Compared to 3D object detection using a single camera,multiple cameras can overcome some limitations on field-of-view,occlusion,and low detection confidence.This study employs multiple surveillance cameras and develop...Compared to 3D object detection using a single camera,multiple cameras can overcome some limitations on field-of-view,occlusion,and low detection confidence.This study employs multiple surveillance cameras and develops a cooperative 3D object detection and tracking framework by incorporating temporal and spatial information.The framework consists of a 3D vehicle detection model,cooperatively spatial-temporal relation scheme,and heuristic camera constellation method.Specifically,the proposed cross-camera association scheme combines the geometric relationship between multiple cameras and objects in corresponding detections.The spatial-temporal method is designed to associate vehicles between different points of view at a single timestamp and fulfill vehicle tracking in the time aspect.The proposed framework is evaluated based on a synthetic cooperative dataset and shows high reliability,where the cooperative perception can recall more than 66%of the trajectory instead of 11%for single-point sensing.This could contribute to full-range surveillance for intelligent transportation systems.展开更多
A tracking method based on adaptive multiple cue fusion mechanism was presented,where particle filter is used to integrate color and edge cues.The fusion mechanism assigns different weights to two cues according to th...A tracking method based on adaptive multiple cue fusion mechanism was presented,where particle filter is used to integrate color and edge cues.The fusion mechanism assigns different weights to two cues according to their importance,thus improving the robustness and reliability of the tracking algorithm.Moreover,a multi-part color model is also invoked to deal with the confliction among similar objects.The experimental results on two real image sequences show the tracking algorithm with adaptive fusion mechanism performs well in the presence of complex scenarios such as head rotation,scale change and multiple person occlusions.展开更多
基金the National Natural Science Foundation of China(No.61873167)the Automotive Industry Science and Technology Development Foundation of Shanghai(No.1904)。
文摘Compared to 3D object detection using a single camera,multiple cameras can overcome some limitations on field-of-view,occlusion,and low detection confidence.This study employs multiple surveillance cameras and develops a cooperative 3D object detection and tracking framework by incorporating temporal and spatial information.The framework consists of a 3D vehicle detection model,cooperatively spatial-temporal relation scheme,and heuristic camera constellation method.Specifically,the proposed cross-camera association scheme combines the geometric relationship between multiple cameras and objects in corresponding detections.The spatial-temporal method is designed to associate vehicles between different points of view at a single timestamp and fulfill vehicle tracking in the time aspect.The proposed framework is evaluated based on a synthetic cooperative dataset and shows high reliability,where the cooperative perception can recall more than 66%of the trajectory instead of 11%for single-point sensing.This could contribute to full-range surveillance for intelligent transportation systems.
文摘A tracking method based on adaptive multiple cue fusion mechanism was presented,where particle filter is used to integrate color and edge cues.The fusion mechanism assigns different weights to two cues according to their importance,thus improving the robustness and reliability of the tracking algorithm.Moreover,a multi-part color model is also invoked to deal with the confliction among similar objects.The experimental results on two real image sequences show the tracking algorithm with adaptive fusion mechanism performs well in the presence of complex scenarios such as head rotation,scale change and multiple person occlusions.