The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assem...The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors.展开更多
Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio...Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.展开更多
Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges...Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges mentioned above with a single model.To tackle this dilemma,this paper proposes spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting(STSIGMA),an efficient end-to-end method to jointly and accurately perceive the AD environment and forecast the trajectories of the surrounding traffic agents within a unified framework.ST-SIGMA adopts a trident encoder-decoder architecture to learn scene semantics and agent interaction information on bird’s-eye view(BEV)maps simultaneously.Specifically,an iterative aggregation network is first employed as the scene semantic encoder(SSE)to learn diverse scene information.To preserve dynamic interactions of traffic agents,ST-SIGMA further exploits a spatio-temporal graph network as the graph interaction encoder.Meanwhile,a simple yet efficient feature fusion method to fuse semantic and interaction features into a unified feature space as the input to a novel hierarchical aggregation decoder for downstream prediction tasks is designed.Extensive experiments on the nuScenes data set have demonstrated that the proposed ST-SIGMA achieves significant improvements compared to the state-of-theart(SOTA)methods in terms of scene perception and trajectory forecasting,respectively.Therefore,the proposed approach outperforms SOTA in terms of model generalisation and robustness and is therefore more feasible for deployment in realworld AD scenarios.展开更多
Northeast China, as the most important production base of agriculture, forestry, and livestock-breeding as well as the old industrial base in the whole country, has been playin a key role in the construction and deve...Northeast China, as the most important production base of agriculture, forestry, and livestock-breeding as well as the old industrial base in the whole country, has been playin a key role in the construction and development of China's economy. However, after the policy of reform and open-up was taken in China. the economic development speed and efficiency ofthis area have turned to be evidently lower than those of coastal area and the national average level as well, which is so-called 'Northeast Phenomenon' and 'Neo-Northeast Phenomenon'. In terms of those phenomena, this paper firstly reviews the spatial and temporal features of the regional evolution of this area so as to unveil the profound forming causes of 'Northeast Phenomena' and 'Neo-Northeast Phenomena'. And then the paper makes a further exploration into the status quo of this region and its forming causes by analyzing its economy gross, industrial structure, product structure, regional eco-categories, etc. At the end of the paper, the authors put forward the basic coordinated development strategies for Northeast China. namely we can revitalize this area by means of adjustment of economic structure, regional coordination, planning urban and rural areas as a whole, institutional innovation, etc.展开更多
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi...The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.展开更多
An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the l...An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the lowest temperatures of RELTE, together with the frequency distribution of the geometric latitude center, exhibit a double-peak feature. The RELTE frequently happen near the geometric area of 30°N and 42°N before the mid-1980s, but shifted afterwards to 30°N. During 1960-2009, the frequency~ intensity, and the maximum impacted area of RELTE show overall decreasing trends. Due to the contribution of RELTE, with long duratioh and large spatial range, which account for 10% of the total RELTE, there is a significant turning point in the late 1980s. A change to a much more steady state after the late 1990s is identified. In addition, the integrated indices of RELTE are classified and analyzed.展开更多
Compared to 3D object detection using a single camera,multiple cameras can overcome some limitations on field-of-view,occlusion,and low detection confidence.This study employs multiple surveillance cameras and develop...Compared to 3D object detection using a single camera,multiple cameras can overcome some limitations on field-of-view,occlusion,and low detection confidence.This study employs multiple surveillance cameras and develops a cooperative 3D object detection and tracking framework by incorporating temporal and spatial information.The framework consists of a 3D vehicle detection model,cooperatively spatial-temporal relation scheme,and heuristic camera constellation method.Specifically,the proposed cross-camera association scheme combines the geometric relationship between multiple cameras and objects in corresponding detections.The spatial-temporal method is designed to associate vehicles between different points of view at a single timestamp and fulfill vehicle tracking in the time aspect.The proposed framework is evaluated based on a synthetic cooperative dataset and shows high reliability,where the cooperative perception can recall more than 66%of the trajectory instead of 11%for single-point sensing.This could contribute to full-range surveillance for intelligent transportation systems.展开更多
针对纸张图像在复杂纹理背景下识别难度大、特征稳定性差的问题,提出一种基于ORB(Oriented FAST and Rotated BRIEF)算法的数字化纸张信息识别方法。该方法利用高效的关键点提取与描述技术,提升了纸张表面批次标识、水印结构、印刷编码...针对纸张图像在复杂纹理背景下识别难度大、特征稳定性差的问题,提出一种基于ORB(Oriented FAST and Rotated BRIEF)算法的数字化纸张信息识别方法。该方法利用高效的关键点提取与描述技术,提升了纸张表面批次标识、水印结构、印刷编码等视觉信息的识别精度与实时性。在典型纸张图像样本上进行实验,结果显示,该方法具有识别速度快、抗干扰能力强、匹配准确率高等优势。研究结果对推动纸品追溯管理和智能检测系统建设具有重要的工程价值与实际意义。展开更多
基金The author received the funding from Sichuan Natural Science Foundation(2022NSFSC1892).
文摘The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors.
基金The National Natural Science Foundation of China under contract Nos 61890964 and 42206177the Joint Funds of the National Natural Science Foundation of China under contract No.U1906217.
文摘Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.
基金Basic and Advanced Research Projects of CSTC,Grant/Award Number:cstc2019jcyj-zdxmX0008Science and Technology Research Program of Chongqing Municipal Education Commission,Grant/Award Numbers:KJQN202100634,KJZDK201900605National Natural Science Foundation of China,Grant/Award Number:62006065。
文摘Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges mentioned above with a single model.To tackle this dilemma,this paper proposes spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting(STSIGMA),an efficient end-to-end method to jointly and accurately perceive the AD environment and forecast the trajectories of the surrounding traffic agents within a unified framework.ST-SIGMA adopts a trident encoder-decoder architecture to learn scene semantics and agent interaction information on bird’s-eye view(BEV)maps simultaneously.Specifically,an iterative aggregation network is first employed as the scene semantic encoder(SSE)to learn diverse scene information.To preserve dynamic interactions of traffic agents,ST-SIGMA further exploits a spatio-temporal graph network as the graph interaction encoder.Meanwhile,a simple yet efficient feature fusion method to fuse semantic and interaction features into a unified feature space as the input to a novel hierarchical aggregation decoder for downstream prediction tasks is designed.Extensive experiments on the nuScenes data set have demonstrated that the proposed ST-SIGMA achieves significant improvements compared to the state-of-theart(SOTA)methods in terms of scene perception and trajectory forecasting,respectively.Therefore,the proposed approach outperforms SOTA in terms of model generalisation and robustness and is therefore more feasible for deployment in realworld AD scenarios.
基金Under the auspices of National Natural Science Foundation of China (No. 40471040)
文摘Northeast China, as the most important production base of agriculture, forestry, and livestock-breeding as well as the old industrial base in the whole country, has been playin a key role in the construction and development of China's economy. However, after the policy of reform and open-up was taken in China. the economic development speed and efficiency ofthis area have turned to be evidently lower than those of coastal area and the national average level as well, which is so-called 'Northeast Phenomenon' and 'Neo-Northeast Phenomenon'. In terms of those phenomena, this paper firstly reviews the spatial and temporal features of the regional evolution of this area so as to unveil the profound forming causes of 'Northeast Phenomena' and 'Neo-Northeast Phenomena'. And then the paper makes a further exploration into the status quo of this region and its forming causes by analyzing its economy gross, industrial structure, product structure, regional eco-categories, etc. At the end of the paper, the authors put forward the basic coordinated development strategies for Northeast China. namely we can revitalize this area by means of adjustment of economic structure, regional coordination, planning urban and rural areas as a whole, institutional innovation, etc.
基金partially supported by the National Key Research and Development Program of China(2020YFB2104001)。
文摘The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.
基金supported by the Special Scientific Research Projects for Public Interest(No.GYHY201006021 and GYHY201106016)the National Natural Science Foundation of China(No.41205040 and 40930952)
文摘An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the lowest temperatures of RELTE, together with the frequency distribution of the geometric latitude center, exhibit a double-peak feature. The RELTE frequently happen near the geometric area of 30°N and 42°N before the mid-1980s, but shifted afterwards to 30°N. During 1960-2009, the frequency~ intensity, and the maximum impacted area of RELTE show overall decreasing trends. Due to the contribution of RELTE, with long duratioh and large spatial range, which account for 10% of the total RELTE, there is a significant turning point in the late 1980s. A change to a much more steady state after the late 1990s is identified. In addition, the integrated indices of RELTE are classified and analyzed.
基金the National Natural Science Foundation of China(No.61873167)the Automotive Industry Science and Technology Development Foundation of Shanghai(No.1904)。
文摘Compared to 3D object detection using a single camera,multiple cameras can overcome some limitations on field-of-view,occlusion,and low detection confidence.This study employs multiple surveillance cameras and develops a cooperative 3D object detection and tracking framework by incorporating temporal and spatial information.The framework consists of a 3D vehicle detection model,cooperatively spatial-temporal relation scheme,and heuristic camera constellation method.Specifically,the proposed cross-camera association scheme combines the geometric relationship between multiple cameras and objects in corresponding detections.The spatial-temporal method is designed to associate vehicles between different points of view at a single timestamp and fulfill vehicle tracking in the time aspect.The proposed framework is evaluated based on a synthetic cooperative dataset and shows high reliability,where the cooperative perception can recall more than 66%of the trajectory instead of 11%for single-point sensing.This could contribute to full-range surveillance for intelligent transportation systems.
文摘针对纸张图像在复杂纹理背景下识别难度大、特征稳定性差的问题,提出一种基于ORB(Oriented FAST and Rotated BRIEF)算法的数字化纸张信息识别方法。该方法利用高效的关键点提取与描述技术,提升了纸张表面批次标识、水印结构、印刷编码等视觉信息的识别精度与实时性。在典型纸张图像样本上进行实验,结果显示,该方法具有识别速度快、抗干扰能力强、匹配准确率高等优势。研究结果对推动纸品追溯管理和智能检测系统建设具有重要的工程价值与实际意义。