As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [...[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc.展开更多
Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaboratio...Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods.展开更多
The Argentine shortfin squid Illex argentinus is an economically important short-lived species widely distributed in the southwest Atlantic Ocean.The abundance and distribution of I.argentinus are associated with clim...The Argentine shortfin squid Illex argentinus is an economically important short-lived species widely distributed in the southwest Atlantic Ocean.The abundance and distribution of I.argentinus are associated with climate change and environmental fluctuations.The potential distribution of I.argentinus was modeled with various environmental variables including sea surface temperature(SST),sea surface height(SSH),chlorophyll a,sea surface salinity(SSS),net primary productivity(NPP),mixed layer depth(MLD),eddy kinetic energy(EKE),and photosynthetically active radiation(PAR)using the maximum entropy(MaxEnt)approach during the peak fishing seasons(January–April).The habitat suitability index(HSI)was defined as the probability of species emergence from the MaxEnt model and the area of HSI≥0.6 was regarded as suitable.Results indicate that the predicted habitat correlated with the actual fishing position,with similar trends in the percentages of suitable habitats and catch per unit effort(CPUE)of I.argentinus from January to April.Moreover,SST,SSH,PAR,and MLD were identified critical environmental variables for the distribution of I.argentinus.In addition,the median of preferred ranges of the critical environmental variables were concentrated within the suitable habitats of I.argentinus.The Area under the Receiver Operating Characteristic Curve(AUC)was greater than 0.96 for all four months.Variations in latitudinal and longitudinal gravity centers(LATG and LONG)of fishing effort were consistent with latitudinal and longitudinal gravity centers(LATG_H and LONG_H)of the HSI.Our findings suggest that the MaxEnt model is an effective tool to predict the potential distribution of I.argentinus.Meanwhile,SST,SSH,PAR,and MLD should be given with more extensive attention in predicting the potential distribution of I.argentinus,as they are important environmental indicators that can help decision-makers search for the fishing ground of I.argentinus in the Southwest Atlantic.展开更多
Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characterist...Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.展开更多
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer...A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.展开更多
With basic information from 8353 archaeological sites, this study describes a holistic spatial-temporal distribution pattern of archaeological sites of the prehistoric culture sequence from 9.5 ka BP (ka BP = thousand...With basic information from 8353 archaeological sites, this study describes a holistic spatial-temporal distribution pattern of archaeological sites of the prehistoric culture sequence from 9.5 ka BP (ka BP = thousands of years before 0 BP, where "0 BP" is defined as the year AD 1950) to 2.3 ka BP in the region that extends from the Yanshan Mountains to the Liaohe River Plain(i.e., the Yan-Liao region) in northern China. Based on spatial statistics analysis – including the spatial density of the sites and Geographic Information System nearest-neighbour analysis, combined with a review of environmental and climatic data – this paper analyses cultural evolution, the spatial-temporal features of the archaeological sites and human activities against the backdrop of climatic and environmental changes in this region. The results reveal that prehistoric cultural evolution in the Yan-Liao region is extensively influenced by climatic and environmental changes. The Xinglongwa, Zhaobaogou and Fuhe cultures, which primarily developed during a habitable period from 8.5 ka BP to 6.0 ka BP with strong summer monsoons, have similar maximum density values, spatial patterns and subsistence strategies dominated by hunting-gathering. Significant changes occurred in the Hongshan and Lower Xiajiadian cultures, with a significant increase in numbers and densities of sites and a slump in average nearest-neighbour ratio when the environment began to deteriorate starting in 6.0 ka BP. Additionally, with the onset of a weak summer monsoon and the predominance of primitive agriculture, sites of these two cultures present a different type of concentric circle-shaped pattern in space. As the environment continuously deteriorated with increasing aridity and the spread of steppe, more sites were distributed towards the south, and primitive agriculture was replaced by livestock husbandry in the Upper Xiajiadian culture. The most densely populated areas of the studied cultures are centralized within a limited area. The Laohahe River and Jiaolaihe River basins formed the core area in which most archaeological sites were distributed during the strong summer monsoon period and the first few thousand years of the weak summer monsoon period.展开更多
Dykes are a special kind of intrusive rocks which were formed by deep magma intruded into the existing brittle fractures in the crust.Dykes swarms in different tectonic environments are very significant to re-construc...Dykes are a special kind of intrusive rocks which were formed by deep magma intruded into the existing brittle fractures in the crust.Dykes swarms in different tectonic environments are very significant to re-construct the展开更多
1 Introduction Geochemical mapping at national and continental scales continues to present challenges worldwide due to variations in geologic and geotectonic units.Use of the proper sampling media can provide rich inf...1 Introduction Geochemical mapping at national and continental scales continues to present challenges worldwide due to variations in geologic and geotectonic units.Use of the proper sampling media can provide rich information on展开更多
Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distri...Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distributed-nonlinear autoregressive with exogenous inputs correlation model(STD-NARXCM)to spatial temporal distributed-autoregressive with exogenous inputs correlation model(STD-ARXCM)in working point is established.Secondly,a new coordinated time-sharing control architecture in different time periods is proposed,which is along the length of the SRRF to improve the control performance.Thirdly,a hybrid control algorithm of expert-fuzzy is proposed to improve the dynamic of the temperature and the heating rate during time period 0 to t_(1).A hybrid control algorithm of expert-fuzzy-PID is proposed to enhance the control accuracy and the heating rate during time period t_(1) to t_(2).A hybrid control algorithm of expert-active disturbance rejection control(ADRC)is proposed to boost the anti-interference and the heating rate during time period t_(2) to t_(3).Finally,the experimental results show that the coordinated time-sharing algorithm can meet the process requirements,the maximum deviation of temperature value is 8-13.5℃.展开更多
Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental...Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.展开更多
For studying the carbon thermal reduction rules of titanium in hot metal and providing a theoretical basis for the blast furnace(BF) hearth protection, the distribution behavior of titanium between low-titanium slag...For studying the carbon thermal reduction rules of titanium in hot metal and providing a theoretical basis for the blast furnace(BF) hearth protection, the distribution behavior of titanium between low-titanium slag system of CaO-SiO2-MgO-Al2O3-TiO2 and hot metal was studied using analytical reagents in a temperature range from 1350 °C to 1600 °C. Through high temperature melting, rapid quenching, chemical analysis and thermodynamic model calculating, the results showed that the increase of reaction temperature, which improved the titanium distribution L(Ti) and lowered the system activity coefficient γsys, leads to the rise of equilibrium constant. Combined with Wagner and congregated electron phase models, the data obtained in distribution experiments were used to fit out the Gibbs free energy formula of titanium carbothermic reduction. Finally, the relations between the contents of Si and Ti in hot metal and the titanium load to reach the minimum w(Ti) for the formation of Ti C were given.展开更多
For performance optimization such as placement,interconnect synthesis,and routing, an efficient and accurate interconnect delay metric is critical,even in design tools development like design for yield (DFY) and des...For performance optimization such as placement,interconnect synthesis,and routing, an efficient and accurate interconnect delay metric is critical,even in design tools development like design for yield (DFY) and design for manufacture (DFM). In the nanometer regime, the recently proposed delay models for RLC interconnects based on statistical probability density function (PDF)interpretation such as PRIMO,H-gamma,WED and RLD bridge the gap between accuracy and efficiency. However, these models always require table look-up when operating. In this paper, a novel delay model based on the Birnbaum-Saunders distribution (BSD) is presented. BSD can accomplish interconnect delay estimation fast and accurately without table look-up operations. Furthermore, it only needs the first two moments to match. Experimental results in 90nm technology show that BSD is robust, easy to implement,efficient,and accurate.展开更多
Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusi...Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion.展开更多
A computer model has been developed to simulate the distribution behaviors of Ni, Co. Sn. Ph,Zn, As, Sb, Bi, An and Ag in copper smelting process. The model assumes that the copper smelting furnaceis in thermodynamic ...A computer model has been developed to simulate the distribution behaviors of Ni, Co. Sn. Ph,Zn, As, Sb, Bi, An and Ag in copper smelting process. The model assumes that the copper smelting furnaceis in thermodynamic equilibrium. As many as 21 elements (Cu. S, Fe. Ni, Co. Sn, As, Sb. Bi, Ph. Zn.An. Ag. O, N, C, H, Ca, Mg, Al, and St) and 73 compounds are considered. This model accounts forphysical entrainment in the melts. The predictions by the present computer model are compared with theknown commercial data from Guixi Smelter in China, Home Smelter in Canada and Naoshima Smelter inJapan. The agreements between the computer predictions and the commercial data are excellent, so that thepresent computer model can be used to monitor and optimize the actual industrial operations of copper smelting. It is applicable to simulation of almost all copper pyrometallurgical processes.展开更多
We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubrida...We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distr...With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.展开更多
Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However,most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra ...Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However,most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra of cosmic ray muons and reduced the spatial resolution. We present a modified multi-group model that takes into account these effects and calibrates the model by the material of lead. Performance tests establish that the model is capable of measuring the thickness of a Pb slab and identifying the material of an unknown slab on a reasonable exposure timescale, in both cases of complete and incomplete angular data. Results show that the modified multi-group model is helpful for improvements in image resolution in real applications.展开更多
Net Primary Productivity (NPP) is one of the important biophysical variables of vegetation activity, and it plays an important role in studying global carbon cycle, carbon source and sink of ecosystem, and spatial a...Net Primary Productivity (NPP) is one of the important biophysical variables of vegetation activity, and it plays an important role in studying global carbon cycle, carbon source and sink of ecosystem, and spatial and temporal distribution of CO2. Remote sensing can provide broad view quickly, timely and multi-temporally, which makes it an attractive and powerful tool for studying ecosystem primary productivity, at scales ranging from local to global. This paper aims to use Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate and analyze spatial and temporal distribution of NPP of the northern Hebei Province in 2001 based on Carnegie-Ames-Stanford Approach (CASA) model. The spatial distribution of Absorbed Photosynthetically Active Radiation (APAR) of vegetation and light use efficiency in three geographical subregions, that is, Bashang Plateau Region, Basin Region in the northwestern Hebei Province and Yanshan Mountainous Region in the Northern Hebei Province were analyzed, and total NPP spatial distribution of the study area in 2001 was discussed. Based on 16-day MODIS Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) product, 16-day composite NPP dynamics were calculated using CASA model; the seasonal dynamics of vegetation NPP in three subreglons were also analyzed. Result reveals that the total NPP of the study area in 2001 was 25.1877 × 10^6gC/(m^2.a), and NPP in 2001 ranged from 2 to 608gC/(m^2-a), with an average of 337.516gC/(m^2.a). NPP of the study area in 2001 accumulated mainly from May to September (DOY 129-272), high NIP values appeared from June to August (DOY 177-204), and the maximum NPP appeared from late July to mid-August (DOY 209-224).展开更多
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
文摘[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc.
基金supported by the Beijing Natural Science Foundation(Certificate Number:L234025).
文摘Spatial-temporal traffic prediction technology is crucial for network planning,resource allocation optimizing,and user experience improving.With the development of virtual network operators,multi-operator collaborations,and edge computing,spatial-temporal traffic data has taken on a distributed nature.Consequently,noncentralized spatial-temporal traffic prediction solutions have emerged as a recent research focus.Currently,the majority of research typically adopts federated learning methods to train traffic prediction models distributed on each base station.This method reduces additional burden on communication systems.However,this method has a drawback:it cannot handle irregular traffic data.Due to unstable wireless network environments,device failures,insufficient storage resources,etc.,data missing inevitably occurs during the process of collecting traffic data.This results in the irregular nature of distributed traffic data.Yet,commonly used traffic prediction models such as Recurrent Neural Networks(RNN)and Long Short-Term Memory(LSTM)typically assume that the data is complete and regular.To address the challenge of handling irregular traffic data,this paper transforms irregular traffic prediction into problems of estimating latent variables and generating future traffic.To solve the aforementioned problems,this paper introduces split learning to design a structured distributed learning framework.The framework comprises a Global-level Spatial structure mining Model(GSM)and several Nodelevel Generative Models(NGMs).NGM and GSM represent Seq2Seq models deployed on the base station and graph neural network models deployed on the cloud or central controller.Firstly,the time embedding layer in NGM establishes the mapping relationship between irregular traffic data and regular latent temporal feature variables.Secondly,GSM collects statistical feature parameters of latent temporal feature variables from various nodes and executes graph embedding for spatial-temporal traffic data.Finally,NGM generates future traffic based on latent temporal and spatial feature variables.The introduction of the time attention mechanism enhances the framework’s capability to handle irregular traffic data.Graph attention network introduces spatially correlated base station traffic feature information into local traffic prediction,which compensates for missing information in local irregular traffic data.The proposed framework effectively addresses the distributed prediction issues of irregular traffic data.By testing on real world datasets,the proposed framework improves traffic prediction accuracy by 35%compared to other commonly used distributed traffic prediction methods.
基金Supported by the Natural Science Foundation of Shanghai(No.23ZR1427100)the National Key R&D Program of China(No.2023YFD2401303)the Shanghai Talent Development Funding for the Project(No.2021078)。
文摘The Argentine shortfin squid Illex argentinus is an economically important short-lived species widely distributed in the southwest Atlantic Ocean.The abundance and distribution of I.argentinus are associated with climate change and environmental fluctuations.The potential distribution of I.argentinus was modeled with various environmental variables including sea surface temperature(SST),sea surface height(SSH),chlorophyll a,sea surface salinity(SSS),net primary productivity(NPP),mixed layer depth(MLD),eddy kinetic energy(EKE),and photosynthetically active radiation(PAR)using the maximum entropy(MaxEnt)approach during the peak fishing seasons(January–April).The habitat suitability index(HSI)was defined as the probability of species emergence from the MaxEnt model and the area of HSI≥0.6 was regarded as suitable.Results indicate that the predicted habitat correlated with the actual fishing position,with similar trends in the percentages of suitable habitats and catch per unit effort(CPUE)of I.argentinus from January to April.Moreover,SST,SSH,PAR,and MLD were identified critical environmental variables for the distribution of I.argentinus.In addition,the median of preferred ranges of the critical environmental variables were concentrated within the suitable habitats of I.argentinus.The Area under the Receiver Operating Characteristic Curve(AUC)was greater than 0.96 for all four months.Variations in latitudinal and longitudinal gravity centers(LATG and LONG)of fishing effort were consistent with latitudinal and longitudinal gravity centers(LATG_H and LONG_H)of the HSI.Our findings suggest that the MaxEnt model is an effective tool to predict the potential distribution of I.argentinus.Meanwhile,SST,SSH,PAR,and MLD should be given with more extensive attention in predicting the potential distribution of I.argentinus,as they are important environmental indicators that can help decision-makers search for the fishing ground of I.argentinus in the Southwest Atlantic.
文摘Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.
基金Supported by the National Natural Science Foundation of China(No.U24B20156)the National Defense Basic Scientific Research Program of China(No.JCKY2021204B051)the National Laboratory of Space Intelligent Control of China(Nos.HTKJ2023KL502005 and HTKJ2024KL502007)。
文摘A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.
基金National Natural Science Foundation of China,No.41371148Major Program of National Social Science Fund of China,No.13&ZD082
文摘With basic information from 8353 archaeological sites, this study describes a holistic spatial-temporal distribution pattern of archaeological sites of the prehistoric culture sequence from 9.5 ka BP (ka BP = thousands of years before 0 BP, where "0 BP" is defined as the year AD 1950) to 2.3 ka BP in the region that extends from the Yanshan Mountains to the Liaohe River Plain(i.e., the Yan-Liao region) in northern China. Based on spatial statistics analysis – including the spatial density of the sites and Geographic Information System nearest-neighbour analysis, combined with a review of environmental and climatic data – this paper analyses cultural evolution, the spatial-temporal features of the archaeological sites and human activities against the backdrop of climatic and environmental changes in this region. The results reveal that prehistoric cultural evolution in the Yan-Liao region is extensively influenced by climatic and environmental changes. The Xinglongwa, Zhaobaogou and Fuhe cultures, which primarily developed during a habitable period from 8.5 ka BP to 6.0 ka BP with strong summer monsoons, have similar maximum density values, spatial patterns and subsistence strategies dominated by hunting-gathering. Significant changes occurred in the Hongshan and Lower Xiajiadian cultures, with a significant increase in numbers and densities of sites and a slump in average nearest-neighbour ratio when the environment began to deteriorate starting in 6.0 ka BP. Additionally, with the onset of a weak summer monsoon and the predominance of primitive agriculture, sites of these two cultures present a different type of concentric circle-shaped pattern in space. As the environment continuously deteriorated with increasing aridity and the spread of steppe, more sites were distributed towards the south, and primitive agriculture was replaced by livestock husbandry in the Upper Xiajiadian culture. The most densely populated areas of the studied cultures are centralized within a limited area. The Laohahe River and Jiaolaihe River basins formed the core area in which most archaeological sites were distributed during the strong summer monsoon period and the first few thousand years of the weak summer monsoon period.
基金co-supported by National Natural Science Foundation of China (Project number 41502201)"Western Light" project of Chinese Academy of Sciences (XBBS201301)
文摘Dykes are a special kind of intrusive rocks which were formed by deep magma intruded into the existing brittle fractures in the crust.Dykes swarms in different tectonic environments are very significant to re-construct the
基金supported by the Special Scientific Research Fund of Public Welfare Profession of Ministry of Land and Resources of the People’s Republic of China (No. 201011057)
文摘1 Introduction Geochemical mapping at national and continental scales continues to present challenges worldwide due to variations in geologic and geotectonic units.Use of the proper sampling media can provide rich information on
基金This work was supported by the National Natural Science Foundation of China(Nos.62173032 and 62003038).
文摘Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distributed-nonlinear autoregressive with exogenous inputs correlation model(STD-NARXCM)to spatial temporal distributed-autoregressive with exogenous inputs correlation model(STD-ARXCM)in working point is established.Secondly,a new coordinated time-sharing control architecture in different time periods is proposed,which is along the length of the SRRF to improve the control performance.Thirdly,a hybrid control algorithm of expert-fuzzy is proposed to improve the dynamic of the temperature and the heating rate during time period 0 to t_(1).A hybrid control algorithm of expert-fuzzy-PID is proposed to enhance the control accuracy and the heating rate during time period t_(1) to t_(2).A hybrid control algorithm of expert-active disturbance rejection control(ADRC)is proposed to boost the anti-interference and the heating rate during time period t_(2) to t_(3).Finally,the experimental results show that the coordinated time-sharing algorithm can meet the process requirements,the maximum deviation of temperature value is 8-13.5℃.
基金Supported by projects of the National Natural Science Foundation of China(Nos.92062216,41888101).
文摘Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.
基金Project(2012CB720401)supported by the National Basic Research Program of ChinaProject(2011BAC01B02)supported by the National Key Technology R&D Program of China
文摘For studying the carbon thermal reduction rules of titanium in hot metal and providing a theoretical basis for the blast furnace(BF) hearth protection, the distribution behavior of titanium between low-titanium slag system of CaO-SiO2-MgO-Al2O3-TiO2 and hot metal was studied using analytical reagents in a temperature range from 1350 °C to 1600 °C. Through high temperature melting, rapid quenching, chemical analysis and thermodynamic model calculating, the results showed that the increase of reaction temperature, which improved the titanium distribution L(Ti) and lowered the system activity coefficient γsys, leads to the rise of equilibrium constant. Combined with Wagner and congregated electron phase models, the data obtained in distribution experiments were used to fit out the Gibbs free energy formula of titanium carbothermic reduction. Finally, the relations between the contents of Si and Ti in hot metal and the titanium load to reach the minimum w(Ti) for the formation of Ti C were given.
文摘For performance optimization such as placement,interconnect synthesis,and routing, an efficient and accurate interconnect delay metric is critical,even in design tools development like design for yield (DFY) and design for manufacture (DFM). In the nanometer regime, the recently proposed delay models for RLC interconnects based on statistical probability density function (PDF)interpretation such as PRIMO,H-gamma,WED and RLD bridge the gap between accuracy and efficiency. However, these models always require table look-up when operating. In this paper, a novel delay model based on the Birnbaum-Saunders distribution (BSD) is presented. BSD can accomplish interconnect delay estimation fast and accurately without table look-up operations. Furthermore, it only needs the first two moments to match. Experimental results in 90nm technology show that BSD is robust, easy to implement,efficient,and accurate.
基金The National Natural Science Foundation of China (No.70671021)
文摘Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion.
文摘A computer model has been developed to simulate the distribution behaviors of Ni, Co. Sn. Ph,Zn, As, Sb, Bi, An and Ag in copper smelting process. The model assumes that the copper smelting furnaceis in thermodynamic equilibrium. As many as 21 elements (Cu. S, Fe. Ni, Co. Sn, As, Sb. Bi, Ph. Zn.An. Ag. O, N, C, H, Ca, Mg, Al, and St) and 73 compounds are considered. This model accounts forphysical entrainment in the melts. The predictions by the present computer model are compared with theknown commercial data from Guixi Smelter in China, Home Smelter in Canada and Naoshima Smelter inJapan. The agreements between the computer predictions and the commercial data are excellent, so that thepresent computer model can be used to monitor and optimize the actual industrial operations of copper smelting. It is applicable to simulation of almost all copper pyrometallurgical processes.
基金Funding support for this work was provided by the Silvo-Pastoral Institute of Tabarka
文摘We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金supported by the National Science and Technology Major Project of Water Pollution Control and Treatment(Grants No.2014ZX07405002,2012ZX07506007,2012ZX07506006,and 2012ZX07506002)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant No.KJ2016A868)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.
基金supported by the Science and Technology Development Foundation of CAEP(No.2015B0103014)the National Natural Science Foundation of China(No.11605163)
文摘Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However,most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra of cosmic ray muons and reduced the spatial resolution. We present a modified multi-group model that takes into account these effects and calibrates the model by the material of lead. Performance tests establish that the model is capable of measuring the thickness of a Pb slab and identifying the material of an unknown slab on a reasonable exposure timescale, in both cases of complete and incomplete angular data. Results show that the modified multi-group model is helpful for improvements in image resolution in real applications.
基金Under the auspices of the National Natural Science Foundation of China (No. 40571117), the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-338), Research foundation of the State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences (KQ060006)
文摘Net Primary Productivity (NPP) is one of the important biophysical variables of vegetation activity, and it plays an important role in studying global carbon cycle, carbon source and sink of ecosystem, and spatial and temporal distribution of CO2. Remote sensing can provide broad view quickly, timely and multi-temporally, which makes it an attractive and powerful tool for studying ecosystem primary productivity, at scales ranging from local to global. This paper aims to use Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate and analyze spatial and temporal distribution of NPP of the northern Hebei Province in 2001 based on Carnegie-Ames-Stanford Approach (CASA) model. The spatial distribution of Absorbed Photosynthetically Active Radiation (APAR) of vegetation and light use efficiency in three geographical subregions, that is, Bashang Plateau Region, Basin Region in the northwestern Hebei Province and Yanshan Mountainous Region in the Northern Hebei Province were analyzed, and total NPP spatial distribution of the study area in 2001 was discussed. Based on 16-day MODIS Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) product, 16-day composite NPP dynamics were calculated using CASA model; the seasonal dynamics of vegetation NPP in three subreglons were also analyzed. Result reveals that the total NPP of the study area in 2001 was 25.1877 × 10^6gC/(m^2.a), and NPP in 2001 ranged from 2 to 608gC/(m^2-a), with an average of 337.516gC/(m^2.a). NPP of the study area in 2001 accumulated mainly from May to September (DOY 129-272), high NIP values appeared from June to August (DOY 177-204), and the maximum NPP appeared from late July to mid-August (DOY 209-224).