Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other...Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analy...Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.展开更多
Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Si...Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.展开更多
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m...The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.展开更多
Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment o...Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.展开更多
Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been s...Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.展开更多
Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research probl...Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.展开更多
Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(...Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.展开更多
Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable developm...Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable development.This study analyzed the spatiotemporal evolution and landscape pattern change of construction land in the Yangtze River Delta(YRD)region from 1990 to 2018 by integrating Geographical Information System(GIS)spatial analysis and landscape pattern indices,and revealed its driving mechanism by XGBoost and SHapley Additive ex Planations(SHAP).Moreover,we compared the disparities in the core driving factors for construction land evolution in cities with diverse development orientations within the YRD region.Results show that:1)development intensity of construction land continued to increase from 7.54%in 1990 to 13.44%in 2018,primarily by occupying farmland.The landscape fragmentation of construction land in the YRD region decreased,and landscape dominance increased.Spatially,the eastern part of the YRD exhibits a high degree of spatial agglomeration of construction land,whereas the western part shows a high degree of fragmentation,revealing distinct spatial gradient differentiation characteristics.The landscape dominance of the construction land in the eastern region of the YRD is higher than that in the western and northern regions.2)Transportation and infrastructure exert the highest contribution rate on development intensity changes of construction land in the YRD.The industrial structure significantly influences the conversion of farmland to construction land.Additionally,infrastructure plays a crucial role in shaping the spatial agglomeration patterns of construction land.Population distribution is the dominant factor determining the regularity of the landscape shape of construction land.3)The core driving factors for the development intensity of construction land in central cities primarily lies in transportation,whereas for non-central cities,besides transportation,the year-end balance of per capita savings deposits of urban and rural residents also play a significant role.The area change of construction land occupying farmland in central and non-central cities is mainly driven by industrial structure and economic level,respectively.This study informs refined spatial optimization and regional high-quality integrated development.展开更多
Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different educ...Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different education stages is still limited.A new framework was established to evaluate the spatial heterogeneity and its influencing factors across all education stages(kindergarten,primary school,middle school,college)in 1100 schools at the urban scale of Xi’an,China.The research results show that:1)CGS is lower in the Baqiao district and higher in the Yanta and Xincheng districts of Xi’an City.‘Green wealthy schools are mainly concentrated in the Weiyang,Chang’an and Yanta districts.2)CGS of these schools in descending order is college(31.40%)>kindergarten(18.32%)>middle school(13.56%)>primary school(10.70%).3)Colleges have the most recreation sites(n(number)=2),the best education levels(11.93 yr),and the lowest housing prices(1.18×10^(4) yuan(RMB)/m^(2));middle schools have the highest public expenditures(3.97×10^(9) yuan/yr);primary schools have the highest CGS accessibility(travel time gap(TTG)=31.33).4)Multiscale Geographically Weighted Regression model and Spearman’s test prove that recreation sites have a significant positive impact on college green spaces(0.28–0.35),and education level has a significant positive impact on kindergarten green spaces(0.16–0.24).This research framework provides important insights for the assessment of school greening initiatives aimed at fostering healthier learning environments for future generations.展开更多
The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the ra...The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries.展开更多
The Hengduan Mountains,situated on the southeastern edge of the Qinghai-Tibet Plateau,are the longest and widest north-south-oriented mountain range in China,exerting a significant influence on the ecological and geog...The Hengduan Mountains,situated on the southeastern edge of the Qinghai-Tibet Plateau,are the longest and widest north-south-oriented mountain range in China,exerting a significant influence on the ecological and geographical pattern.Understanding the topographic and geomorphological characteristics of the Hengduan Mountains is fundamental and crucial for research in related fields such as ecology,geography,and sustainability.In this study,Digital Elevation Model(DEM)data were utilized to extract and analyze the topography and geomorphology(TG)pattern.TG maps have been developed to quantitatively classify the TG types in the Hengduan Mountains by combining the five factors of elevation,slope,aspect,relief and landform.The spatial distribution and quantitative characteristics of these factors were mapped and investigated using geographic information systems.The results revealed that:(1)The Hengduan Mountains exhibit an elongated north-south distribution,with an average elevation of approximately 3746 m,an average slope of around 25°,and an average relief of about 266 m.(2)The Hengduan Mountains display significant elevation differences,with an overall high elevation,characterized by a trend of lower elevation in the east and higher elevation in the west,as well as irregular orientations of various aspects.(3)The 19 landform types were identified,the landform types of the Hengduan Mountains are primarily composed of low-relief high-mountains(42.0618%),low-relief mid-mountains(22.4624%),and high-elevation hills(20.5839%).The results of the study can provide data and information support for the ecology,environmental protection and sustainable development of the Hengduan Mountains.展开更多
On September 5,2022,at least 10,855 landslides had been triggered by a magnitude Mw 6.7(Ms 6.8)earthquake on the eastern margin of the Tibetan Plateau.Unfortunately,a detailed analysis of the spatial patterns of lands...On September 5,2022,at least 10,855 landslides had been triggered by a magnitude Mw 6.7(Ms 6.8)earthquake on the eastern margin of the Tibetan Plateau.Unfortunately,a detailed analysis of the spatial patterns of landslides in the eastern margin of the Baryan Har block is lacking.The observations show that the highest landslide concentrations are distributed along the seismogenic fault(Moxi fault)and Dadu River valley,coinciding with the effects of the hanging wall and microepicenter.Seismogenic tectonics controlled the regional distribution of new landslides,and the local topography influenced the detailed positions on the slopes.The total landslide mass wasting volume was 223.1×10^(6)m^(3),and the maximum occurred in the Wandong Basin(value of 74×10^(6)m^(3)).Thirty landslide dams were temporarily existing.Although some local collapses occurred at the toe of the Hailuogou glacier,seismic shaking had no obvious influence on the overall stability of the glacier.A post debris flow assessment indicates that some large basins contained much loose material and that some steep small basins had high debris flow susceptibility.On the eastern margin of the Bayan Har block,the landslide-triggering thrust and strike-slip events both follow the distributions of the hanging wall.展开更多
The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection propert...The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection properties of the ultrafast laser welding technology offer a novel method for welding of diverse transparent materials,thus having wide range of potential applications in aerospace,opto-mechanical systems,sensors,microfluidic,optics,etc.In this comprehensive review,tuning the transient electron activation processes,high-rate laser energy deposition,and dynamic evolution of plasma morphology by the temporal/spatial shaping methods have been demonstrated to facilitate the transition from conventional homogeneous transparent material welding to the more intricate realm of transparent/metal heterogeneous material welding.The welding strength and stability are also improvable through the implementation of real-time,in-situ monitoring techniques and the prompt diagnosis of welding defects.The principles of ultrafast laser welding,bottleneck problems in the welding,novel welding methods,advances in welding performance,in-situ monitoring and diagnosis,and various applications are reviewed.Finally,we offer a forward-looking perspective on the fundamental challenges within the field of ultrafast laser welding and identify key areas for future research,underscoring the imperative need for ongoing innovation and exploration.展开更多
Coking industry is a potential source of heavy metals(HMs)pollution.However,its impacts to the groundwater of surrounding residential areas have not been well understood.This study investigated the pollution character...Coking industry is a potential source of heavy metals(HMs)pollution.However,its impacts to the groundwater of surrounding residential areas have not been well understood.This study investigated the pollution characteristics and health risks of HMs in groundwater nearby a typical coking plant.Nine HMs including Fe,Zn,Mo,As,Cu,Ni,Cr,Pb and Cd were analyzed.The average concentration of total HMswas higher in the nearby area(244.27μg/L)than that of remote area away the coking plant(89.15μg/L).The spatial distribution of pollution indices including heavy metal pollution index(HPI),Nemerow index(NI)and contamination degree(CD),all demonstrated higher values at the nearby residential areas,suggesting coking activity could significantly impact the HMs distribution characteristics.Four sources of HMs were identified by Positive Matrix Factorization(PMF)model,which indicated coal washing and coking emission were the dominant sources,accounted for 40.4%,and 31.0%,respectively.Oral ingestionwas found to be the dominant exposure pathway with higher exposure dose to children than adults.Hazard quotient(HQ)values were below 1.0,suggesting negligible non-carcinogenic health risks,while potential carcinogenic risks were from Pb and Ni with cancer risk(CR)values>10−6.Monte Carlo simulation matched well with the calculated results with HMs concentrations to be the most sensitive parameters.This study provides insights into understanding how the industrial coking activities can impact the HMs pollution characteristics in groundwater,thus facilitating the implement of HMs regulation in coking industries.展开更多
Synthetic phenolic antioxidants(SPAs)are widely used in diverse industries due to their exceptional antioxidant characteristics.However,human exposure to SPAs may cause health problems.In this study,226 dust samples w...Synthetic phenolic antioxidants(SPAs)are widely used in diverse industries due to their exceptional antioxidant characteristics.However,human exposure to SPAs may cause health problems.In this study,226 dust samples were collected from 10 provinces in China,and six SPAs(three parent SPAs and their three transformation products)were analyzed.The concentrations of6SPAs(the sum of six target compounds)ranged from 15.4 to 3210 ng/g(geometric mean(GM):169 ng/g).The highest concentration of6SPAswas found in Sichuan Province(GM:349 ng/g),which was approximately 4 times higher than that in Hubei Province(81.6 ng/g)(p<0.05).The concentrations of butylated hydroxytoluene(BHT),2,2'-methylene bis(4-methyl-6–tert-butylphenol)(AO2246),2,6-di–tert–butyl–1,4-benzoquinone(BHT-Q),2,6-di–tert–butyl–4-(hydroxymethyl)phenol(BHT-OH),and ∑_(p)-SPAs were substantially higher in dust from urban areas than rural areas(p<0.05).AO2246 concentration in dust from homes(GM:0.400 ng/g)was about 4 times higher than that in workplaces(0.116 ng/g)(p<0.01).Significantly higherp-SPAs concentrations were found in dust from homes(GM:17.5 ng/g)than workplaces(11.4 ng/g)(p<0.01).The estimated daily intakes(EDIs)of ∑_(6)SPAs exposed through dust ingestion were 0.582,0.342,0.197,0.076,and 0.080 ng/kg bw/day in different age groups,and exposed through dermal contact was 0.358,0.252,0.174,0.167,and 0.177 ng/kg bw/day.EDIs showed that the exposure risks of SPAs decreased with age.This is the first work to determine SPAs in dust from10 provinces in China and investigate the spatial distribution of SPAs in those regions.展开更多
文摘Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.
基金Under the auspices of National Natural Science Foundation of China(No.42371192)Natural Science Foundation of Hunan Province(No.2023JJ30100)Social Science Foundation of Hunan Province(No.23ZDAJ023,23YBA133)。
文摘Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.
基金supported by the Humanities and Social Sciences Project of the Ministry of Education of the Peoples Republic(No.21YJCZH099)the National Natural Science Foundation of China(Nos.41401089 and 41741014)the Science and Technology Project of Sichuan Province(No.2023NSFSC1979).
文摘Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.
文摘The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.
基金supported by the Ministry of Science and Technology of China(Nos.2021YFC3200904 and 2022YFC3203705)the National Natural Science Foundation of China(Nos.52270012 and 52070184).
文摘Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.
基金National Natural Science Foundation of China(Nos.4210144242394063).
文摘Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.
基金supported by the Key Research and Development Program in Shaanxi Province,China(No.2022ZDLSF07-05)the Fundamental Research Funds for the Central Universities,CHD(No.300102352901)。
文摘Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.
基金supported by the Open Fund of the Laboratory for Earth Surface Processes,Ministry of Education,Peking University,Beijing,China,and the Cultivation Fund Program for Excellent Dissertation in Fujian Normal University,China(No.LWPYS202315)the Research Start-up Fund of Fujian Normal University,China(No.Y0720304X13).
文摘Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.
基金Under the auspices of the National Natural Science Foundation of China(No.42301470,42171389)。
文摘Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable development.This study analyzed the spatiotemporal evolution and landscape pattern change of construction land in the Yangtze River Delta(YRD)region from 1990 to 2018 by integrating Geographical Information System(GIS)spatial analysis and landscape pattern indices,and revealed its driving mechanism by XGBoost and SHapley Additive ex Planations(SHAP).Moreover,we compared the disparities in the core driving factors for construction land evolution in cities with diverse development orientations within the YRD region.Results show that:1)development intensity of construction land continued to increase from 7.54%in 1990 to 13.44%in 2018,primarily by occupying farmland.The landscape fragmentation of construction land in the YRD region decreased,and landscape dominance increased.Spatially,the eastern part of the YRD exhibits a high degree of spatial agglomeration of construction land,whereas the western part shows a high degree of fragmentation,revealing distinct spatial gradient differentiation characteristics.The landscape dominance of the construction land in the eastern region of the YRD is higher than that in the western and northern regions.2)Transportation and infrastructure exert the highest contribution rate on development intensity changes of construction land in the YRD.The industrial structure significantly influences the conversion of farmland to construction land.Additionally,infrastructure plays a crucial role in shaping the spatial agglomeration patterns of construction land.Population distribution is the dominant factor determining the regularity of the landscape shape of construction land.3)The core driving factors for the development intensity of construction land in central cities primarily lies in transportation,whereas for non-central cities,besides transportation,the year-end balance of per capita savings deposits of urban and rural residents also play a significant role.The area change of construction land occupying farmland in central and non-central cities is mainly driven by industrial structure and economic level,respectively.This study informs refined spatial optimization and regional high-quality integrated development.
基金Under the auspices of Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-196)。
文摘Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different education stages is still limited.A new framework was established to evaluate the spatial heterogeneity and its influencing factors across all education stages(kindergarten,primary school,middle school,college)in 1100 schools at the urban scale of Xi’an,China.The research results show that:1)CGS is lower in the Baqiao district and higher in the Yanta and Xincheng districts of Xi’an City.‘Green wealthy schools are mainly concentrated in the Weiyang,Chang’an and Yanta districts.2)CGS of these schools in descending order is college(31.40%)>kindergarten(18.32%)>middle school(13.56%)>primary school(10.70%).3)Colleges have the most recreation sites(n(number)=2),the best education levels(11.93 yr),and the lowest housing prices(1.18×10^(4) yuan(RMB)/m^(2));middle schools have the highest public expenditures(3.97×10^(9) yuan/yr);primary schools have the highest CGS accessibility(travel time gap(TTG)=31.33).4)Multiscale Geographically Weighted Regression model and Spearman’s test prove that recreation sites have a significant positive impact on college green spaces(0.28–0.35),and education level has a significant positive impact on kindergarten green spaces(0.16–0.24).This research framework provides important insights for the assessment of school greening initiatives aimed at fostering healthier learning environments for future generations.
基金supported by the National Natural Science Foundation of China(22369011)the Gansu Key Research and Development Program(23YFGA0053 and 24YFGA025)the Hongliu Outstanding Youth Talent Support Program of Lanzhou University of Technology and Postgraduate research exploration project of Lanzhou University of Technology(256017)。
文摘The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries.
基金funded by the Yunnan Provincial Basic Research Joint Special Fund Project(2019FH001(-052))Cangshan Mountain Synthetic Scientific Expeditions Fund.
文摘The Hengduan Mountains,situated on the southeastern edge of the Qinghai-Tibet Plateau,are the longest and widest north-south-oriented mountain range in China,exerting a significant influence on the ecological and geographical pattern.Understanding the topographic and geomorphological characteristics of the Hengduan Mountains is fundamental and crucial for research in related fields such as ecology,geography,and sustainability.In this study,Digital Elevation Model(DEM)data were utilized to extract and analyze the topography and geomorphology(TG)pattern.TG maps have been developed to quantitatively classify the TG types in the Hengduan Mountains by combining the five factors of elevation,slope,aspect,relief and landform.The spatial distribution and quantitative characteristics of these factors were mapped and investigated using geographic information systems.The results revealed that:(1)The Hengduan Mountains exhibit an elongated north-south distribution,with an average elevation of approximately 3746 m,an average slope of around 25°,and an average relief of about 266 m.(2)The Hengduan Mountains display significant elevation differences,with an overall high elevation,characterized by a trend of lower elevation in the east and higher elevation in the west,as well as irregular orientations of various aspects.(3)The 19 landform types were identified,the landform types of the Hengduan Mountains are primarily composed of low-relief high-mountains(42.0618%),low-relief mid-mountains(22.4624%),and high-elevation hills(20.5839%).The results of the study can provide data and information support for the ecology,environmental protection and sustainable development of the Hengduan Mountains.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20603 and U21A2008)the Science Technology Research Program of the Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(Grant No.IMHE-ZYTS-03).
文摘On September 5,2022,at least 10,855 landslides had been triggered by a magnitude Mw 6.7(Ms 6.8)earthquake on the eastern margin of the Tibetan Plateau.Unfortunately,a detailed analysis of the spatial patterns of landslides in the eastern margin of the Baryan Har block is lacking.The observations show that the highest landslide concentrations are distributed along the seismogenic fault(Moxi fault)and Dadu River valley,coinciding with the effects of the hanging wall and microepicenter.Seismogenic tectonics controlled the regional distribution of new landslides,and the local topography influenced the detailed positions on the slopes.The total landslide mass wasting volume was 223.1×10^(6)m^(3),and the maximum occurred in the Wandong Basin(value of 74×10^(6)m^(3)).Thirty landslide dams were temporarily existing.Although some local collapses occurred at the toe of the Hailuogou glacier,seismic shaking had no obvious influence on the overall stability of the glacier.A post debris flow assessment indicates that some large basins contained much loose material and that some steep small basins had high debris flow susceptibility.On the eastern margin of the Bayan Har block,the landslide-triggering thrust and strike-slip events both follow the distributions of the hanging wall.
基金supports from National Key R&D Program of China(Grant No.2023YFB4605500)National Natural Science Foundation of China(Grant No.52105498)+3 种基金Natural Science Foundation of Hunan Province(Grant No.2022JJ40597)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1132)State Key Laboratory of Precision Manufacturing for Extreme Service Performance(Grant No.ZZYJKT2023-08)support in analyzing the status of ultrafast laser welding applications,as well as the corresponding project support(Grant No.HKF202400595).
文摘The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection properties of the ultrafast laser welding technology offer a novel method for welding of diverse transparent materials,thus having wide range of potential applications in aerospace,opto-mechanical systems,sensors,microfluidic,optics,etc.In this comprehensive review,tuning the transient electron activation processes,high-rate laser energy deposition,and dynamic evolution of plasma morphology by the temporal/spatial shaping methods have been demonstrated to facilitate the transition from conventional homogeneous transparent material welding to the more intricate realm of transparent/metal heterogeneous material welding.The welding strength and stability are also improvable through the implementation of real-time,in-situ monitoring techniques and the prompt diagnosis of welding defects.The principles of ultrafast laser welding,bottleneck problems in the welding,novel welding methods,advances in welding performance,in-situ monitoring and diagnosis,and various applications are reviewed.Finally,we offer a forward-looking perspective on the fundamental challenges within the field of ultrafast laser welding and identify key areas for future research,underscoring the imperative need for ongoing innovation and exploration.
基金supported by the National Key Research and Development Program of China(No.2019YFC1804501)the National Natural Science Foundation of China(Nos.42122056 and U1901210)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2021B1515020063)the Key Research and Development Program of Guangdong Province(No.2021B1111380003)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Z032).
文摘Coking industry is a potential source of heavy metals(HMs)pollution.However,its impacts to the groundwater of surrounding residential areas have not been well understood.This study investigated the pollution characteristics and health risks of HMs in groundwater nearby a typical coking plant.Nine HMs including Fe,Zn,Mo,As,Cu,Ni,Cr,Pb and Cd were analyzed.The average concentration of total HMswas higher in the nearby area(244.27μg/L)than that of remote area away the coking plant(89.15μg/L).The spatial distribution of pollution indices including heavy metal pollution index(HPI),Nemerow index(NI)and contamination degree(CD),all demonstrated higher values at the nearby residential areas,suggesting coking activity could significantly impact the HMs distribution characteristics.Four sources of HMs were identified by Positive Matrix Factorization(PMF)model,which indicated coal washing and coking emission were the dominant sources,accounted for 40.4%,and 31.0%,respectively.Oral ingestionwas found to be the dominant exposure pathway with higher exposure dose to children than adults.Hazard quotient(HQ)values were below 1.0,suggesting negligible non-carcinogenic health risks,while potential carcinogenic risks were from Pb and Ni with cancer risk(CR)values>10−6.Monte Carlo simulation matched well with the calculated results with HMs concentrations to be the most sensitive parameters.This study provides insights into understanding how the industrial coking activities can impact the HMs pollution characteristics in groundwater,thus facilitating the implement of HMs regulation in coking industries.
基金supported by the National Key Research and Development Program of China(No.2023YFC3706602)the National Natural Science Foundation of China(Nos.22225605 and 22193051)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0750200).
文摘Synthetic phenolic antioxidants(SPAs)are widely used in diverse industries due to their exceptional antioxidant characteristics.However,human exposure to SPAs may cause health problems.In this study,226 dust samples were collected from 10 provinces in China,and six SPAs(three parent SPAs and their three transformation products)were analyzed.The concentrations of6SPAs(the sum of six target compounds)ranged from 15.4 to 3210 ng/g(geometric mean(GM):169 ng/g).The highest concentration of6SPAswas found in Sichuan Province(GM:349 ng/g),which was approximately 4 times higher than that in Hubei Province(81.6 ng/g)(p<0.05).The concentrations of butylated hydroxytoluene(BHT),2,2'-methylene bis(4-methyl-6–tert-butylphenol)(AO2246),2,6-di–tert–butyl–1,4-benzoquinone(BHT-Q),2,6-di–tert–butyl–4-(hydroxymethyl)phenol(BHT-OH),and ∑_(p)-SPAs were substantially higher in dust from urban areas than rural areas(p<0.05).AO2246 concentration in dust from homes(GM:0.400 ng/g)was about 4 times higher than that in workplaces(0.116 ng/g)(p<0.01).Significantly higherp-SPAs concentrations were found in dust from homes(GM:17.5 ng/g)than workplaces(11.4 ng/g)(p<0.01).The estimated daily intakes(EDIs)of ∑_(6)SPAs exposed through dust ingestion were 0.582,0.342,0.197,0.076,and 0.080 ng/kg bw/day in different age groups,and exposed through dermal contact was 0.358,0.252,0.174,0.167,and 0.177 ng/kg bw/day.EDIs showed that the exposure risks of SPAs decreased with age.This is the first work to determine SPAs in dust from10 provinces in China and investigate the spatial distribution of SPAs in those regions.