasseling date to mature date) showed an extension trend. The entire growth period(days from sowing date to mature date) of spring maize was extended, but the entire growth periods of summer and spring-summer maize were shortened.展开更多
The aquatic eco-environment is significantly affected by temporal and spatial variation of the mixed layer depth (MLD) in large shallow lakes. In the present study, we simulated the three-dimensional water temperatu...The aquatic eco-environment is significantly affected by temporal and spatial variation of the mixed layer depth (MLD) in large shallow lakes. In the present study, we simulated the three-dimensional water temperature of Taihu Lake with an unstructured grid with a finite-volume coastal ocean model (FVCOM) using wind speed, wind direction, short-wave radiation and other meteorological data measured during 13-18 August 2008. The simulated results were consistent with the measurements. The temporal and spatial distribution of the MLD and the possible relevant mechanisms were analyzed on the basis of the water temperature profile data of Taihu Lake. The results indicated that diurnal stratification might be established through the combined effect of the hydrodynamic conditions induced by wind and the heat exchange between air and water. Compared with the net heat flux, the changes of the MLD were delayed approximately two hours. Furthermore, there were significant spatial differences of the MLD in Taihu Lake due to the combined impact of thermal and hydrodynamic forces. Briefly, diurnal stratification formed relatively easily in Gonghu Bay, Zhushan Bay, Xukou Bay and East Taihu Bay, and the surface mixed layer was thin. The center of the lake region had the deepest surface mixed layer due to the strong mixing process. In addition, Meiliang Bay showed a medium depth of the surface mixed layer. Our analysis indicated that the spatial difference in the hydrodynamic action was probably the major cause for the spatial variation of the MLD in Taihu Lake.展开更多
Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has ...Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.展开更多
Multisensory enhancement,as a facilitation phenomenon,is responsible for superior behavioral performance when an individual is responding to cross-modal versus modality-specific stimuli.However,the event-related poten...Multisensory enhancement,as a facilitation phenomenon,is responsible for superior behavioral performance when an individual is responding to cross-modal versus modality-specific stimuli.However,the event-related potential(ERP) counterparts of behavioral multisensory enhancement are not well known.We recorded ERPs and behavioral data from 14 healthy volunteers with three types of target stimuli(modality-specific,bimodal,and trimodal) to examine the spatio-temporal electrophysiological characteristics of multisensory enhancement by comparing behavioral data with ERPs.We found a strong correlation between P3 latency and behavioral performance in terms of reaction time(RT)(R = 0.98,P <0.001),suggesting that P3 latency constitutes a temporal measure of behavioral multisensory enhancement.In addition,a fast RT and short P3 latency were found when comparing the modality-specific visual target with the modality-specific auditory and somatosensory targets.Our results indicate that behavioral multisensory enhancement can be identified by the latency and source distribution of the P3 component.These findings may advance our understanding of the neuronal mechanisms of multisensory enhancement.展开更多
Landforms are an important factor determining the spatial pattern of cropland through allocation of surface water and heat. Therefore, it is of great importance to study the change in cropland distribution from the pe...Landforms are an important factor determining the spatial pattern of cropland through allocation of surface water and heat. Therefore, it is of great importance to study the change in cropland distribution from the perspective of geomorphologic divisions. Based on China's multi-year land cover data(1990, 1995, 2000, 2005, 2010 and 2015) and geomorphologic regionalization data, we analyzed the change in cropland area and its distribution pattern in six geomorphologic regions of China over the period of 1990-2015 with the aid of GIS techniques. Our results showed that the total cropland area increased from 177.1 to 178.5 million ha with an average increase rate of 0.03%. Cropland area decreased in southern China and increased in northern China. Region I(Eastern hilly plains) had the highest cropland increase rate, while the cropland dynamic degree of Region IV(Northwestern middle and high mountains, basins and plateaus) was significantly higher than that of other regions. The barycenter of China's cropland shifted from northern China to the northwest over the 25-year period. Regions IV and I were the two regions with the greatest increase of cropland. Region II(Southeastern low and middle mountains) and Region V(Southwestern middle and low mountains, plateaus and basins) were the main decreasing cropland regions. The area of cropland remained almost unchanged in Region III(Northern China and Inner Mongolia eastern-central mountains and plateaus) and Region VI(Tibetan Plateau). The loss of cropland occurred mostly in Regions I and II as a result of growing industrialization and urbanization, while the increase of cropland occurred mainly in Region IV because of reclamation of grassland and other wasteland. These analyzing results would provide fundamental information for further studies of urban planning, ecosystem management, and natural resourcesconservation in China.展开更多
High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for re...High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographical location, population density, automobile quantity, industrial discharge, and straw burning are the main driving forces of PM_(2.5) concentration in China.展开更多
基金supported by the Defitech Foundation(Morges,CH)to FCHthe Bertarelli Foundation-Catalyst program(Gstaad,CH)to FCH+2 种基金the Wyss Center for Bio and Neuroengineering the Lighthouse Partnership for AI-guided Neuromodulation to FCHthe Fonds de recherche du Quebec-Sante(FRQS#342969)to CEPthe Neuro X Postdoctoral Fellowship Program to CEP。
文摘Brain lesions,such as those caused by stroke or traumatic brain injury(TBI),frequently result in persistent motor and cognitive impairments that significantly affect the individual patient's quality of life.Despite differences in the mechanisms of injury,both conditions share a high prevalence of motor and cognitive impairments.These deficits show only limited natural recovery.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
基金supported by the funding provided by the State Key Laboratory of Hydraulics and Mountain River Engineering(SKHL2210)National Natural Science Foundation of China(42171304)+1 种基金the Sichuan Science and Technology Program(2023YFS0380)Natural Science Foundation of Jiangsu Province of China(BK20242018)。
文摘The Yellow River Basin in Sichuan Province(YRS)is undergoing severe soil erosion and exacerbated ecological vulnerability,which collectively pose formidable challenges for regional water conservation(WC)and sustainable development.While effectively enhancing WC necessitates a comprehensive understanding of its driving factors and corresponding intervention strategies,existing studies have largely neglected the spatiotemporal heterogeneity of both natural and socio-economic drivers.Therefore,this study explored the spatiotemporal heterogeneity of WC drivers in YRS using multi-scale geographically weighted regression(MGWR)and geographically and temporally weighted regression(GTWR)models from an eco-hydrological perspective.We discovered that downstream regions,which are more developed,achieved significantly better WC than upstream regions.The results also demonstrated that the influence of temperature and wind speed is consistently dominant and temporally stable due to climate stability,while the influence of vegetation shifted from negative to positive around 2010,likely indicating greater benefits from understory vegetation.Economic growth positively impacted WC in upstream regions but had a negative effect in the more developed downstream regions.These findings highlight the importance of targeted water conservation strategies,including locally appropriate revegetation,optimization of agricultural and economic structures,and the establishment of eco-compensation mechanisms for ecological conservation and sustainable development.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2021QZKK0202)Shaanxi Provincial Youth Science and Technology Rising Star Project(No.2022KJXX-85)+3 种基金Key Scientific Research Project of Shaanxi Provincial Department of Education(No.22JS041)Youth Innovation Team Research Project of Shaanxi Provincial Department of Education(Nos.22JP099,21JP137)The Youth Innovation Team of Shaanxi Universitiesthe Support Program for Outstanding Young Talents of Shaanxi Universities(Dr.Tao Luo)。
文摘Freezing–thawing indices serve as a comprehensive indicator of both the duration of the freezing/thawing periods and the degree of cold and heat in a given region.In-depth analysis of the freezing-thawing indices not only enables the prediction of permafrost distribution and its dynamic changes,but also facilitates the assessment of damage risk to infrastructure under freeze-thaw action.In this paper,the air/ground freezing–thawing indices from 1987 to 2017,based on daily temperature observations from meteorological stations along the China–Nepal Highway(CNH),were calculated,and their spatial and temporal variation patterns were analyzed.The results showed that:(1)Both mean annual air temperature and mean annual ground surface temperature along the CNH fluctuated upward,with climate tendency rates of 0.43 and 0.52.C·(10a)~(-1),respectively;(2)The number of days with negative air temperature and ground temperature showed fluctuated downward,with change rates of-8.6 and-8.3 d·(10a)~(-1),respectively;(3)The ranges of air freezing index,air thawing index,ground freezing index,and ground thawing index over the years were 157.05-458.88°C·d,2034.20-2560.73°C·d,108.78-396.83°C·d,and 3515.25-4288.67°C·d,respectively.The climate tendency rates were-5.42,10.22,-6.79,and 12.14.C·d·a-1,respectively,showing a general warming trend;(4)The air freezing index,ground freezing index,and ground thawing index changed abruptly in 1999,2000,and 2002,respectively,evincing significant changes after 2002.The research results can provide a basis for the risk assessment of freezing–thawing erosion and the prevention and control of permafrost engineering diseases along the CNH.
基金funded by the National Natural Science Foundation of China(U23A2063)the Gansu Province Top-notch Leading Talents Project(E339040101)the National Natural Science Foundation of China(41771290,42377043,41773086).
文摘Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass,both of which are essential for maintaining ecosystem health and stability.However,the spatiotemporal variations of tenebrionid beetle assemblages in the Gobi desert remain poorly understood.In this study,the monthly dynamics of tenebrionid beetles in the central part of the Hexi Corridor,Northwest China,a representative area of the Gobi desert ecosystems,were monitored using pitfall trapping during 2015-2020.The following results were showed:(1)monthly activity of tenebrionid beetles was observed from March to October,with monthly activity peaking in spring and summer,and monthly activity periods and peak of tenebrionid beetle species exhibited interspecific differences that varied from year to year;(2)spatial distribution of tenebrionid beetle community was influenced by structural factors.Specifically,at a spatial scale of 24.00 m,tenebrionid beetle community was strongly and positively correlated with the dominant species,with distinct spatial distribution patterns observed for Blaps gobiensis and Microdera kraatzi alashanica;(3)abundance of tenebrionid beetles was positively correlated with monthly mean precipitation and monthly mean temperature,whereas monthly abundance of B.gobiensis and M.kraatzi alashanica was positively correlated with monthly mean precipitation;and(4)the cover of Reaumuria soongarica(Pall.)Maxim.and Nitraria sphaerocarpa Maxim.had a positive influence on the number of tenebrionid beetles captured.In conclusion,monthly variation in precipitation significantly influences the community dynamic of tenebrionid beetles,with precipitation and shrub cover jointly determining the spatial distribution pattern of these beetles in the Gobi desert ecosystems.
基金supported by the National Natural Science Foundation of China(Nos.52260028,52060022,52260029,and 52160021)the National Key Research and Development Program of China(Nos.2017YFE0114800 and 2019YFC0409200)+1 种基金Inner Mongolia Autonomous Region Science and Technology Plan(No.2021GG0089)personal grant to Guohua Li by China Scholarship Council(CSC).
文摘Eutrophic shallow lakes are generally considered as a contributor to the emission of nitrous oxide(N_(2)O),while regional and global estimates have remained imprecise.This due to a lack of data and insufficient understanding of the multiple contributing factors.This study characterized the spatiotemporal variability in N_(2)O concentrations and N_(2)O diffusive fluxes and the contributing factors in LakeWuliangsuhai,a typical shallow eutrophic and seasonally frozen lake in Inner Mongolia with cold and arid climate.Dissolved N_(2)O concentrations of the lake exhibited a range of 4.5 to 101.2 nmol/L,displaying significant spatiotemporal variations.The lowest and highest concentrations were measured in summer and winter,respectively.The spatial distribution of N_(2)Ofluxwas consistent with that of N_(2)O concentrations.Additionally,the hotspots of N_(2)O emissions were detected within close to the main inflow of lake.The wide spatial and temporal variation in N_(2)O emissions indicate the complexity and its relative importance of factors influencing emissions.N_(2)O emissions in different lake zones and seasons were regulated by diverse factors.Factors influencing the spatial and temporal distribution of N_(2)O concentrations and fluxes were identified as WT,WD,DO,Chl-a,SD and COD.Interestingly,the same factor demonstrated opposing effects on N_(2)O emission in various seasons or zones.This research improves our understanding of N_(2)O emissions in shallow eutrophic lakes in cold and arid areas.
基金supported by the National Natural Science Foundation of China(No.31660234).
文摘Global forest cover is undergoing significant transformations due to anthropogenic activities and natural disturbances,profoundly impacting hydrological processes.However,the inherent spatial heterogeneity within watersheds leads to varied hydrological responses across spatiotemporal scales,challenging comprehensive assessment of logging impacts at the watershed scale.Here,we developed multiple forest logging scenarios using the soil and water assessment tool(SWAT)model for the Le'an River watershed,a 5,837 km2 subtropical watershed in China,to quantify the hydrological effects of forest logging across different spatiotemporal scales.Our results demonstrate that increasing forest logging ratios from 1.54% to 9.25% consistently enhanced ecohydrological sensitivity.However,sensitivity varied across spatiotemporal scales,with the rainy season(15.30%-15.81%)showing higher sensitivity than annual(11.56%-12.07%)and dry season(3.38%-5.57%)periods.Additionally,the ecohydrological sensitivity of logging varied significantly across the watershed,with midstream areas exhibiting the highest sensitivity(13.13%-13.25%),followed by downstream(11.87%-11.98%)and upstream regions(9.96%-10.05%).Furthermore,the whole watershed exhibited greater hydrological resilience to logging compared to upstream areas,with attenuated runoff changes due to scale effects.Scale effects were more pronounced during dry seasons((-8.13 to -42.13)×10^(4) m^(3)·month^(-1))than in the rainy season((-11.11 to -26.65)×10^(4) m^(3)·month^(-1)).These findings advance understanding of logging impacts on hydrology across different spatiotemporal scales in subtropical regions,providing valuable insights for forest management under increasing anthropogenic activities and climate change.
基金Supported by Open Fund of Key Laboratory of Plant Nutrition and Fertilizer,Ministry of Agriculture(2013-1)Guangxi Natural Science Foundation for Youths(2011GXNSFB018026)+2 种基金Guangxi Scientific Research and Technological Development Program(14125008-2-15)Scientific and Technological Development Fund for Youths of Guangxi Academy of Agricultural Sciences(2013YQ18,2013YF06)the State Key Program of National Natural Science of China(U1033004-06)~~
文摘The coupling of water and fertilizer is the only way for high yield, efficiency, sugar on sugarcane. On sugarcane production, the spatial and temporal controlling technology of fertigation is an important direction of the sustainable and healthy development of ecological agriculture in cane area of China. This paper reviews main achievements and advances on the coupling effect of water and fertilizer on sugarcane from time and space at home or abroad in recent years, analyzes the application prospects of the temporal and spatial coupling effect of water and fertilizer on sugarcane and puts forward some problems which need further research in future.
文摘The cloud-to-ground lightning data between 2007 and 2008 were collected by lightning detection and location system,which was composed of four lightning detectors in four different sites of Dalian area.The spatio-temporal distribution of cloud-to-ground lightning in surrounding areas of Dalian was analyzed from several aspects of polarity distribution,diurnal variation,lightning intensity and lightning density.The results showed that the number of negative lightning accounted for 93.9% of the total number of lightning,and its average lightning intensity was 27.99 kA.The number of positive lightning accounted for 6.1% of the total number of lightning,and its average lightning intensity was 35.56 kA.The diurnal variation of lightning frequency showed an obvious structure of two peaks (17:00-18:00 and 04:00-05:00) and two valleys (09:00-10:00 and 00:00-01:00).The number of lightning between May and September was 91.5% of the annual number,and the lightning occurred the most frequently between June and August.Most of positive and negative lightning was at the intensity of 15-35 kA,80.0% lower than 40 kA,and 99.3% lower than 100 kA.The lightning density had obvious regional differences in distribution,high in the Liaodong Bay and the Dalian Bay and low in inland areas.Therefore,coastal areas should attract more attention in lightning disaster defense in the surrounding areas of Dalian.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD09B01)the National 973 Program of China(2012CB955904)the Project of Food Security and Climate Change in the Asia-Pacific Region:Evaluating Mismatch between Crop Development and Water Availability and Project of National Non-profit Institute Fund,China-Australia(BSRF201206)
文摘Climate change will have important implications in water shore regions,such as Huang-Huai-Hai(3H) plain,where expected warmer and drier conditions might augment crop water demand.Sensitivity analysis is important in understanding the relative importance of climatic variables to the variation in reference evapotranspiration(ET 0).In this study,the 51-yr ET 0 during winter wheat and summer maize growing season were calculated from a data set of daily climate variables in 40 meteorological stations.Sensitivity maps for key climate variables were estimated according to Kriging method and the spatial pattern of sensitivity coefficients for these key variables was plotted.In addition,the slopes of the linear regression lines for sensitivity coefficients were obtained.Results showed that ET 0 during winter wheat growing season accounted for the largest proportion of annual ET 0,due to its long phenological days,while ET 0 was detected to decrease significantly with the magnitude of 0.5 mm yr-1in summer maize growing season.Solar radiation is considered to be the most sensitive and primarily controlling variable for negative trend in ET 0 for summer maize season,and higher sensitive coefficient value of ET 0 to solar radiation and temperature were detected in east part and southwest part of 3H plain respectively.Relative humidity was demonstrated as the most sensitive factor for ET 0 in winter wheat growing season and declining relativity humidity also primarily controlled a negative trend in ET 0,furthermore the sensitivity coefficient to relative humidity increased from west to southeast.The eight sensitivity centrals were all found located in Shandong Province.These ET 0 along with its sensitivity maps under winter wheat-summer maize rotation system can be applied to predict the agricultural water demand and will assist water resources planning and management for this region.
基金supported by the National Key R&D Program of China(grant number:2021YFC2500400)National Natural Science Foundation of China(grant numbers:82172894,82073028,82204121)China Postdoctoral Science Foundation(grant number:2023M742617).
文摘Background Cervical cancer is the only cancer that can be eliminated worldwide.Tracking the latest burden of cervical cancer is critical toward the targets set by World Health Organization(WHO)to eliminate cervical cancer as a major public health problem.Methods All data were extracted from the Global Cancer Observatory(GLOBOCAN)2022.Age-standardized incidence rate(ASIR)and mortality rates(ASMR)of cervical cancer were compared and linked to Human Development Index(HDI)between populations.The estimated annual percentage changes(EAPCs)were used to characterize the temporal trend in ASIR/ASMR,and demographic estimates were projected up to 2050.Results Globally,an estimated 662,044 cases(ASIR:14.12/100,000)and 348,709 deaths(ASMR:7.08/100,000)from cervical cancer occurred in 2022,corresponding to the fourth cause of cancer morbidity and mortality in women worldwide.Specifically,42%of cases and 39%of deaths occurred in China(23%and 16%)and India(19%and 23%).Both ASIR and ASMR of cervical cancer decreased with HDI,and similar decreasing links were observed for both early-onset(0–39 years)and late-onset(≥40 years)cervical cancer.Both ASIR and ASMR of overall cervical cancer showed decreasing trends during 2003–2012(EAPC:0.04%and-1.03%);however,upward trends were observed for early-onset cervical cancer(EAPC:1.16%and 0.57%).If national rates in 2022 remain stable,the estimated cases and deaths from cervical cancer are projected to increase by 56.8%and 80.7%up to 2050.Moreover,the projected increase of early-onset cervical cancer is mainly observed in transitioning countries,while decreased burden is expected in transitioned countries.Conclusions Cervical cancer remains a common cause of cancer death in many countries,especially in transitioning countries.Unless scaling-up preventive interventions,human papillomavirus(HPV)vaccination and cervical cancer screening,as well as systematic cooperation within government,civil societies,and private enterprises,the global burden of cervical cancer would be expected to increase in the future.
基金National Natural Science Foundation of China,No.41671037Youth Innovation Promotion Association of CAS,No.2016049+1 种基金Key Research Program of Frontier Sciences,CAS,No.QYZDB-SSW-DQC005Program for "Kezhen" Excellent Talents in IGSNRR,CAS,No.2017RC101
文摘Spatio-temporal changes in the differentiation characteristics of eight consecutive phenological periods and their corresponding lengths were quantitatively analyzed based on long-term phenological observation data from 114 agro-meteorological stations in four maize growing zones in China. Results showed that average air temperature and growing degree-days (GDD) during maize growing seasons showed an increasing trend from 1981 to 2010, while precipitation and sunshine duration showed a decreasing trend. Maize phenology has significantly changed under climate change: spring maize phenology was mainly advanced, especially in northwest and southwest maize zones, while summer and spring-summer maize phenology was delayed. The delay trend observed for summer maize in the northwest maize zone was more pronounced than in the Huang-Huai spring-summer maize zone. Variations in maize phenology changed the corresponding growth stages length: the vegetative growth period (days from sowing date to tasseling date) was generally shortened in spring, summer, and spring-summer maize, although to different degrees, while the reproductive growth period (days from tasseling date to mature date) showed an extension trend. The entire growth period(days from sowing date to mature date) of spring maize was extended, but the entire growth periods of summer and spring-summer maize were shortened.
基金supported by the National Natoral Science Foundation of Ghina (Grant Nos.41071070.41165001.and 41171368)the Special Scientific Research Project of the China Commonwealth Trade(meteorology)(GYHY201006054)
文摘The aquatic eco-environment is significantly affected by temporal and spatial variation of the mixed layer depth (MLD) in large shallow lakes. In the present study, we simulated the three-dimensional water temperature of Taihu Lake with an unstructured grid with a finite-volume coastal ocean model (FVCOM) using wind speed, wind direction, short-wave radiation and other meteorological data measured during 13-18 August 2008. The simulated results were consistent with the measurements. The temporal and spatial distribution of the MLD and the possible relevant mechanisms were analyzed on the basis of the water temperature profile data of Taihu Lake. The results indicated that diurnal stratification might be established through the combined effect of the hydrodynamic conditions induced by wind and the heat exchange between air and water. Compared with the net heat flux, the changes of the MLD were delayed approximately two hours. Furthermore, there were significant spatial differences of the MLD in Taihu Lake due to the combined impact of thermal and hydrodynamic forces. Briefly, diurnal stratification formed relatively easily in Gonghu Bay, Zhushan Bay, Xukou Bay and East Taihu Bay, and the surface mixed layer was thin. The center of the lake region had the deepest surface mixed layer due to the strong mixing process. In addition, Meiliang Bay showed a medium depth of the surface mixed layer. Our analysis indicated that the spatial difference in the hydrodynamic action was probably the major cause for the spatial variation of the MLD in Taihu Lake.
基金supported jointly by the National Basic Research Program of China 973 Projects (Grant No. 2010CB950403)the National Special Scientific Research Project for Public Interest (Meteorology) (Grant No. GYHY201006021)+1 种基金the Chinese Academy of Sciences(Grant No. KZCX2-EW-QN204)the National Natural Science Foundation of China (Grant No. 40975046)
文摘Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.
基金partly supported by the National Natural Science Foundation of China(81271685)Key Project of Science and Technology Fund of Tianjin Municipality,China(10JCZDJC16100)+1 种基金the China Postdoctoral Science Foundation(2012M510754)the Independent Innovative Fund of Tianjin University,Tianjin Municipality,China(1102)
文摘Multisensory enhancement,as a facilitation phenomenon,is responsible for superior behavioral performance when an individual is responding to cross-modal versus modality-specific stimuli.However,the event-related potential(ERP) counterparts of behavioral multisensory enhancement are not well known.We recorded ERPs and behavioral data from 14 healthy volunteers with three types of target stimuli(modality-specific,bimodal,and trimodal) to examine the spatio-temporal electrophysiological characteristics of multisensory enhancement by comparing behavioral data with ERPs.We found a strong correlation between P3 latency and behavioral performance in terms of reaction time(RT)(R = 0.98,P <0.001),suggesting that P3 latency constitutes a temporal measure of behavioral multisensory enhancement.In addition,a fast RT and short P3 latency were found when comparing the modality-specific visual target with the modality-specific auditory and somatosensory targets.Our results indicate that behavioral multisensory enhancement can be identified by the latency and source distribution of the P3 component.These findings may advance our understanding of the neuronal mechanisms of multisensory enhancement.
基金National Natural Science Foundation of China,No.41421001,No.41590845,No.41571388National Key Basic Research Program,No.2015CB954101
文摘Landforms are an important factor determining the spatial pattern of cropland through allocation of surface water and heat. Therefore, it is of great importance to study the change in cropland distribution from the perspective of geomorphologic divisions. Based on China's multi-year land cover data(1990, 1995, 2000, 2005, 2010 and 2015) and geomorphologic regionalization data, we analyzed the change in cropland area and its distribution pattern in six geomorphologic regions of China over the period of 1990-2015 with the aid of GIS techniques. Our results showed that the total cropland area increased from 177.1 to 178.5 million ha with an average increase rate of 0.03%. Cropland area decreased in southern China and increased in northern China. Region I(Eastern hilly plains) had the highest cropland increase rate, while the cropland dynamic degree of Region IV(Northwestern middle and high mountains, basins and plateaus) was significantly higher than that of other regions. The barycenter of China's cropland shifted from northern China to the northwest over the 25-year period. Regions IV and I were the two regions with the greatest increase of cropland. Region II(Southeastern low and middle mountains) and Region V(Southwestern middle and low mountains, plateaus and basins) were the main decreasing cropland regions. The area of cropland remained almost unchanged in Region III(Northern China and Inner Mongolia eastern-central mountains and plateaus) and Region VI(Tibetan Plateau). The loss of cropland occurred mostly in Regions I and II as a result of growing industrialization and urbanization, while the increase of cropland occurred mainly in Region IV because of reclamation of grassland and other wasteland. These analyzing results would provide fundamental information for further studies of urban planning, ecosystem management, and natural resourcesconservation in China.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA19040401China Postdoctoral Science Foundation,No.2016M600121+1 种基金National Natural Science Foundation of China,No.41701173,No.41501137The State Key Laboratory of Resources and Environmental Information System
文摘High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographical location, population density, automobile quantity, industrial discharge, and straw burning are the main driving forces of PM_(2.5) concentration in China.