As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr...The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August.展开更多
In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed p...In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.展开更多
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaboratio...Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods.展开更多
In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social developmen...In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social development.Consequently,many domestic universities have introduced majors or courses related to big data.Among these,the Big Data Management and Applications major stands out for its interdisciplinary approach and emphasis on practical skills.However,as an emerging field,it has not yet accumulated a robust foundation in teaching theory and practice.Current instructional practices face issues such as unclear training objectives,inconsistent teaching methods and course content,insufficient integration of practical components,and a shortage of qualified faculty-factors that hinder both the development of the major and the overall quality of education.Taking the statistics course within the Big Data Management and Applications major as an example,this paper examines the challenges faced by statistics education in the context of emerging productive forces and proposes corresponding improvement measures.By introducing innovative teaching concepts and strategies,the teaching system for professional courses is optimized,and authentic classroom scenarios are recreated through illustrative examples.Questionnaire surveys and statistical analyses of data collected before and after the teaching reforms indicate that the curriculum changes effectively enhance instructional outcomes,promote the development of the major,and improve the quality of talent cultivation.展开更多
With the implementation of General Senior High School Mathematics Curriculum Standards(2017 Edition,Revised in 2020),probability and statistics,as important carriers of the core mathematical competencies“mathematical...With the implementation of General Senior High School Mathematics Curriculum Standards(2017 Edition,Revised in 2020),probability and statistics,as important carriers of the core mathematical competencies“mathematical modeling”and“data analysis,”have increasingly highlighted their educational value.By summarizing the historical evolution of probability and statistics thinking and combining with teaching practice cases,this study explores its unique role in cultivating students’core mathematical competencies.The research proposes a project-based teaching strategy relying on real scenarios and empowered by technology.Through cases,it demonstrates how to use modern educational technology to realize the whole-process exploration of data collection,model construction,and conclusion verification,so as to promote the transformation of middle school probability and statistics teaching from knowledge imparting to competency development,and provide a practical reference for curriculum reform.展开更多
This paper focuses on the ideological and political construction of the course“Probability Theory and Mathematical Statistics.”Aiming at the current situation in teaching where emphasis is placed on knowledge impart...This paper focuses on the ideological and political construction of the course“Probability Theory and Mathematical Statistics.”Aiming at the current situation in teaching where emphasis is placed on knowledge imparting while value guidance is neglected,and combined with the requirements of ideological and political education policies in the new era,this paper explores the integration path between professional courses and ideological and political education.Through literature analysis,case comparison,and empirical research,the study proposes a systematic implementation plan covering the design of teaching objectives,the reconstruction of teaching content,and the optimization of the evaluation system.The purpose is to cultivate students’sense of social responsibility and innovative awareness by excavating the ideological and political elements in mathematics.The research results provide practical reference for colleges and universities to deepen the reform of ideological and political education in courses,and promote the implementation of the fundamental task of fostering virtue through education in STEM education.展开更多
Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert stepp...Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert steppe.The spatial and temporal variation characteristics of climate-productivity were analyzed by using the methods of the tendency rate of the climate trend,accumulative anomaly,and spatial difference and so on.The results showed that the climate-productivity kept linear increased trend over Inner Mongolia desert steppe in recent 47 years,but not significant.In spatial distribution,the climate-productivity reduced with the increased latitude.The climate-productivity in southwest part of Inner Mongolia desert steppe was growing while that in the southeast was reducing.The variation rate of the climate-productivity increased from the northwest part to the southeast part of Inner Mongolia desert steppe.In recent 47 years,the climate-productivity in southeast Jurh underwent the greatest decreasing extent,and the region was the sensitive area of the climate-productivity variation.展开更多
Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and ideal...Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.展开更多
[Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in...[Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in forest area of each province in fire season were obtained based on meterological data,forest distribution data,seasonal and monthly data of forest fire in China.Secondly,the relationship among forest fire area,precipitation and temperature was discussed through temporal and correlation analysis.[Result] The changes of precipitation and temperature with time could reflect the annual variation of fire area well.Forest fire area went up with the decrease of precipitation and increase of temprature,and visa versa.Meanwhile,there existed diffirences in the relationship in various regions over time.Correlation analyses revealed that there was positive correlation between forest fire area and temperature,especailly Northwest China (R=0.367,P〈0.01),Southwest China (R=0.327,P〈0.05),South China (R=0.33,P〈0.05),East China (R=0.516,P〈0.01) and Xinjiang (R=0.447,P〈0.05) with obviously positive correlation.At the same time,the correlation between forest fire area and precipitation was significantly positive in Northwest China (R=0.482,P〈0.01),while it was significantly negaive in South China (R=-0.323,P=0.03),but there was no significant correlation in other regions.[Conclusion] Relationships between forest fire and meteorological elements (precipitation and temprature) revealed in the study would be useful for fire provention and early warning in China.展开更多
Ocean waves are the core environmental elements affecting the movements and structure design of ships. Statistical analysis of wave parameters is the basis for the establishment of long-term ship environmental adaptab...Ocean waves are the core environmental elements affecting the movements and structure design of ships. Statistical analysis of wave parameters is the basis for the establishment of long-term ship environmental adaptability prediction model. The observations from coastal stations, buoys, altimeters and volunteer ships that cover from 1993 to 2011 were interpolated into miller Ion-lat grids by using bilinear method and the analytical fields of ocean waves were given. By using optimal interpolation, the analysis wave fields were assimilated into the WAVEWATCH III (WW3) simulation results. From the assimilated results, the wave rose statistics, the wave height of muitiyear return period and the extreme 2-D wave spectrum are related to the ship seakeeping were calculated. Finally, the wave statistics in China offshore were analyzed in detail.展开更多
[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [...[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc.展开更多
In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, pro...In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, providing a set of technological process to identify the sewage monitoring data, which is convenient and simple.展开更多
With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save inst...With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save instructors' effort as well.And it is estimated that Monte Carlo Simulation technology will be one of the major teaching methods for Probability and Mathematical Statistics course in the future.展开更多
The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evalua...The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evaluate the cultivated land quality of 2002 and 2012 in Henan Province, and to research the change laws. Method of correlation coefficient was employed to select the driving forces affecting cultivated land quality evolution. The results indicated that the cultivated land quality in Henan Province increased slightly in the last ten years in general, and in spatial there were unchanged regions, increased regions and decreased regions. The cultivated land quality in spatial presented the trend of good becoming better, bad becoming worse, which should be highly valued in cultivated land quality protection and management. Land development and consolidation projects had significant contributions to increasing the cultivated land quality. Driving forces between the sudden change regions and gradual change regions were significantly different. The paper concluded that the research on the spatial-temporal evolution and driving force of cultivated land quality based on cultivated land quality evolution had important academic significance and practical value.展开更多
The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sust...The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sustainable development of society and environment in the Heihe River Basin.Soil temperature(ST) is a critical soil variable that could affect a series of physical,chemical and biological soil processes,which is the guarantee of water conservation and vegetation growth in this region.To measure the temporal variation and spatial pattern of ST fluctuation in the Babao River Basin,fluctuation of ST at various depths were analyzed with ST data at depths of 4,10 and 20 cm using classical statistical methods and permutation entropy.The study results show the following: 1) There are variations of ST at different depths,although ST followed an obvious seasonal law.ST at shallower depths is higher than at deeper depths in summer,and vice versa in winter.The difference of ST between different depths is close to zero when ST is near 5℃ in March or –5℃ in September.2) In spring,ST at the shallower depths becomes higher than at deeper depths as soon as ST is above –5℃;this is reversed in autumn when ST is below 5℃.ST at a soil depth of 4 cm is the first to change,followed by ST at 10 and 20 cm,and the time that ST reaches the same level is delayed for 10–15 days.In chilling and warming seasons,September and February are,respectively,the months when ST at various depths are similar.3) The average PE values of ST for 17 sites at 4 cm are 0.765 in spring > 0.764 in summer > 0.735 in autumn > 0.723 in winter,which implies the complicated degree of fluctuations of ST.4) For the variation of ST at different depths,it appears that Max,Ranges,Average and the Standard Deviation of ST decrease by depth increments in soil.Surface soil is more complicated because ST fluctuation at shallower depths is more pronounced and random.The average PE value of ST for 17sites are 0.863 at a depth of 4 cm > 0.818 at 10 cm > 0.744 at 20 cm.5) For the variation of ST at different elevations,it appears that Max,Ranges,Average,Standard Deviation and ST fluctuation decrease with increasing elevation at the same soil depth.And with the increase of elevation,the decrease rates of Max,Range,Average,Standard Deviation at 4 cm are –0.89℃/100 m,–0.94℃/100 m,–0.43℃/100 m,and –0.25℃/100 m,respectively.In addition,this correlation decreased with the increase of soil depth.6) Significant correlation between PE values of ST at depths of 4,10 and 20 cm can easily be found.This finding implies that temperature can easily be transmitted within soil at depths between 4 and 20 cm.7) For the variation of ST on shady slope and sunny slope sides,it appears that the PE values of ST at 4,10 and 20 cm for 8 sites located on shady slope side are 0.868,0.824 and 0.776,respectively,whereas they are 0.858,0.810 and 0.716 for 9 sites located on sunny slope side.展开更多
Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal pa...Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal patterns and impact factors that influence water retention in China is important to enhance the management of water resources in China and other similar countries. We employed a revised Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model and regression analyses to investigate the water retention service in China. The results showed that the southeastern China generally performed much better than Northwest China in terms of the spatial distribution of water retention. In general, the efficacy of the water retention service in China increased from 2000 to 2014; although some areas still had a downward trend. Water retention service increased significantly(P < 0.05) in aggregate in the Qinghai-Tibet Plateau, and the Da Hinggan Mountains and Xiao Hinggan Mountains. However, the service in southwestern China showed a decreasing trend(P < 0.05), which would have significant negative impact on the downstream population. This study also showed that in China the changes in water retention service were primarily due to climate change(which could explain 83.49% of the total variance), with anthropogenic impact as a secondary influence(likewise the ecological programs and socioeconomic development could explain 9.47% and 1.06%, respectively). Moreover, the identification of water retention importance indicated that important areas conservation and selection based on downstream beneficiaries is vital for optimization protection of ecosystem services, and has practical significance for natural resources and ecosystem management.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
基金Youth Fund of National Natural Science Foundation of China (42101353)the Ministry of Housing and Urban-Rural Development Science Plan Project (2022-R-063)Liaoning Social Science Planning Fund Project (L21BGL046)。
文摘The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August.
基金supported by the National Office for Philosophy and Social Sciences(grant reference 22&ZD067).
文摘In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.
基金supported by the Beijing Natural Science Foundation(Certificate Number:L234025).
文摘Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods.
文摘In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social development.Consequently,many domestic universities have introduced majors or courses related to big data.Among these,the Big Data Management and Applications major stands out for its interdisciplinary approach and emphasis on practical skills.However,as an emerging field,it has not yet accumulated a robust foundation in teaching theory and practice.Current instructional practices face issues such as unclear training objectives,inconsistent teaching methods and course content,insufficient integration of practical components,and a shortage of qualified faculty-factors that hinder both the development of the major and the overall quality of education.Taking the statistics course within the Big Data Management and Applications major as an example,this paper examines the challenges faced by statistics education in the context of emerging productive forces and proposes corresponding improvement measures.By introducing innovative teaching concepts and strategies,the teaching system for professional courses is optimized,and authentic classroom scenarios are recreated through illustrative examples.Questionnaire surveys and statistical analyses of data collected before and after the teaching reforms indicate that the curriculum changes effectively enhance instructional outcomes,promote the development of the major,and improve the quality of talent cultivation.
基金2021 Annual Research Project of Yili Normal University(2021YSBS012)。
文摘With the implementation of General Senior High School Mathematics Curriculum Standards(2017 Edition,Revised in 2020),probability and statistics,as important carriers of the core mathematical competencies“mathematical modeling”and“data analysis,”have increasingly highlighted their educational value.By summarizing the historical evolution of probability and statistics thinking and combining with teaching practice cases,this study explores its unique role in cultivating students’core mathematical competencies.The research proposes a project-based teaching strategy relying on real scenarios and empowered by technology.Through cases,it demonstrates how to use modern educational technology to realize the whole-process exploration of data collection,model construction,and conclusion verification,so as to promote the transformation of middle school probability and statistics teaching from knowledge imparting to competency development,and provide a practical reference for curriculum reform.
基金Shaanxi Provincial 14th Five-Year Plan for Educational Science Research(SGH24Q481)。
文摘This paper focuses on the ideological and political construction of the course“Probability Theory and Mathematical Statistics.”Aiming at the current situation in teaching where emphasis is placed on knowledge imparting while value guidance is neglected,and combined with the requirements of ideological and political education policies in the new era,this paper explores the integration path between professional courses and ideological and political education.Through literature analysis,case comparison,and empirical research,the study proposes a systematic implementation plan covering the design of teaching objectives,the reconstruction of teaching content,and the optimization of the evaluation system.The purpose is to cultivate students’sense of social responsibility and innovative awareness by excavating the ideological and political elements in mathematics.The research results provide practical reference for colleges and universities to deepen the reform of ideological and political education in courses,and promote the implementation of the fundamental task of fostering virtue through education in STEM education.
基金Supported by The Inner Mongolia Natural Science Foundation (2009ms0603)Inner Mongolia Scientific Innovation Program (nmqxkjcx200706)Special Fund for Scientific Research in Central Public Welfare Institution Fundamental(Grassland Research Institute of Chinese Academy of Agricultural Science)
文摘Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert steppe.The spatial and temporal variation characteristics of climate-productivity were analyzed by using the methods of the tendency rate of the climate trend,accumulative anomaly,and spatial difference and so on.The results showed that the climate-productivity kept linear increased trend over Inner Mongolia desert steppe in recent 47 years,but not significant.In spatial distribution,the climate-productivity reduced with the increased latitude.The climate-productivity in southwest part of Inner Mongolia desert steppe was growing while that in the southeast was reducing.The variation rate of the climate-productivity increased from the northwest part to the southeast part of Inner Mongolia desert steppe.In recent 47 years,the climate-productivity in southeast Jurh underwent the greatest decreasing extent,and the region was the sensitive area of the climate-productivity variation.
基金supported by the National Science and Technology Major Project(No.2011 ZX05007-006)the 973 Program of China(No.2013CB228604)the Major Project of Petrochina(No.2014B-0610)
文摘Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.
基金Supported by National Natural Science Foundation of China(40801216/D011002)~~
文摘[Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in forest area of each province in fire season were obtained based on meterological data,forest distribution data,seasonal and monthly data of forest fire in China.Secondly,the relationship among forest fire area,precipitation and temperature was discussed through temporal and correlation analysis.[Result] The changes of precipitation and temperature with time could reflect the annual variation of fire area well.Forest fire area went up with the decrease of precipitation and increase of temprature,and visa versa.Meanwhile,there existed diffirences in the relationship in various regions over time.Correlation analyses revealed that there was positive correlation between forest fire area and temperature,especailly Northwest China (R=0.367,P〈0.01),Southwest China (R=0.327,P〈0.05),South China (R=0.33,P〈0.05),East China (R=0.516,P〈0.01) and Xinjiang (R=0.447,P〈0.05) with obviously positive correlation.At the same time,the correlation between forest fire area and precipitation was significantly positive in Northwest China (R=0.482,P〈0.01),while it was significantly negaive in South China (R=-0.323,P=0.03),but there was no significant correlation in other regions.[Conclusion] Relationships between forest fire and meteorological elements (precipitation and temprature) revealed in the study would be useful for fire provention and early warning in China.
基金supports from National Natural Science Foundation of China (No. 41406032 and No. 41376014)Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics (No. SOED1305)
文摘Ocean waves are the core environmental elements affecting the movements and structure design of ships. Statistical analysis of wave parameters is the basis for the establishment of long-term ship environmental adaptability prediction model. The observations from coastal stations, buoys, altimeters and volunteer ships that cover from 1993 to 2011 were interpolated into miller Ion-lat grids by using bilinear method and the analytical fields of ocean waves were given. By using optimal interpolation, the analysis wave fields were assimilated into the WAVEWATCH III (WW3) simulation results. From the assimilated results, the wave rose statistics, the wave height of muitiyear return period and the extreme 2-D wave spectrum are related to the ship seakeeping were calculated. Finally, the wave statistics in China offshore were analyzed in detail.
文摘[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc.
文摘In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, providing a set of technological process to identify the sewage monitoring data, which is convenient and simple.
文摘With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save instructors' effort as well.And it is estimated that Monte Carlo Simulation technology will be one of the major teaching methods for Probability and Mathematical Statistics course in the future.
文摘The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evaluate the cultivated land quality of 2002 and 2012 in Henan Province, and to research the change laws. Method of correlation coefficient was employed to select the driving forces affecting cultivated land quality evolution. The results indicated that the cultivated land quality in Henan Province increased slightly in the last ten years in general, and in spatial there were unchanged regions, increased regions and decreased regions. The cultivated land quality in spatial presented the trend of good becoming better, bad becoming worse, which should be highly valued in cultivated land quality protection and management. Land development and consolidation projects had significant contributions to increasing the cultivated land quality. Driving forces between the sudden change regions and gradual change regions were significantly different. The paper concluded that the research on the spatial-temporal evolution and driving force of cultivated land quality based on cultivated land quality evolution had important academic significance and practical value.
基金National Key R&D Program of China,No.2017YFB0504102National Natural Science Foundation of China,No.41771537
文摘The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sustainable development of society and environment in the Heihe River Basin.Soil temperature(ST) is a critical soil variable that could affect a series of physical,chemical and biological soil processes,which is the guarantee of water conservation and vegetation growth in this region.To measure the temporal variation and spatial pattern of ST fluctuation in the Babao River Basin,fluctuation of ST at various depths were analyzed with ST data at depths of 4,10 and 20 cm using classical statistical methods and permutation entropy.The study results show the following: 1) There are variations of ST at different depths,although ST followed an obvious seasonal law.ST at shallower depths is higher than at deeper depths in summer,and vice versa in winter.The difference of ST between different depths is close to zero when ST is near 5℃ in March or –5℃ in September.2) In spring,ST at the shallower depths becomes higher than at deeper depths as soon as ST is above –5℃;this is reversed in autumn when ST is below 5℃.ST at a soil depth of 4 cm is the first to change,followed by ST at 10 and 20 cm,and the time that ST reaches the same level is delayed for 10–15 days.In chilling and warming seasons,September and February are,respectively,the months when ST at various depths are similar.3) The average PE values of ST for 17 sites at 4 cm are 0.765 in spring > 0.764 in summer > 0.735 in autumn > 0.723 in winter,which implies the complicated degree of fluctuations of ST.4) For the variation of ST at different depths,it appears that Max,Ranges,Average and the Standard Deviation of ST decrease by depth increments in soil.Surface soil is more complicated because ST fluctuation at shallower depths is more pronounced and random.The average PE value of ST for 17sites are 0.863 at a depth of 4 cm > 0.818 at 10 cm > 0.744 at 20 cm.5) For the variation of ST at different elevations,it appears that Max,Ranges,Average,Standard Deviation and ST fluctuation decrease with increasing elevation at the same soil depth.And with the increase of elevation,the decrease rates of Max,Range,Average,Standard Deviation at 4 cm are –0.89℃/100 m,–0.94℃/100 m,–0.43℃/100 m,and –0.25℃/100 m,respectively.In addition,this correlation decreased with the increase of soil depth.6) Significant correlation between PE values of ST at depths of 4,10 and 20 cm can easily be found.This finding implies that temperature can easily be transmitted within soil at depths between 4 and 20 cm.7) For the variation of ST on shady slope and sunny slope sides,it appears that the PE values of ST at 4,10 and 20 cm for 8 sites located on shady slope side are 0.868,0.824 and 0.776,respectively,whereas they are 0.858,0.810 and 0.716 for 9 sites located on sunny slope side.
基金National Key Technology Research and Development Program of China(No.2011BAC09B08)Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010(No.STSN-04-01)
文摘Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal patterns and impact factors that influence water retention in China is important to enhance the management of water resources in China and other similar countries. We employed a revised Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model and regression analyses to investigate the water retention service in China. The results showed that the southeastern China generally performed much better than Northwest China in terms of the spatial distribution of water retention. In general, the efficacy of the water retention service in China increased from 2000 to 2014; although some areas still had a downward trend. Water retention service increased significantly(P < 0.05) in aggregate in the Qinghai-Tibet Plateau, and the Da Hinggan Mountains and Xiao Hinggan Mountains. However, the service in southwestern China showed a decreasing trend(P < 0.05), which would have significant negative impact on the downstream population. This study also showed that in China the changes in water retention service were primarily due to climate change(which could explain 83.49% of the total variance), with anthropogenic impact as a secondary influence(likewise the ecological programs and socioeconomic development could explain 9.47% and 1.06%, respectively). Moreover, the identification of water retention importance indicated that important areas conservation and selection based on downstream beneficiaries is vital for optimization protection of ecosystem services, and has practical significance for natural resources and ecosystem management.