期刊文献+
共找到4,833篇文章
< 1 2 242 >
每页显示 20 50 100
Motion In-Betweening via Frequency-Domain Diffusion Model
1
作者 Qiang Zhang Shuo Feng +2 位作者 Shanxiong Chen Teng Wan Ying Qi 《Computers, Materials & Continua》 2026年第1期275-296,共22页
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame... Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction. 展开更多
关键词 motion generation diffusion model frequency domain human motion synthesis self-attention network 3D motion interpolation
在线阅读 下载PDF
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
2
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 Graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
Real-time teleoperation of magnetic force-driven microrobots with a motion model and stable haptic force feedback for micromanipulation
3
作者 Yasin Cagatay Duygu Baijun Xie +2 位作者 Xiao Zhang Min Jun Kim Chung Hyuk Park 《Nanotechnology and Precision Engineering》 2025年第2期63-76,共14页
Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot application... Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology. 展开更多
关键词 MICROROBOT Magnetic control Haptic force-feedback Microrobot motion model Telemanipulation
在线阅读 下载PDF
Modelling and experimental investigation of micro-dimpled structures milling with spiral trajectory tool reciprocating motion
4
作者 Guangzhou WANG Linjie ZHAO +3 位作者 Qi LIU Xiguang LI Yazhou SUN Mingjun CHEN 《Chinese Journal of Aeronautics》 2025年第2期577-596,共20页
To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’... To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’along the spiral trajectory,was proposed.From the kinematics analysis,it is found that the machining quality of micro-dimpled structures is highly dependent on the machining trajectory using spiral trajectory tool reciprocating motion.To reveal this causation,simulation modelling and experimental studies were carried out.A simulation model was developed to quantitatively and qualitatively investigate the influence of the trajectory discretization strategies(constant-angle and constant-arc length)and parameters(discrete angle,discrete arc length,and pitch)on surface texture and residual height of micro-dimpled structures.Subsequently,micro-dimpled structures were milled under different trajectory discretization strategies and parameters with spiral trajectory tool reciprocating motion.A comprehensive comparison between the milled results and simulation analysis was made based on geometry accuracy,surface morphology and surface roughness of milled dimples.Meanwhile,the errors and factors affecting the above three aspects were analyzed.The results demonstrate both the feasibility of the established simulation model and the machining capability of this machining way in milling high-quality micro-dimpled structures.Spiral trajectory tool reciprocating motion provides a new machining way for milling micro-dimpled structures and micro-dimpled functional surfaces.And an appropriate machining trajectory can be generated based on the optimized trajectory parameters,thus contributing to the improvement of machining quality and efficiency. 展开更多
关键词 Tool reciprocating motion Spiral trajectory Micro-dimpled structure MICROMACHINING Simulation modelling with diamond tool Surface texture
原文传递
Multi-parameter modeling and analysis of ground motion amplification in the Quaternary sedimentary basin of the Beijing-Tianjin-Hebei region
5
作者 Hong Zhou 《Earthquake Science》 2025年第2期136-151,共16页
Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and severa... Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and several unique phenomena,such as the basin edge effect,basin focusing effect,and basin-induced secondary waves,have been observed.Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction.Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth.Unfortunately,basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions,implying the severe shortcomings of single-parameter basin effect modeling.Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region.The seismic media inside and outside of this basin have significantly different physical properties,and the basin bottom forms an interface with strong seismic reflections.In this study,we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method,obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin.The back-propagation(BP)neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios,with the seismic source location,physical property ratio of the media inside and outside the basin,seismic wave frequency,and basin shape as the input parameters.We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results,and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin. 展开更多
关键词 three-dimensional basin effect ground motion modeling BP neural network algorithm spectral element method
在线阅读 下载PDF
A Spatial-Temporal Attention Model for Human Trajectory Prediction 被引量:6
6
作者 Xiaodong Zhao Yaran Chen +1 位作者 Jin Guo Dongbin Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期965-974,共10页
Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surround... Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets. 展开更多
关键词 Attention mechanism long-short term memory(LSTM) spatial-temporal model trajectory prediction
在线阅读 下载PDF
A Unified Motion Generation Approach for Quadruped L-S Walk and Trot Gaits Based on Linear Model Predictive Control
7
作者 Yapeng Shi Zhicheng He +2 位作者 Xiaokun Leng Songhao Piao Lining Sun 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1707-1719,共13页
The goal of this paper is to develop a unified online motion generation scheme for quadruped lateral-sequence walk and trot gaits based on a linear model predictive control formulation.Specifically,the dynamics of the... The goal of this paper is to develop a unified online motion generation scheme for quadruped lateral-sequence walk and trot gaits based on a linear model predictive control formulation.Specifically,the dynamics of the linear pendulum model is formulated over a predictive horizon by dimensional analysis.Through gait pattern conversion,the lateral-sequence walk and trot gaits of the quadruped can be regarded as unified biped gaits,allowing the dynamics of the linear inverted pendulum model to serve quadruped motion generation.In addition,a simple linearization of the center of pressure constraints for these quadruped gaits is developed for linear model predictive control problem.Furthermore,the motion generation problem can be solved online by quadratic programming with foothold adaptation.It is demonstrated that the proposed unified scheme can generate stable locomotion online for quadruped lateral-sequence walk and trot gaits,both in simulation and on hardware.The results show significant performance improvements compared to previous work.Moreover,the results also suggest the linearly simplified scheme has the ability to robustness against unexpected disturbances. 展开更多
关键词 motion generation Gait pattern conversion model predictive control Quadruped locomotion
在线阅读 下载PDF
Online interactive identification method based on ESO disturbance estimation for motion model of double propeller propulsion unmanned surface vehicle
8
作者 Yong Xiong Xianfei Wang Siwen Zhou 《Control Theory and Technology》 EI CSCD 2024年第2期292-314,共23页
In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of... In this paper, the online parameter identification problem of the mathematical model of an unmanned surface vehicle (USV) considering the characteristics of the actuator is studied. A data-driven mathematical model of motion is very meaningful to realize trajectory prediction and adaptive motion control of the USV. An interactive identification algorithm (ESO–MILS, extended state observer–multi-innovation least squares) based on ESO is proposed. The robustness of online identification is improved by expanding the state observer to estimate the current disturbance without making artificial assumptions. Specifically, the three-degree-of-freedom dynamic equation of the double propeller propulsion USV is constructed. A linear model for online identification is derived by parameterization. Based on the least square criterion function, it is proved that the interactive identification method with disturbance estimation can improve the identification accuracy from the perspective of mathematical expectation. The extended state observer is designed to estimate the unknown disturbance in the model. The online interactive update improves the disturbance immunity of the identification algorithm. Finally, the effectiveness of the interactive identification algorithm is verified by simulation experiment and real ship experiment. 展开更多
关键词 Identification of parameters Ship motion model Extended state observer Multinomial innovation least squares Interactive identification
原文传递
Appearance consistency and motion coherence learning for internal video inpainting 被引量:1
9
作者 Ruixin Liu Yuesheng Zhu GuiBo Luo 《CAAI Transactions on Intelligence Technology》 2025年第3期827-841,共15页
Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing int... Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing internal learning-based video inpainting methods would produce inconsistent structures or blurry textures due to the insufficient utilisation of motion priors within the video sequence.In this paper,the authors propose a new internal learning-based video inpainting model called appearance consistency and motion coherence network(ACMC-Net),which can not only learn the recurrence of appearance prior but can also capture motion coherence prior to improve the quality of the inpainting results.In ACMC-Net,a transformer-based appearance network is developed to capture global context information within the video frame for representing appearance consistency accurately.Additionally,a novel motion coherence learning scheme is proposed to learn the motion prior in a video sequence effectively.Finally,the learnt internal appearance consistency and motion coherence are implicitly propagated to the missing regions to achieve inpainting well.Extensive experiments conducted on the DAVIS dataset show that the proposed model obtains the superior performance in terms of quantitative measurements and produces more visually plausible results compared with the state-of-the-art methods. 展开更多
关键词 deep internal learning motion coherence spatial-temporal priors transformer network video inpainting
在线阅读 下载PDF
A novel surrogate model with deep learning for predicting spacial-temporal pressure in coalbed methane reservoirs
10
作者 Yukun Dong Xiaodong Zhang +2 位作者 Jiyuan Zhang Kuankuan Wu Shuaiwei Liu 《Natural Gas Industry B》 2025年第2期219-233,共15页
Coalbed methane(CBM)is a vital unconventional energy resource,and predicting its spatiotemporal pressure dynamics is crucial for efficient development strategies.This paper proposes a novel deep learningebased data-dr... Coalbed methane(CBM)is a vital unconventional energy resource,and predicting its spatiotemporal pressure dynamics is crucial for efficient development strategies.This paper proposes a novel deep learningebased data-driven surrogate model,AxialViT-ConvLSTM,which integrates AxialAttention Vision Transformer,ConvLSTM,and an enhanced loss function to predict pressure dynamics in CBM reservoirs.The results showed that the model achieves a mean square error of 0.003,a learned perceptual image patch similarity of 0.037,a structural similarity of 0.979,and an R^(2) of 0.982 between predictions and actual pressures,indicating excellent performance.The model also demonstrates strong robustness and accuracy in capturing spatialetemporal pressure features. 展开更多
关键词 Coalbed methane spatial-temporal pressure prediction Deep learning Surrogate models AxialAttention Vision Transformer ConvLSTM
在线阅读 下载PDF
Influence of an Adding Damping Device in a Moonpool on the Heave Motion of a Drilling Ship Part I:Experiment
11
作者 WEI Qi GU Jia-yang +3 位作者 LIU Wei-min LYU Hong-guan TAO Yan-wu HU Fang-xin 《China Ocean Engineering》 2025年第2期191-208,共18页
On the basis of the model tests,this paper explores the coupled hydrodynamic performance of the moonpool and the hull.This study aims to compare and analyze the variation in the hull heave response between the piston ... On the basis of the model tests,this paper explores the coupled hydrodynamic performance of the moonpool and the hull.This study aims to compare and analyze the variation in the hull heave response between the piston resonance state of the moonpool under wave excitation and the non-resonance state of the moonpool under wave-current excitation.A novel damping device specifically designed and fabricated for stepped moonpools has been developed.Before and after the installation of the damping device,the free surface response characteristics of the moonpool and heave motion response characteristics of the hull are compared.The findings show a clear correlation between the current speed and heave response characteristics of the hull.During the seakeeping design phase of the drilling vessel,the current speed is an additional critical factor that cannot be disregarded,alongside the moonpool effect.A correlation exists between the fluid dynamics occurring within the moonpool and the heave motion of the vessel hull.A reduction in the amplitude of the motion of the moonpool water results in a decrease in the heave motion of the hull.This study provides a reference for alleviating the seakeeping of a drill ship’s heave response and enhancing the safety and efficiency of the operation. 展开更多
关键词 heave motion damping device moonpool model test wave-current excitation
在线阅读 下载PDF
Design,Kinematic Modeling,and Validation of a Helical-Coiled Multi-Segment Flexible Continuum Robot
12
作者 Kai Liu Zhidong Sun +2 位作者 Duanling Li Chunxu Song Guohua Gao 《Chinese Journal of Mechanical Engineering》 2025年第4期146-166,共21页
The design and analysis of continuum robots have consistently been a prominent research focus in the field of mechanics.However,portable continuum robots with minimal spatial occupancy,which have great potential for a... The design and analysis of continuum robots have consistently been a prominent research focus in the field of mechanics.However,portable continuum robots with minimal spatial occupancy,which have great potential for applications such as search and rescue,are scarcely available.This paper presents a novel helical-coiled multi-segment flexible continuum robot featuring helical deployment and compact design,with an integrated framework for structural design,kinematic modeling,and experimental validation.The design of the helical-coiled multi-segment flexible continuum robot for unstructured environment detection,including a flexible body,an actuation module,a feed module,and a sensing module,is presented systematically.Kinematic models of both single-and multisegment continuum robots were established based on the constant curvature model to analyze the parameter mapping relationship from the end-effector position and orientation to the driving inputs.Furthermore,the feedforward motion of the robot was examined,and an uncoiling strategy based on S-curve compensation was employed to complete the kinematic analysis.Finally,the accuracy of the kinematic model considering the active uncoiling feed motion was validated through experimental analysis,demonstrating the motion characteristics of the continuum robot.Altogether,this study provides a framework for the design and analysis of helical-coiled continuum robots. 展开更多
关键词 DESIGN Flexible mechanism Continuum robot Kinematic model Feed motion strategy
在线阅读 下载PDF
Research on Hierarchical Motion Control of Corner Module Configuration Intelligent Electric Vehicle
13
作者 Yongjun Yan Chenshuo Zhang +5 位作者 Pengyu Xue Hongliang Wang Dawei Pi Wenfu Xue Ye-Hwa Chen Xianhui Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期396-410,共15页
The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks an... The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks and is the best carrier of intelligent vehicles.Nevertheless,too many angle/torque control inputs make control difficult and non-real-time.In this paper,a hierarchical real-time motion control framework for corner module configuration intelligent electric vehicles is proposed.In the trajectory planning module,an improved driving risk field is designed to describe the surrounding environment’s driving risk.Combined with the kinematic vehicle-road model,model predictive control(MPC)method,spline curve method,the local reference trajectory of safety,comfort and smoothness is planned in real time.The optimal steering angle is determined using MPC method in path tracking module.In the motion control module,a feedforward-feedback controller assigns the optimal steering angle to the front/rear axles,and an angle allocation controller distributes the target angles of the front/rear axles to four steered wheels.Finally,the PreScan-Simulink-CarSim joint simulation environment is established for conducting the human-in-the-loop emergency obstacle avoidance experiment.It took only 0.005 s for the hierarchical motion control system to determine its average solution time.This proves the effectiveness of the hierarchical motion control system. 展开更多
关键词 Corner module Four-wheel steering Hierarchical motion control model predictive control Driving risk field
在线阅读 下载PDF
Hilbert−Huang Time-Delay Compensation Control Strategy Based on Gauss-DeepAR for Ship Heave Motion Prediction
14
作者 ZHANG Qin HE Dai-jing +1 位作者 GU Bang-ping HU Xiong 《China Ocean Engineering》 2025年第2期209-224,共16页
The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantl... The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantly affected by the hysteresis phenomenon in the wave compensation system.To address this issue,a ship heave motion prediction is proposed in this paper on the basis of the Gauss-DeepAR(AR stands for autoregressive recurrent)model and the Hilbert−Huang time-delay compensation control strategy.Initially,the zero upward traveling wave period of the level 4−6 sea state ship heave motion is analyzed,which serves as the input sliding window for the Gauss-DeepAR prediction model,and probability predictions at different wave direction angles are conducted.Next,considering the hysteresis characteristics of the ship heave motion compensation platform,the Hilbert−Huang transform is employed to analyze and calculate the hysteresis delay of the compensation platform.After the optimal control action value is subsequently calculated,simulations and hardware platform tests are conducted.The simulation results demonstrated that the Gauss-DeepAR model outperforms autoregressive integrated moving average model(ARIMA),support vector machine(SVM),and longshort-term memory(LSTM)in predicting non-independent identically distributed datasets at a 90°wave direction angle in the level 4−6 sea states.Furthermore,the model has good predictive performance and generalizability for non-independent and non-uniformly distributed datasets at a 180°wave direction angle.The hardware platform compensation test results revealed that the Hilbert–Huang method has an outstanding effect on determining the hysteretic delay and selecting the optimal control action value,and the compensation efficiency was higher than 90%in the level 4−6 sea states. 展开更多
关键词 heave motion Gauss-DeepAR prediction model Hilbert−Huang transform delay compensation control
在线阅读 下载PDF
Nonlocal Thermal–Mechanical Vibration of Spinning Functionally Graded Nanotubes Conveying Fluid Based on the Timoshenko Model
15
作者 Yao Chen Xiao-Dong Yang Feng Liang 《Acta Mechanica Solida Sinica》 2025年第5期776-788,共13页
Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composit... Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composite nanostructures under small scale,rotor,and temperature coupling effects are investigated.The nanotube is composed of functionally graded materials(FGMs),and different volume fraction functions are utilized to control the distribution of material properties.Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling,and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained.By conducting dimensionless analysis,it is found that compared to the Timoshenko nano-beam model,the conventional Euler–Bernoulli(E-B)model holds the same flutter frequency in the supercritical region,while it usually overestimates the higher-order precession frequencies.The nonlocal,thermal,and flowing effects all can lead to buckling or different kinds of coupled flutter in the system.The material distribution of the P-type FGM nanotube can also induce coupled flutter,while that of the S-type FGM nanotube has no impact on the stability of the system.This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices. 展开更多
关键词 Bi-gyroscopic nanotube Thermal–mechanical vibration Functionally graded material Timoshenko model Spinning motion Nonlocal effect
原文传递
Rough Path Renormalization from Stratonovich to It?for Fractional Brownian Motion
16
作者 Zhongmin Qian Xingcheng Xu 《Acta Mathematica Sinica,English Series》 2025年第9期2195-2230,共36页
This paper develops an Ito-type fractional pathwise integration theory for fractional Brownian motion with Hurst parameters H∈(1/3,1/2],using the Lyons'rough path framework.This approach is designed to fill gaps ... This paper develops an Ito-type fractional pathwise integration theory for fractional Brownian motion with Hurst parameters H∈(1/3,1/2],using the Lyons'rough path framework.This approach is designed to fill gaps in conventional stochastic calculus models that fail to account for temporal persistence prevalent in dynamic systems such as those found in economics,finance,and engineering.The pathwise-defined method not only meets the zero expectation criterion but also addresses the challenges of integrating non-semimartingale processes,which traditional Ito calculus cannot handle.We apply this theory to fractional Black–Scholes models and high-dimensional fractional Ornstein–Uhlenbeck processes,illustrating the advantages of this approach.Additionally,the paper discusses the generalization of It?integrals to rough differential equations(RDE)driven by f BM,emphasizing the necessity of integrand-specific adaptations in the It?rough path lift for stochastic modeling. 展开更多
关键词 Rough paths Itôintegration fractional Brownian motions fractional Black-Scholes model fractional Ornstein-Uhlenbeck process RENORMALIZATION
原文传递
CFD-based Determination of Load Cell Capacity for Submarine HPMM Model Tests
17
作者 Aliasghar Moghaddas Hossein nourozi +1 位作者 Morteza Ebrahimi Alireza Naderi 《哈尔滨工程大学学报(英文版)》 2025年第5期1064-1074,共11页
Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and... Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and designing the most suitable laboratory equipment for towing tanks.A computational fluid dynamics(CFD)-based method is implemented to determine the loads acting on the towing facility of the submarine model.A reversed topology is also used to ensure the appropriateness of the load cells in the developed method.In this study,the numerical simulations were evaluated using the experimental results of the SUBOFF benchmark submarine model of the Defence Advanced Research Projects Agency.The maximum and minimum loads acting on the 2.5-meter submarine model were measured by determining the body’s lightest and heaviest maneuvering test scenarios.In addition to having sufficient endurance against high loads,the precision in measuring the light load was also investigated.The horizontal planar motion mechanism(HPMM)facilities in the National Iranian Marine Laboratory were developed by locating the load cells inside the submarine model.The results were presented as a case study.A numerical-based method was developed to obtain the appropriate load measurement facilities.Load cells of HPMM test basins can be selected by following the two-way procedure presented in this study. 展开更多
关键词 Captive model tests Hydrodynamic coefficients SUBMARINE Computational fluid dynamics Horizontal planar motion mechanism Load cell capacity
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
18
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Thermal investigation of water-based radiative magnetized micropolar hybrid nanofluid flow subject to impacts of the Cattaneo–Christov flux model on a variable porous stretching sheet with a machine learning approach
19
作者 Showkat Ahmad Lone Zehba Raizah +3 位作者 Rawan Bossly Fuad SAlduais Afrah Al-Bossly Arshad Khan 《Chinese Physics B》 2025年第6期357-375,共19页
This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The m... This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The motion of the fluid is taken as two-dimensional with the impact of a magnetic field in the normal direction. The variable, permeable, and stretching nature of sheet's surface sets the fluid into motion. Thermal and mass diffusions are controlled through the use of the Cattaneo–Christov flux model. A dataset is generated using MATLAB bvp4c package solver and employed to train an artificial neural network(ANN) based on the Levenberg–Marquardt back-propagation(LMBP) algorithm. It has been observed as an outcome of this study that the modeled problem achieves peak performance at epochs 637, 112, 4848, and 344 using ANN-LMBP. The linear velocity of the fluid weakens with progression in variable porous and magnetic factors.With an augmentation in magnetic factor, the micro-rotational velocity profiles are augmented on the domain 0 ≤ η < 1.5 due to the support of micro-rotations by Lorentz forces close to the sheet's surface, while they are suppressed on the domain 1.5 ≤ η < 6.0 due to opposing micro-rotations away from the sheet's surface. Thermal distributions are augmented with an upsurge in thermophoresis, Brownian motion, magnetic, and radiation factors, while they are suppressed with an upsurge in thermal relaxation parameter. Concentration profiles increase with an expansion in thermophoresis factor and are suppressed with an intensification of Brownian motion factor and solute relaxation factor. The absolute errors(AEs) are evaluated for all the four scenarios that fall within the range 10^(-3)–10^(-8) and are associated with the corresponding ANN configuration that demonstrates a fine degree of accuracy. 展开更多
关键词 MHD fluid hybrid nanofluid Cattaneo–Christov flux model variable porous surface micropolar fluid brownian motion and thermophoresis ANN approach
原文传递
基于Leap Motion传感器的弹琴触键手势自动控制系统设计
20
作者 李婷婷 王靖 +1 位作者 骆亚丽 刘红梅 《自动化与仪器仪表》 2025年第2期223-227,共5页
人工智能技术的发展为传统乐器学习带来了新的助力。为了提升弹琴触键手势的识别率,帮助钢琴弹奏者控制自己的错误手势,研究构建了弹琴触键手势自动控制系统,并设计了该系统的功能模块。研究采用了Leap Motion传感器来采集数据,并设计... 人工智能技术的发展为传统乐器学习带来了新的助力。为了提升弹琴触键手势的识别率,帮助钢琴弹奏者控制自己的错误手势,研究构建了弹琴触键手势自动控制系统,并设计了该系统的功能模块。研究采用了Leap Motion传感器来采集数据,并设计了特征提取模块。研究设计了基于支持向量机和改进K最近邻算法的手势识别模型。结果显示,手势识别模型在训练集和测试集上准确率的最大值分别为98.88%和98.59%,平均识别时间为15.85 ms。研究设计系统的最大和最小吞吐量分别为82 400 bit/s和80 300 bit/s,响应时间最大值和最小值分别为33.51 ms和27.40 ms。研究设计系统和模型的性能良好,能够为弹琴触键手势的识别提供技术上的支持,促进钢琴弹奏者控制自身的错误手势。 展开更多
关键词 Leap motion 钢琴 手势 识别 模型
原文传递
上一页 1 2 242 下一页 到第
使用帮助 返回顶部