期刊文献+
共找到243,388篇文章
< 1 2 250 >
每页显示 20 50 100
Parallel spatial-temporal mode
1
作者 ZHU Ding-ju 《通讯和计算机(中英文版)》 2009年第4期42-46,共5页
关键词 空间时间模型 平行 数据流水线 计算机技术
在线阅读 下载PDF
A Spatial-Temporal Attention Model for Human Trajectory Prediction 被引量:6
2
作者 Xiaodong Zhao Yaran Chen +1 位作者 Jin Guo Dongbin Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期965-974,共10页
Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surround... Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets. 展开更多
关键词 Attention mechanism long-short term memory(LSTM) spatial-temporal model trajectory prediction
在线阅读 下载PDF
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
3
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 Graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
Promising of spatial-temporal model in public health
4
作者 JIA Zhong-wei LI Xiao-wen +1 位作者 WANG Wei CHENG Shi-ming 《Chinese Medical Journal》 SCIE CAS CSCD 2009年第3期349-350,共2页
Investigating the transmission of infectious diseases, predicting the epidemic trend of an infectious disease and evaluating the effects of control measures are the continuing subject of public health participators. I... Investigating the transmission of infectious diseases, predicting the epidemic trend of an infectious disease and evaluating the effects of control measures are the continuing subject of public health participators. In recent years the spatial-temporal model has been proposed as a powerful tool to get this information from large incomplete and insufficiently general monitoring data. 展开更多
关键词 spatial-temporal model public health geographic information systems
原文传递
Spatial-temporal distribution and emission of urban scale air pollutants in Hefei based on Mobile-DOAS 被引量:1
5
作者 Zhidong Zhang Pinhua Xie +8 位作者 Ang Li Min Qin Jin Xu Zhaokun Hu Xin Tian Feng Hu Yinsheng Lv Jiangyi Zheng Youtao Li 《Journal of Environmental Sciences》 2025年第5期238-251,共14页
As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite... As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas. 展开更多
关键词 Mobile-DOAS HCHO NO_(2) SO_(2) spatial-temporal distribution NOx emission
原文传递
STGSA:A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction 被引量:3
6
作者 Zebing Wei Hongxia Zhao +5 位作者 Zhishuai Li Xiaojie Bu Yuanyuan Chen Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期226-238,共13页
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi... The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks. 展开更多
关键词 Deep learning graph neural network(GNN) multistream spatial-temporal feature extraction temporal graph traffic prediction
在线阅读 下载PDF
High-resolution short-term prediction of the COVID-19 epidemic based on spatial-temporal model modified by historical meteorological data 被引量:1
7
作者 Bin Chen Ruming Chen +6 位作者 Lin Zhao Yuxiang Ren Li Zhang Yingjie Zhao Xinbo Lian Wei Yan Shuoyuan Gao 《Fundamental Research》 CAS CSCD 2024年第3期527-539,共13页
In the global challenge of Coronavirus disease 2019(COVID-19)pandemic,accurate prediction of daily new cases is crucial for epidemic prevention and socioeconomic planning.In contrast to traditional local,one-dimension... In the global challenge of Coronavirus disease 2019(COVID-19)pandemic,accurate prediction of daily new cases is crucial for epidemic prevention and socioeconomic planning.In contrast to traditional local,one-dimensional time-series data-based infection models,the study introduces an innovative approach by formulating the short-term prediction problem of new cases in a region as multidimensional,gridded time series for both input and prediction targets.A spatial-temporal depth prediction model for COVID-19(ConvLSTM)is presented,and further ConvLSTM by integrating historical meteorological factors(Meteor-ConvLSTM)is refined,considering the influence of meteorological factors on the propagation of COVID-19.The correlation between 10 meteorological factors and the dynamic progression of COVID-19 was evaluated,employing spatial analysis techniques(spatial autocorrelation analysis,trend surface analysis,etc.)to describe the spatial and temporal characteristics of the epidemic.Leveraging the original ConvLSTM,an artificial neural network layer is introduced to learn how meteorological factors impact the infection spread,providing a 5-day forecast at a 0.01°×0.01°pixel resolution.Simulation results using real dataset from the 3.15 outbreak in Shanghai demonstrate the efficacy of Meteor-ConvLSTM,with reduced RMSE of 0.110 and increased R^(2) of 0.125(original ConvLSTM:RMSE=0.702,R^(2)=0.567;Meteor-ConvLSTM:RMSE=0.592,R^(2)=0.692),showcasing its utility for investigating the epidemiological characteristics,transmission dynamics,and epidemic development. 展开更多
关键词 COVID-19 PREDICTION ConvLSTM Refined prediction Meteorological factors spatial-temporal analysis
原文传递
Spatial-Temporal Coupling and Determinants of Digital Economy and High-Quality Development: Insights from the Yellow River Region
8
作者 Zhang Shu Wang Kangqing Guo Jinlong 《全球城市研究(中英文)》 2025年第2期1-17,149,共18页
In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed p... In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region. 展开更多
关键词 High-quality development Digital economy spatial-temporal coupling the Yellow River region
在线阅读 下载PDF
A structured distributed learning framework for irregular cellular spatial-temporal traffic prediction
9
作者 Xiangyu Chen Kaisa Zhang +4 位作者 Gang Chuai Weidong Gao Xuewen Liu Yibo Zhang Yijian Hou 《Digital Communications and Networks》 2025年第5期1457-1468,共12页
Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaboratio... Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods. 展开更多
关键词 Network measurement and analysis Distributed learning Irregular time series Cellular spatial-temporal traffic Traffic prediction
在线阅读 下载PDF
Optimal control for spatial-temporal distributed nonlinear autoregressive with exogenous inputs correlation model of steel rolling reheating furnace: a coordinated time-sharing control approach
10
作者 Qingfeng Bao Sen Zhang +2 位作者 Jin Guo Zhiqiang Li Zhenquan Zhang 《Control Theory and Technology》 EI CSCD 2023年第2期190-211,共22页
Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distri... Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distributed-nonlinear autoregressive with exogenous inputs correlation model(STD-NARXCM)to spatial temporal distributed-autoregressive with exogenous inputs correlation model(STD-ARXCM)in working point is established.Secondly,a new coordinated time-sharing control architecture in different time periods is proposed,which is along the length of the SRRF to improve the control performance.Thirdly,a hybrid control algorithm of expert-fuzzy is proposed to improve the dynamic of the temperature and the heating rate during time period 0 to t_(1).A hybrid control algorithm of expert-fuzzy-PID is proposed to enhance the control accuracy and the heating rate during time period t_(1) to t_(2).A hybrid control algorithm of expert-active disturbance rejection control(ADRC)is proposed to boost the anti-interference and the heating rate during time period t_(2) to t_(3).Finally,the experimental results show that the coordinated time-sharing algorithm can meet the process requirements,the maximum deviation of temperature value is 8-13.5℃. 展开更多
关键词 Steel rolling reheating furnace spatial-temporal distribution Coordinated time-sharing control Controller structure in different periods Hybrid control algorithm
原文传递
Interannual modulation of summer precipitation over North China by the coupled tropical Pacific-Atlantic SST Dipole Mode
11
作者 Yanjin Mao Xiaorui Niu +3 位作者 Ping Li Xianchun Chen Libin Huang Xin Tan 《Atmospheric and Oceanic Science Letters》 2026年第1期1-6,共6页
Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the... Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback. 展开更多
关键词 Coupled tropical Pacific-Atlantic SST mode Precipitation ENSO Atmospheric teleconnection
在线阅读 下载PDF
Predictable and Unpredictable Modes of Northern Hemisphere Atmospheric Circulation in CMIP6:Evaluation and Projections
12
作者 Kairan YING Dabang JIANG Linhao ZHONG 《Advances in Atmospheric Sciences》 2026年第1期135-156,共22页
Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both g... Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations. 展开更多
关键词 interannual mode of atmospheric circulation CMIP6 predictable unpredictable EVALUATION PROJECTION
在线阅读 下载PDF
Spatial-temporal Evolvement Characteristics of Climate Productivity for the Plants on Inner Mongolia Desert Steppe 被引量:5
13
作者 韩芳 苗百岭 +3 位作者 郭瑞清 李兴华 那日苏 王海 《Meteorological and Environmental Research》 CAS 2010年第5期76-79,共4页
Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert stepp... Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert steppe.The spatial and temporal variation characteristics of climate-productivity were analyzed by using the methods of the tendency rate of the climate trend,accumulative anomaly,and spatial difference and so on.The results showed that the climate-productivity kept linear increased trend over Inner Mongolia desert steppe in recent 47 years,but not significant.In spatial distribution,the climate-productivity reduced with the increased latitude.The climate-productivity in southwest part of Inner Mongolia desert steppe was growing while that in the southeast was reducing.The variation rate of the climate-productivity increased from the northwest part to the southeast part of Inner Mongolia desert steppe.In recent 47 years,the climate-productivity in southeast Jurh underwent the greatest decreasing extent,and the region was the sensitive area of the climate-productivity variation. 展开更多
关键词 Desert steppe Climate productivity spatial-temporal distribution Variation rate China
在线阅读 下载PDF
Study on the Relationship among Forest Fire,Temperature and Precipitation and Its Spatial-temporal Variability in China 被引量:9
14
作者 吕爱锋 《Agricultural Science & Technology》 CAS 2011年第9期1396-1400,共5页
[Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in... [Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in forest area of each province in fire season were obtained based on meterological data,forest distribution data,seasonal and monthly data of forest fire in China.Secondly,the relationship among forest fire area,precipitation and temperature was discussed through temporal and correlation analysis.[Result] The changes of precipitation and temperature with time could reflect the annual variation of fire area well.Forest fire area went up with the decrease of precipitation and increase of temprature,and visa versa.Meanwhile,there existed diffirences in the relationship in various regions over time.Correlation analyses revealed that there was positive correlation between forest fire area and temperature,especailly Northwest China (R=0.367,P〈0.01),Southwest China (R=0.327,P〈0.05),South China (R=0.33,P〈0.05),East China (R=0.516,P〈0.01) and Xinjiang (R=0.447,P〈0.05) with obviously positive correlation.At the same time,the correlation between forest fire area and precipitation was significantly positive in Northwest China (R=0.482,P〈0.01),while it was significantly negaive in South China (R=-0.323,P=0.03),but there was no significant correlation in other regions.[Conclusion] Relationships between forest fire and meteorological elements (precipitation and temprature) revealed in the study would be useful for fire provention and early warning in China. 展开更多
关键词 Forest fire PRECIPITATION TEMPERATURE spatial-temporal variability
在线阅读 下载PDF
Spatial-Temporal Distribution Characteristics and Limiting Factors of Medium-low Yield Farmland in Tianjin
15
作者 潘洁 吕雄杰 +1 位作者 肖辉 陆文龙 《Agricultural Science & Technology》 CAS 2015年第3期578-582,共5页
[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [... [Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc. 展开更多
关键词 Medium-low yield farmland spatial-temporal distribution Limiting factors TIANJIN
在线阅读 下载PDF
Spatial-temporal Evolution and Driving Force of Cultivated Land Quality in Henan Province
16
作者 宋艳华 《Agricultural Science & Technology》 CAS 2017年第11期2106-2112,2126,共8页
The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evalua... The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evaluate the cultivated land quality of 2002 and 2012 in Henan Province, and to research the change laws. Method of correlation coefficient was employed to select the driving forces affecting cultivated land quality evolution. The results indicated that the cultivated land quality in Henan Province increased slightly in the last ten years in general, and in spatial there were unchanged regions, increased regions and decreased regions. The cultivated land quality in spatial presented the trend of good becoming better, bad becoming worse, which should be highly valued in cultivated land quality protection and management. Land development and consolidation projects had significant contributions to increasing the cultivated land quality. Driving forces between the sudden change regions and gradual change regions were significantly different. The paper concluded that the research on the spatial-temporal evolution and driving force of cultivated land quality based on cultivated land quality evolution had important academic significance and practical value. 展开更多
关键词 Cultivated land quality spatial-temporal evolution Driving force Sudden change region Gradual change region Henan Province
在线阅读 下载PDF
Spatial-temporal Patterns and Driving Forces of Water Retention Service in China 被引量:13
17
作者 XIAO Yang OUYANG Zhiyun 《Chinese Geographical Science》 SCIE CSCD 2019年第1期100-111,共12页
Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal pa... Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal patterns and impact factors that influence water retention in China is important to enhance the management of water resources in China and other similar countries. We employed a revised Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model and regression analyses to investigate the water retention service in China. The results showed that the southeastern China generally performed much better than Northwest China in terms of the spatial distribution of water retention. In general, the efficacy of the water retention service in China increased from 2000 to 2014; although some areas still had a downward trend. Water retention service increased significantly(P < 0.05) in aggregate in the Qinghai-Tibet Plateau, and the Da Hinggan Mountains and Xiao Hinggan Mountains. However, the service in southwestern China showed a decreasing trend(P < 0.05), which would have significant negative impact on the downstream population. This study also showed that in China the changes in water retention service were primarily due to climate change(which could explain 83.49% of the total variance), with anthropogenic impact as a secondary influence(likewise the ecological programs and socioeconomic development could explain 9.47% and 1.06%, respectively). Moreover, the identification of water retention importance indicated that important areas conservation and selection based on downstream beneficiaries is vital for optimization protection of ecosystem services, and has practical significance for natural resources and ecosystem management. 展开更多
关键词 WATER RETENTION spatial-temporal pattems driving FACTORS China
在线阅读 下载PDF
Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China 被引量:57
18
作者 TIAN Yun ZHANG Jun-biao HE Ya-ya 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第6期1393-1403,共11页
Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 k... Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy ifeld, soil and livestock breeding, this paper ifrstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show:(1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy ifeld, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39%of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions:the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84%from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into ifve types, namely agricultural materials dominant type, paddy ifeld dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efifciency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively;while economy factor increase carbon emissions by 113.16%. 展开更多
关键词 China agricultural carbon emissions spatial-temporal characteristics driving factor LMDI model
在线阅读 下载PDF
Spatial-temporal characteristics of PM_(2.5) in China:A city-level perspective analysis 被引量:19
19
作者 方创琳 王振波 许光 《Journal of Geographical Sciences》 SCIE CSCD 2016年第11期1519-1532,共14页
Haze pollution has become a severe environmental problem in the daily life of the people in China. PM2.s makes a significant contribution to poor air quality. The spatio-temporal features of China's PM2.s concentrati... Haze pollution has become a severe environmental problem in the daily life of the people in China. PM2.s makes a significant contribution to poor air quality. The spatio-temporal features of China's PM2.s concentrations should be investigated. This paper, based on ob- served data from 945 newly located monitoring sites in 2014 and industrial working population data obtained from International Standard Industrial Classification (ISIC), reveals the spa- tio-temporal variations of PM2.5 concentrations in China and the correlations among different industries. We tested the spatial autocorrelation of PM2.5 concentrations in the cities of China with the spatial autocorrelation model. A correlation coefficient to examine the correlativity of PM2.5 concentrations and 23 characteristic variables for 190 cities in China in 2014, from which the most important ones were chosen, and then a regression model was built to further reveal the social and economic factors affecting PMg.g concentrations. Results: (1) The Hu Huanyong Line and the Yangtze River were the E-W divide and S-N divide between high and low values of China. (2) The PM2.5 concentrations shows great seasonal variation, which is high in autumn and winter but low in spring and summer. The monthly average shows a U-shaped pattern, and daily average presents a periodic and impulse-shaped change. (3) PM2.5 concentrations had a distinct characteristic of spatial agglomeration. The North China Plain was the predominant region of agglomeration, and the southeastern coastal area had stable good air quality. 展开更多
关键词 PM2.5 China spatial-temporal characteristics monitoring data
原文传递
Spatial-temporal characteristics and decoupling effects of China’s carbon footprint based on multi-source data 被引量:12
20
作者 ZHANG Yongnian PAN Jinghu +1 位作者 ZHANG Yongjiao XU Jing 《Journal of Geographical Sciences》 SCIE CSCD 2021年第3期327-349,共23页
In 2007,China surpassed the USA to become the largest carbon emitter in the world.China has promised a 60%–65%reduction in carbon emissions per unit GDP by 2030,compared to the baseline of 2005.Therefore,it is import... In 2007,China surpassed the USA to become the largest carbon emitter in the world.China has promised a 60%–65%reduction in carbon emissions per unit GDP by 2030,compared to the baseline of 2005.Therefore,it is important to obtain accurate dynamic information on the spatial and temporal patterns of carbon emissions and carbon footprints to support formulating effective national carbon emission reduction policies.This study attempts to build a carbon emission panel data model that simulates carbon emissions in China from 2000–2013 using nighttime lighting data and carbon emission statistics data.By applying the Exploratory Spatial-Temporal Data Analysis(ESTDA)framework,this study conducted an analysis on the spatial patterns and dynamic spatial-temporal interactions of carbon footprints from 2001–2013.The improved Tapio decoupling model was adopted to investigate the levels of coupling or decoupling between the carbon emission load and economic growth in 336 prefecture-level units.The results show that,firstly,high accuracy was achieved by the model in simulating carbon emissions.Secondly,the total carbon footprints and carbon deficits across China increased with average annual growth rates of 4.82%and 5.72%,respectively.The overall carbon footprints and carbon deficits were larger in the North than that in the South.There were extremely significant spatial autocorrelation features in the carbon footprints of prefecture-level units.Thirdly,the relative lengths of the Local Indicators of Spatial Association(LISA)time paths were longer in the North than that in the South,and they increased from the coastal to the central and western regions.Lastly,the overall decoupling index was mainly a weak decoupling type,but the number of cities with this weak decoupling continued to decrease.The unsustainable development trend of China’s economic growth and carbon emission load will continue for some time. 展开更多
关键词 nighttime lighting data carbon footprint carbon deficit exploratory spatial-temporal data analysis spatial-temporal interaction characteristics decoupling effect
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部