Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other...Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.展开更多
The Chinese Giant Solar Telescope(CGST)low-dispersion spectrograph requires a large field-of-view(FOV)and high spatial resolution,which can be addressed by a carefully designed image slicer system.Our proposed design ...The Chinese Giant Solar Telescope(CGST)low-dispersion spectrograph requires a large field-of-view(FOV)and high spatial resolution,which can be addressed by a carefully designed image slicer system.Our proposed design divides the rectangular 50″×20″FOV at the telescope focal plane into four 50″×5″subfields.Each subfield undergoes optical reconstruction using its independent collimator-camera system(F/36-F/25.79),achieving vertical alignment and focal reduction of subfields to form a pseudo-slit.Using tilt mirrors for scanning allows simultaneous acquisition of spectral data with both a large FOV and a high angular resolution of 0.05″.This resolves manufacturing challenges for an image slicer,avoiding the requirement for hundreds of elements,multi-angle configurations,and compact dimensions,and also provides effective technical support for engineering work on the CGST.展开更多
Scalability remains a major challenge in building practical fault-tolerant quantum computers.Currently,the largest number of qubits achieved across leading quantum platforms ranges from hundreds to thousands.In atom a...Scalability remains a major challenge in building practical fault-tolerant quantum computers.Currently,the largest number of qubits achieved across leading quantum platforms ranges from hundreds to thousands.In atom arrays,scalability is primarily constrained by the capacity to generate large numbers of optical tweezers,and conventional techniques using acousto-optic deflectors or spatial light modulators struggle to produce arrays much beyond∼10,000 tweezers.Moreover,these methods require additional microscope objectives to focus the light into micrometer-sized spots,which further complicates system integration and scalability.Here,we demonstrate the experimental generation of an optical tweezer array containing 280×280 spots using a metasurface,nearly an order of magnitude more than most existing systems.The metasurface leverages a large number of subwavelength phase-control pixels to engineer the wavefront of the incident light,enabling both large-scale tweezer generation and direct focusing into micron-scale spots without the need for a microscope.This result shifts the scalability bottleneck for atom arrays from the tweezer generation hardware to the available laser power.Furthermore,the array shows excellent intensity uniformity exceeding 90%,making it suitable for homogeneous single-atom loading and paving the way for trapping arrays of more than 10,000 atoms in the near future.展开更多
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f...Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers.展开更多
Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water re...Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analy...Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.展开更多
Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Si...Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.展开更多
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m...The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.展开更多
Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment o...Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.展开更多
Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been s...Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.展开更多
Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research probl...Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.展开更多
Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(...Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.展开更多
Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable developm...Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable development.This study analyzed the spatiotemporal evolution and landscape pattern change of construction land in the Yangtze River Delta(YRD)region from 1990 to 2018 by integrating Geographical Information System(GIS)spatial analysis and landscape pattern indices,and revealed its driving mechanism by XGBoost and SHapley Additive ex Planations(SHAP).Moreover,we compared the disparities in the core driving factors for construction land evolution in cities with diverse development orientations within the YRD region.Results show that:1)development intensity of construction land continued to increase from 7.54%in 1990 to 13.44%in 2018,primarily by occupying farmland.The landscape fragmentation of construction land in the YRD region decreased,and landscape dominance increased.Spatially,the eastern part of the YRD exhibits a high degree of spatial agglomeration of construction land,whereas the western part shows a high degree of fragmentation,revealing distinct spatial gradient differentiation characteristics.The landscape dominance of the construction land in the eastern region of the YRD is higher than that in the western and northern regions.2)Transportation and infrastructure exert the highest contribution rate on development intensity changes of construction land in the YRD.The industrial structure significantly influences the conversion of farmland to construction land.Additionally,infrastructure plays a crucial role in shaping the spatial agglomeration patterns of construction land.Population distribution is the dominant factor determining the regularity of the landscape shape of construction land.3)The core driving factors for the development intensity of construction land in central cities primarily lies in transportation,whereas for non-central cities,besides transportation,the year-end balance of per capita savings deposits of urban and rural residents also play a significant role.The area change of construction land occupying farmland in central and non-central cities is mainly driven by industrial structure and economic level,respectively.This study informs refined spatial optimization and regional high-quality integrated development.展开更多
Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different educ...Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different education stages is still limited.A new framework was established to evaluate the spatial heterogeneity and its influencing factors across all education stages(kindergarten,primary school,middle school,college)in 1100 schools at the urban scale of Xi’an,China.The research results show that:1)CGS is lower in the Baqiao district and higher in the Yanta and Xincheng districts of Xi’an City.‘Green wealthy schools are mainly concentrated in the Weiyang,Chang’an and Yanta districts.2)CGS of these schools in descending order is college(31.40%)>kindergarten(18.32%)>middle school(13.56%)>primary school(10.70%).3)Colleges have the most recreation sites(n(number)=2),the best education levels(11.93 yr),and the lowest housing prices(1.18×10^(4) yuan(RMB)/m^(2));middle schools have the highest public expenditures(3.97×10^(9) yuan/yr);primary schools have the highest CGS accessibility(travel time gap(TTG)=31.33).4)Multiscale Geographically Weighted Regression model and Spearman’s test prove that recreation sites have a significant positive impact on college green spaces(0.28–0.35),and education level has a significant positive impact on kindergarten green spaces(0.16–0.24).This research framework provides important insights for the assessment of school greening initiatives aimed at fostering healthier learning environments for future generations.展开更多
Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell...Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell transcriptomics(scRNA-seq)and spatial transcriptomics(ST)to highlight the pivotal role of tumor-associated neutrophils(TANs)among tumor-infiltrating immune cells and their therapeutic response to MTC.MNDA+TANs with anti-tumor activity(N1-phenotype)are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion,and these TANs are characterized by enhanced cytotoxicity,ameliorated hypoxia,and upregulated IL1B,activating T&NK cells and fibroblasts via IL1B-IL1R.In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC,fibroblasts accumulated in the tumor front(TF)can recruit N1-TANs via CXCL2-CXCR2 and clear N2-TANs(pro-tumor phenotype)via CXCL12-CXCR4,which results in the aggregation of N1-TANs and extracellular matrix(ECM)deposition.In addition,we construct an N1-TANs marker,MX2,which positively correlates with better prognosis in LSCC patients,and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin(H&E)-stained images so as to conveniently guide decision making in clinical practice.Collectively,our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC.展开更多
Global population growth and rising standards of living are the driving factors for the cropland expansion to meet increasing demands.However,there is no clear assessment of the specific losses on ecosystem services c...Global population growth and rising standards of living are the driving factors for the cropland expansion to meet increasing demands.However,there is no clear assessment of the specific losses on ecosystem services caused by China's expansion of cropland to ensure food security at the cost of losing ecological land such as forests and grasslands.This study employed the ArcGIS platform and integrated valuation of ecosystem services and tradeoffs(InVEST)model to explore the cropland expansion in China from 2000 to 2020 and its impact on ecosystem services,so as to predict the priority areas of future cropland expansion in different scenarios.The results indicated that in the past 20 years,the total area of cropland expansion in China was 17.04 million hm^(2)with 70.79% conversion from forests and grasslands.Cropland expansion has contributed to an overall improvement in the food supply services with the Northern Arid and Semi-Arid Region exhibiting an increase of 18.76×10^(6) tons,while concurrently leading to a decline in habitat quality services.The priority areas for future cropland expansion without ecological loss were found to be 1.42 million hm^(2),which only account for 9.44% of the total reclaimable land.To minimize the loss of ecosystem services,there is a need to adjust the cropland replenishment policies and provide an operational solution for global food security and ecological protection.展开更多
文摘Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.
基金supported by National Key Research and Development Programme‘Frontier Research on Large Scientific Devices’Key Special Project(2024YFA1612000)Sino-German Science Foundation Program(M-0086)Yunnan Science and Technology Leading Talent Program(202105AB160001).
文摘The Chinese Giant Solar Telescope(CGST)low-dispersion spectrograph requires a large field-of-view(FOV)and high spatial resolution,which can be addressed by a carefully designed image slicer system.Our proposed design divides the rectangular 50″×20″FOV at the telescope focal plane into four 50″×5″subfields.Each subfield undergoes optical reconstruction using its independent collimator-camera system(F/36-F/25.79),achieving vertical alignment and focal reduction of subfields to form a pseudo-slit.Using tilt mirrors for scanning allows simultaneous acquisition of spectral data with both a large FOV and a high angular resolution of 0.05″.This resolves manufacturing challenges for an image slicer,avoiding the requirement for hundreds of elements,multi-angle configurations,and compact dimensions,and also provides effective technical support for engineering work on the CGST.
基金supported by the National Natural Science Foundation of China (Grant No.92576208)Tsinghua University Initiative Scientific Research Program+1 种基金Beijing Science and Technology Planning ProjectTsinghua University Dushi Program。
文摘Scalability remains a major challenge in building practical fault-tolerant quantum computers.Currently,the largest number of qubits achieved across leading quantum platforms ranges from hundreds to thousands.In atom arrays,scalability is primarily constrained by the capacity to generate large numbers of optical tweezers,and conventional techniques using acousto-optic deflectors or spatial light modulators struggle to produce arrays much beyond∼10,000 tweezers.Moreover,these methods require additional microscope objectives to focus the light into micrometer-sized spots,which further complicates system integration and scalability.Here,we demonstrate the experimental generation of an optical tweezer array containing 280×280 spots using a metasurface,nearly an order of magnitude more than most existing systems.The metasurface leverages a large number of subwavelength phase-control pixels to engineer the wavefront of the incident light,enabling both large-scale tweezer generation and direct focusing into micron-scale spots without the need for a microscope.This result shifts the scalability bottleneck for atom arrays from the tweezer generation hardware to the available laser power.Furthermore,the array shows excellent intensity uniformity exceeding 90%,making it suitable for homogeneous single-atom loading and paving the way for trapping arrays of more than 10,000 atoms in the near future.
基金National Natural Science Foundation of China,No.42301470,No.52270185,No.42171389Capacity Building Program of Local Colleges and Universities in Shanghai,No.21010503300。
文摘Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers.
基金National Key Research and Development Program of China,No.2023YFC3206605,No.2021YFC3201102National Natural Science Foundation of China,No.41971035。
文摘Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.
基金Under the auspices of National Natural Science Foundation of China(No.42371192)Natural Science Foundation of Hunan Province(No.2023JJ30100)Social Science Foundation of Hunan Province(No.23ZDAJ023,23YBA133)。
文摘Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.
基金supported by the Humanities and Social Sciences Project of the Ministry of Education of the Peoples Republic(No.21YJCZH099)the National Natural Science Foundation of China(Nos.41401089 and 41741014)the Science and Technology Project of Sichuan Province(No.2023NSFSC1979).
文摘Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.
文摘The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.
基金supported by the Ministry of Science and Technology of China(Nos.2021YFC3200904 and 2022YFC3203705)the National Natural Science Foundation of China(Nos.52270012 and 52070184).
文摘Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.
基金National Natural Science Foundation of China(Nos.4210144242394063).
文摘Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.
基金supported by the Key Research and Development Program in Shaanxi Province,China(No.2022ZDLSF07-05)the Fundamental Research Funds for the Central Universities,CHD(No.300102352901)。
文摘Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.
基金supported by the Open Fund of the Laboratory for Earth Surface Processes,Ministry of Education,Peking University,Beijing,China,and the Cultivation Fund Program for Excellent Dissertation in Fujian Normal University,China(No.LWPYS202315)the Research Start-up Fund of Fujian Normal University,China(No.Y0720304X13).
文摘Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.
基金Under the auspices of the National Natural Science Foundation of China(No.42301470,42171389)。
文摘Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable development.This study analyzed the spatiotemporal evolution and landscape pattern change of construction land in the Yangtze River Delta(YRD)region from 1990 to 2018 by integrating Geographical Information System(GIS)spatial analysis and landscape pattern indices,and revealed its driving mechanism by XGBoost and SHapley Additive ex Planations(SHAP).Moreover,we compared the disparities in the core driving factors for construction land evolution in cities with diverse development orientations within the YRD region.Results show that:1)development intensity of construction land continued to increase from 7.54%in 1990 to 13.44%in 2018,primarily by occupying farmland.The landscape fragmentation of construction land in the YRD region decreased,and landscape dominance increased.Spatially,the eastern part of the YRD exhibits a high degree of spatial agglomeration of construction land,whereas the western part shows a high degree of fragmentation,revealing distinct spatial gradient differentiation characteristics.The landscape dominance of the construction land in the eastern region of the YRD is higher than that in the western and northern regions.2)Transportation and infrastructure exert the highest contribution rate on development intensity changes of construction land in the YRD.The industrial structure significantly influences the conversion of farmland to construction land.Additionally,infrastructure plays a crucial role in shaping the spatial agglomeration patterns of construction land.Population distribution is the dominant factor determining the regularity of the landscape shape of construction land.3)The core driving factors for the development intensity of construction land in central cities primarily lies in transportation,whereas for non-central cities,besides transportation,the year-end balance of per capita savings deposits of urban and rural residents also play a significant role.The area change of construction land occupying farmland in central and non-central cities is mainly driven by industrial structure and economic level,respectively.This study informs refined spatial optimization and regional high-quality integrated development.
基金Under the auspices of Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-196)。
文摘Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different education stages is still limited.A new framework was established to evaluate the spatial heterogeneity and its influencing factors across all education stages(kindergarten,primary school,middle school,college)in 1100 schools at the urban scale of Xi’an,China.The research results show that:1)CGS is lower in the Baqiao district and higher in the Yanta and Xincheng districts of Xi’an City.‘Green wealthy schools are mainly concentrated in the Weiyang,Chang’an and Yanta districts.2)CGS of these schools in descending order is college(31.40%)>kindergarten(18.32%)>middle school(13.56%)>primary school(10.70%).3)Colleges have the most recreation sites(n(number)=2),the best education levels(11.93 yr),and the lowest housing prices(1.18×10^(4) yuan(RMB)/m^(2));middle schools have the highest public expenditures(3.97×10^(9) yuan/yr);primary schools have the highest CGS accessibility(travel time gap(TTG)=31.33).4)Multiscale Geographically Weighted Regression model and Spearman’s test prove that recreation sites have a significant positive impact on college green spaces(0.28–0.35),and education level has a significant positive impact on kindergarten green spaces(0.16–0.24).This research framework provides important insights for the assessment of school greening initiatives aimed at fostering healthier learning environments for future generations.
基金supported by National Natural Science Foundation of China grants(Nos.82173326 and 82473058)Key Research and Development Project of Sichuan Province(Nos.2024YFFK0374 and 2024YFFK0198)Interdisciplinary Innovation Project of West China College of Stomatology,Sichuan University(RD-03-202004).
文摘Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell transcriptomics(scRNA-seq)and spatial transcriptomics(ST)to highlight the pivotal role of tumor-associated neutrophils(TANs)among tumor-infiltrating immune cells and their therapeutic response to MTC.MNDA+TANs with anti-tumor activity(N1-phenotype)are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion,and these TANs are characterized by enhanced cytotoxicity,ameliorated hypoxia,and upregulated IL1B,activating T&NK cells and fibroblasts via IL1B-IL1R.In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC,fibroblasts accumulated in the tumor front(TF)can recruit N1-TANs via CXCL2-CXCR2 and clear N2-TANs(pro-tumor phenotype)via CXCL12-CXCR4,which results in the aggregation of N1-TANs and extracellular matrix(ECM)deposition.In addition,we construct an N1-TANs marker,MX2,which positively correlates with better prognosis in LSCC patients,and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin(H&E)-stained images so as to conveniently guide decision making in clinical practice.Collectively,our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC.
基金supported by the National Natural Science Foundation of China(Grant No.52374170)the Major Special Projects of the Third Comprehensive Scientific Exploration in Xinjiang(Grant No.2022xjkk1005)the Fundamental Research Funds for the Central Universities(Grant No.B230207001)。
文摘Global population growth and rising standards of living are the driving factors for the cropland expansion to meet increasing demands.However,there is no clear assessment of the specific losses on ecosystem services caused by China's expansion of cropland to ensure food security at the cost of losing ecological land such as forests and grasslands.This study employed the ArcGIS platform and integrated valuation of ecosystem services and tradeoffs(InVEST)model to explore the cropland expansion in China from 2000 to 2020 and its impact on ecosystem services,so as to predict the priority areas of future cropland expansion in different scenarios.The results indicated that in the past 20 years,the total area of cropland expansion in China was 17.04 million hm^(2)with 70.79% conversion from forests and grasslands.Cropland expansion has contributed to an overall improvement in the food supply services with the Northern Arid and Semi-Arid Region exhibiting an increase of 18.76×10^(6) tons,while concurrently leading to a decline in habitat quality services.The priority areas for future cropland expansion without ecological loss were found to be 1.42 million hm^(2),which only account for 9.44% of the total reclaimable land.To minimize the loss of ecosystem services,there is a need to adjust the cropland replenishment policies and provide an operational solution for global food security and ecological protection.