期刊文献+
共找到5,942篇文章
< 1 2 250 >
每页显示 20 50 100
BAHGRF^(3):Human gait recognition in the indoor environment using deep learning features fusion assisted framework and posterior probability moth flame optimisation
1
作者 Muhammad Abrar Ahmad Khan Muhammad Attique Khan +5 位作者 Ateeq Ur Rehman Ahmed Ibrahim Alzahrani Nasser Alalwan Deepak Gupta Saima Ahmed Rahin Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第2期387-401,共15页
Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework... Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework for human gait classification in video sequences using deep learning(DL)fusion assisted and posterior probability-based moth flames optimization(MFO)is proposed.In the first step,the video frames are resized and finetuned by two pre-trained lightweight DL models,EfficientNetB0 and MobileNetV2.Both models are selected based on the top-5 accuracy and less number of parameters.Later,both models are trained through deep transfer learning and extracted deep features fused using a voting scheme.In the last step,the authors develop a posterior probabilitybased MFO feature selection algorithm to select the best features.The selected features are classified using several supervised learning methods.The CASIA-B publicly available dataset has been employed for the experimental process.On this dataset,the authors selected six angles such as 0°,18°,90°,108°,162°,and 180°and obtained an average accuracy of 96.9%,95.7%,86.8%,90.0%,95.1%,and 99.7%.Results demonstrate comparable improvement in accuracy and significantly minimize the computational time with recent state-of-the-art techniques. 展开更多
关键词 deep learning feature fusion feature optimization gait classification indoor environment machine learning
在线阅读 下载PDF
BLFM-Net:An Efficient Regional Feature Matching Method for Bronchoscopic Surgery Based on Deep Learning Object Detection
2
作者 He Su Jianwei Gao Kang Kong 《Computers, Materials & Continua》 2025年第6期4193-4213,共21页
Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries.This study purposes a bronchoscopic lumen feature matching network(BLFM-Net)based on deep learning to address the ... Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries.This study purposes a bronchoscopic lumen feature matching network(BLFM-Net)based on deep learning to address the challenges of image noise,anatomical complexity,and the stringent real-time requirements.The BLFM-Net enhances bronchoscopic image processing by integrating several functional modules.The FFA-Net preprocessing module mitigates image fogging and improves visual clarity for subsequent processing.The feature extraction module derives multi-dimensional features,such as centroids,area,and shape descriptors,from dehazed images.The Faster RCNN Object detection module detects bronchial regions of interest and generates bounding boxes to localize key areas.The feature matching module accelerates the process by combining detection boxes,extracted features,and a KD-Tree(K-Dimensional Tree)-based algorithm,ensuring efficient and accurate regional feature associations.The BLFM-Net was evaluated on 5212 bronchoscopic images,demonstrating superior performance compared to traditional and other deep learning-based image matching methods.It achieved real-time matching with an average frame time of 6 ms,with a matching accuracy of over 96%.The method remained robust under challenging conditions including frame dropping(0,5,10,20),shadowed regions,and variable lighting,maintaining accuracy of above 94%even with the frame dropping of 20.This study presents BLFM-Net,a deep learning-based matching network designed to enhance and match bronchial features in bronchoscopic images.The BLFM-Net shows improved accuracy,real-time performance,and reliability,making a valuable tool for bronchoscopic surgeries. 展开更多
关键词 Bronchial region feature matching bronchoscopic tracking real-time processing bronchial texture features bronchial texture features deep learning medical image dehazing
在线阅读 下载PDF
Domain Adaptation with Deep Feature Clustering for Pseudo-Label Denoising in Heterogeneous SAR Image Classification
3
作者 Luo Sheng-Jie Liu Zhi-Gang +4 位作者 Li Xi-Hai Wang Yi-Ting Zeng Xiao-Niu Zheng Zhi-Hao Li Heng 《Applied Geophysics》 2025年第4期944-956,1492,共14页
In recent years,the heterogeneous SAR image classification task of"training on simulated data and testing on measured data"has garnered increasing attention in the field of Synthetic Aperture Radar Automatic... In recent years,the heterogeneous SAR image classification task of"training on simulated data and testing on measured data"has garnered increasing attention in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR).Although current mainstream domain adaptation methods have made significant breakthroughs in addressing domain shift problems,the escalating model complexity and task complexity have constrained their deployment in real-world applications.To tackle this challenge,this paper proposes a domain adaptation framework based on linear-kernel Maximum Mean Discrepancy(MMD),integrated with a near-zero-cost pseudo-label denoising technique leveraging deep feature clustering.Our method completely eliminates the need for data augmentation and handcrafted feature design,achieving endto-end pseudo-label self-training.Competitive performance is demonstrated across three typical scenarios in the SAMPLE dataset,with the highest accuracy of 98.65%achieved in ScenarioⅢ.The relevant code is available at:https://github.com/TheGreatTreatsby/SAMPLE_MMD. 展开更多
关键词 SAR-ATR domain adaptation unsupervised learning deep features SAMPLE
在线阅读 下载PDF
Optimized Feature Selection for Leukemia Diagnosis Using Frog-Snake Optimization and Deep Learning Integration
4
作者 Reza Goodarzi Ali Jalali +2 位作者 Omid Hashemi Pour Tafreshi Jalil Mazloum Peyman Beygi 《Computers, Materials & Continua》 2025年第7期653-679,共27页
Acute lymphoblastic leukemia(ALL)is characterized by overgrowth of immature lymphoid cells in the bone marrow at the expense of normal hematopoiesis.One of the most prioritized tasks is the early and correct diagnosis... Acute lymphoblastic leukemia(ALL)is characterized by overgrowth of immature lymphoid cells in the bone marrow at the expense of normal hematopoiesis.One of the most prioritized tasks is the early and correct diagnosis of this malignancy;however,manual observation of the blood smear is very time-consuming and requires labor and expertise.Transfer learning in deep neural networks is of growing importance to intricate medical tasks such as medical imaging.Our work proposes an application of a novel ensemble architecture that puts together Vision Transformer and EfficientNetV2.This approach fuses deep and spatial features to optimize discriminative power by selecting features accurately,reducing redundancy,and promoting sparsity.Besides the architecture of the ensemble,the advanced feature selection is performed by the Frog-Snake Prey-Predation Relationship Optimization(FSRO)algorithm.FSRO prioritizes the most relevant features while dynamically reducing redundant and noisy data,hence improving the efficiency and accuracy of the classification model.We have compared our method for feature selection against state-of-the-art techniques and recorded an accuracy of 94.88%,a recall of 94.38%,a precision of 96.18%,and an F1-score of 95.63%.These figures are therefore better than the classical methods for deep learning.Though our dataset,collected from four different hospitals,is non-standard and heterogeneous,making the analysis more challenging,although computationally expensive,our approach proves diagnostically superior in cancer detection.Source codes and datasets are available on GitHub. 展开更多
关键词 Acute lymphocyte leukemia feature fusion deep learning feature selection frog-snake prey-predation relationship optimization
在线阅读 下载PDF
Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
5
作者 Iman S.Al-Mahdi Saad M.Darwish Magda M.Madbouly 《Computer Modeling in Engineering & Sciences》 2025年第4期875-909,共35页
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr... Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction. 展开更多
关键词 Heart disease prediction feature selection ensemble deep learning optimization genetic algorithm(GA) ensemble deep learning tunicate swarm algorithm(TSA) feature selection
在线阅读 下载PDF
Salient Features Guided Augmentation for Enhanced Deep Learning Classification in Hematoxylin and Eosin Images
6
作者 Tengyue Li Shuangli Song +6 位作者 Jiaming Zhou Simon Fong Geyue Li Qun Song Sabah Mohammed Weiwei Lin Juntao Gao 《Computers, Materials & Continua》 2025年第7期1711-1730,共20页
Hematoxylin and Eosin(H&E)images,popularly used in the field of digital pathology,often pose challenges due to their limited color richness,hindering the differentiation of subtle cell features crucial for accurat... Hematoxylin and Eosin(H&E)images,popularly used in the field of digital pathology,often pose challenges due to their limited color richness,hindering the differentiation of subtle cell features crucial for accurate classification.Enhancing the visibility of these elusive cell features helps train robust deep-learning models.However,the selection and application of image processing techniques for such enhancement have not been systematically explored in the research community.To address this challenge,we introduce Salient Features Guided Augmentation(SFGA),an approach that strategically integrates machine learning and image processing.SFGA utilizes machine learning algorithms to identify crucial features within cell images,subsequently mapping these features to appropriate image processing techniques to enhance training images.By emphasizing salient features and aligning them with corresponding image processing methods,SFGA is designed to enhance the discriminating power of deep learning models in cell classification tasks.Our research undertakes a series of experiments,each exploring the performance of different datasets and data enhancement techniques in classifying cell types,highlighting the significance of data quality and enhancement in mitigating overfitting and distinguishing cell characteristics.Specifically,SFGA focuses on identifying tumor cells from tissue for extranodal extension detection,with the SFGA-enhanced dataset showing notable advantages in accuracy.We conducted a preliminary study of five experiments,among which the accuracy of the pleomorphism experiment improved significantly from 50.81%to 95.15%.The accuracy of the other four experiments also increased,with improvements ranging from 3 to 43 percentage points.Our preliminary study shows the possibilities to enhance the diagnostic accuracy of deep learning models and proposes a systematic approach that could enhance cancer diagnosis,contributing as a first step in using SFGA in medical image enhancement. 展开更多
关键词 Image processing feature extraction deep learning machine learning data augmentation
在线阅读 下载PDF
A Global-Local Parallel Dual-Branch Deep Learning Model with Attention-Enhanced Feature Fusion for Brain Tumor MRI Classification
7
作者 Zhiyong Li Xinlian Zhou 《Computers, Materials & Continua》 2025年第4期739-760,共22页
Brain tumor classification is crucial for personalized treatment planning.Although deep learning-based Artificial Intelligence(AI)models can automatically analyze tumor images,fine details of small tumor regions may b... Brain tumor classification is crucial for personalized treatment planning.Although deep learning-based Artificial Intelligence(AI)models can automatically analyze tumor images,fine details of small tumor regions may be overlooked during global feature extraction.Therefore,we propose a brain tumor Magnetic Resonance Imaging(MRI)classification model based on a global-local parallel dual-branch structure.The global branch employs ResNet50 with a Multi-Head Self-Attention(MHSA)to capture global contextual information from whole brain images,while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor regions.The features from both branches are processed through designed attention-enhanced feature fusion module to filter and integrate important features.Additionally,to address sample imbalance in the dataset,we introduce a category attention block to improve the recognition of minority classes.Experimental results indicate that our method achieved a classification accuracy of 98.04%and a micro-average Area Under the Curve(AUC)of 0.989 in the classification of three types of brain tumors,surpassing several existing pre-trained Convolutional Neural Network(CNN)models.Additionally,feature interpretability analysis validated the effectiveness of the proposed model.This suggests that the method holds significant potential for brain tumor image classification. 展开更多
关键词 deep learning attention mechanism feature fusion dual-branch structure brain tumor MRI classification
在线阅读 下载PDF
An adaptive dual-domain feature representation method for enhanced deep forgery detection
8
作者 Ming Li Yan Qin +1 位作者 Heng Zhang Zhiguo Shi 《Journal of Automation and Intelligence》 2025年第4期273-281,共9页
Deep forgery detection technologies are crucial for image and video recognition tasks,with their performance heavily reliant on the features extracted from both real and fake images.However,most existing methods prima... Deep forgery detection technologies are crucial for image and video recognition tasks,with their performance heavily reliant on the features extracted from both real and fake images.However,most existing methods primarily focus on spatial domain features,which limits their accuracy.To address this limitation,we propose an adaptive dual-domain feature representation method for enhanced deep forgery detection.Specifically,an adaptive region dynamic convolution module is established to efficiently extract facial features from the spatial domain.Then,we introduce an adaptive frequency dynamic filter to capture effective frequency domain features.By fusing both spatial and frequency domain features,our approach significantly improves the accuracy of classifying real and fake facial images.Finally,experimental results on three real-world datasets validate the effectiveness of our dual-domain feature representation method,which substantially improves classification precision. 展开更多
关键词 Dynamic convolution module Dynamic filter feature representation Facial images deep forgery detection
在线阅读 下载PDF
Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics
9
作者 Emad Sami Jaha 《Computer Modeling in Engineering & Sciences》 2025年第9期3645-3678,共34页
The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models ... The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models have recently offered high-performance and reliable systems.However,their performance can still be further improved using the capabilities of soft biometrics,a research question yet to be investigated.This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits.It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving new,more perceptive,comparative soft biometrics for feature-level fusion with hard biometric deep features.It conducts several identification and verification experiments for performance evaluation,analysis,and comparison while varying ear image datasets,hard biometric deep-feature extractors,soft biometric augmentation methods,and classifiers used.The experimental work yields promising results,reaching up to 99.94%accuracy and up to 14%improvement using the AMI and AMIC datasets,along with their corresponding soft biometric label data.The results confirm the proposed augmented approaches’superiority over their standard counterparts and emphasize the robustness of the new ear comparative soft biometrics over their categorical peers. 展开更多
关键词 Ear recognition soft biometrics human identification human verification comparative labeling ranking SVM deep features feature-level fusion convolutional neural networks(CNNs) deep learning
在线阅读 下载PDF
Active Learning-Enhanced Deep Ensemble Framework for Human Activity Recognition Using Spatio-Textural Features
10
作者 Lakshmi Alekhya Jandhyam Ragupathy Rengaswamy Narayana Satyala 《Computer Modeling in Engineering & Sciences》 2025年第9期3679-3714,共36页
Human Activity Recognition(HAR)has become increasingly critical in civic surveillance,medical care monitoring,and institutional protection.Current deep learning-based approaches often suffer from excessive computation... Human Activity Recognition(HAR)has become increasingly critical in civic surveillance,medical care monitoring,and institutional protection.Current deep learning-based approaches often suffer from excessive computational complexity,limited generalizability under varying conditions,and compromised real-time performance.To counter these,this paper introduces an Active Learning-aided Heuristic Deep Spatio-Textural Ensemble Learning(ALH-DSEL)framework.The model initially identifies keyframes from the surveillance videos with a Multi-Constraint Active Learning(MCAL)approach,with features extracted from DenseNet121.The frames are then segmented employing an optimized Fuzzy C-Means clustering algorithm with Firefly to identify areas of interest.A deep ensemble feature extractor,comprising DenseNet121,EfficientNet-B7,MobileNet,and GLCM,extracts varied spatial and textural features.Fused characteristics are enhanced through PCA and Min-Max normalization and discriminated by a maximum voting ensemble of RF,AdaBoost,and XGBoost.The experimental results show that ALH-DSEL provides higher accuracy,precision,recall,and F1-score,validating its superiority for real-time HAR in surveillance scenarios. 展开更多
关键词 Human activity prediction deep ensemble feature active learning E2E classifier surveillance systems
在线阅读 下载PDF
A Deep Learning-Based Salient Feature-Preserving Algorithm for Mesh Simplification
11
作者 Jiming Lan Bo Zeng +2 位作者 Suiqun Li Weihan Zhang Xinyi Shi 《Computers, Materials & Continua》 2025年第5期2865-2888,共24页
The Quadric Error Metrics(QEM)algorithm is a widely used method for mesh simplification;however,it often struggles to preserve high-frequency geometric details,leading to the loss of salient features.To address this l... The Quadric Error Metrics(QEM)algorithm is a widely used method for mesh simplification;however,it often struggles to preserve high-frequency geometric details,leading to the loss of salient features.To address this limitation,we propose the Salient Feature Sampling Points-based QEM(SFSP-QEM)—also referred to as the Deep Learning-Based Salient Feature-Preserving Algorithm for Mesh Simplification—which incorporates a Salient Feature-Preserving Point Sampler(SFSP).This module leverages deep learning techniques to prioritize the preservation of key geometric features during simplification.Experimental results demonstrate that SFSP-QEM significantly outperforms traditional QEM in preserving geometric details.Specifically,for general models from the Stanford 3D Scanning Repository,which represent typical mesh structures used in mesh simplification benchmarks,the Hausdorff distance of simplified models using SFSP-QEM is reduced by an average of 46.58% compared to those simplified using traditional QEM.In customized models such as the Zigong Lantern used in cultural heritage preservation,SFSP-QEM achieves an average reduction of 28.99% in Hausdorff distance.Moreover,the running time of this method is only 6%longer than that of traditional QEM while significantly improving the preservation of geometric details.These results demonstrate that SFSP-QEMis particularly effective for applications requiring high-fidelity simplification while retaining critical features. 展开更多
关键词 deep learning mesh simplification quadric error metrics(QEM) salient feature preservation point sampling
在线阅读 下载PDF
Correction to DeepCNN:Spectro-temporal feature representation for speech emotion recognition
12
《CAAI Transactions on Intelligence Technology》 2025年第2期633-633,共1页
Saleem,N.,et al.:DeepCNN:Spectro-temporal feature representation for speech emotion recognition.CAAI Trans.Intell.Technol.8(2),401-417(2023).https://doi.org/10.1049/cit2.12233.The affiliation of Hafiz Tayyab Rauf shou... Saleem,N.,et al.:DeepCNN:Spectro-temporal feature representation for speech emotion recognition.CAAI Trans.Intell.Technol.8(2),401-417(2023).https://doi.org/10.1049/cit2.12233.The affiliation of Hafiz Tayyab Rauf should be[Independent Researcher,UK]. 展开更多
关键词 independent researcher speech emotion recognition deep cnn uk speech emotion recognitioncaai spectro temporal feature representation hafiz tayyab rauf
在线阅读 下载PDF
Progress in feature research topics in deep underground
13
作者 Jianguo Wang Chunfai Leung 《Deep Underground Science and Engineering》 2025年第3期339-340,共2页
Deep Underground Science and Engineering(DUSE)is pleased to release this issue with feature articles reporting the advancement in several research topics related to deep underground.This issue contains one perspective... Deep Underground Science and Engineering(DUSE)is pleased to release this issue with feature articles reporting the advancement in several research topics related to deep underground.This issue contains one perspective article,two review articles,six research articles,and one case study article.These articles focus on underground energy storage,multiscale modeling for correlation between micro-scale damage and macro-scale structural degradation,mineralization and formation of gold mine,interface and fracture seepage,experimental study on tunnel-sand-pile interaction,and high water-content materials for deep underground space backfilling,analytical solutions for the crack evolution direction in brittle rocks,and a case study on the squeezing-induced failure in a water drainage tunnel and the rehabilitation measures. 展开更多
关键词 deep undergroundthis multiscale modeling underground energy storage underground energy storagemultiscale modeling formation gold mineinterface fracture s micro scale damage macro scale structural degradation feature articles
原文传递
Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins 被引量:38
14
作者 Xiong-Qi Pang Cheng-Zao Jia Wen-Yang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期1-53,共53页
As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap... As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development. 展开更多
关键词 Petroliferous basin deep petroleum geology features Hydrocarbon accumulation Petroleum exploration Petroleum resources
原文传递
Zero-shot Fine-grained Classification by Deep Feature Learning with Semantics 被引量:8
15
作者 Ao-Xue Li Ke-Xin Zhang Li-Wei Wang 《International Journal of Automation and computing》 EI CSCD 2019年第5期563-574,共12页
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning dis... Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification. 展开更多
关键词 FINE-GRAINED image CLASSIFICATION zero-shot LEARNING deep feature LEARNING domain adaptation semantic graph
原文传递
Effects of feature selection and normalization on network intrusion detection 被引量:3
16
作者 Mubarak Albarka Umar Zhanfang Chen +1 位作者 Khaled Shuaib Yan Liu 《Data Science and Management》 2025年第1期23-39,共17页
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e... The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates. 展开更多
关键词 CYBERSECURITY Intrusion detection system Machine learning deep learning feature selection NORMALIZATION
在线阅读 下载PDF
An Intelligent Fault Diagnosis Method of Multi-Scale Deep Feature Fusion Based on Information Entropy 被引量:8
17
作者 Zhiwu Shang Wanxiang Li +2 位作者 Maosheng Gao Xia Liu Yan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期121-136,共16页
For a single-structure deep learning fault diagnosis model,its disadvantages are an insufficient feature extraction and weak fault classification capability.This paper proposes a multi-scale deep feature fusion intell... For a single-structure deep learning fault diagnosis model,its disadvantages are an insufficient feature extraction and weak fault classification capability.This paper proposes a multi-scale deep feature fusion intelligent fault diagnosis method based on information entropy.First,a normal autoencoder,denoising autoencoder,sparse autoencoder,and contractive autoencoder are used in parallel to construct a multi-scale deep neural network feature extraction structure.A deep feature fusion strategy based on information entropy is proposed to obtain low-dimensional features and ensure the robustness of the model and the quality of deep features.Finally,the advantage of the deep belief network probability model is used as the fault classifier to identify the faults.The effectiveness of the proposed method was verified by a gearbox test-bed.Experimental results show that,compared with traditional and existing intelligent fault diagnosis methods,the proposed method can obtain representative information and features from the raw data with higher classification accuracy. 展开更多
关键词 Fault diagnosis feature fusion Information entropy deep autoencoder deep belief network
在线阅读 下载PDF
Multiclass Stomach Diseases Classication Using Deep Learning Features Optimization 被引量:3
18
作者 Muhammad Attique Khan Abdul Majid +4 位作者 Nazar Hussain Majed Alhaisoni Yu-Dong Zhang Seifedine Kadry Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第6期3381-3399,共19页
In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomac... In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomach disease classication.The proposed method work in few important steps—preprocessing using the fusion of ltering images along with Ant Colony Optimization(ACO),deep transfer learning-based features extraction,optimization of deep extracted features using nature-inspired algorithms,and nally fusion of optimal vectors and classication using Multi-Layered Perceptron Neural Network(MLNN).In the feature extraction step,pretrained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step.Later on,the activation function is applied to Global Average Pool(GAP)for feature extraction.However,the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization(PSO)with dynamic tness function and Crow Search Algorithm(CSA).Hence,both methods’output is fused by a maximal value approach and classied the fused feature vector by MLNN.Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%.The comparison with existing techniques,it is shown that the proposed method shows signicant performance. 展开更多
关键词 Stomach infections deep features features optimization FUSION classication
在线阅读 下载PDF
Human Action Recognition Based on Supervised Class-Specific Dictionary Learning with Deep Convolutional Neural Network Features 被引量:6
19
作者 Binjie Gu 《Computers, Materials & Continua》 SCIE EI 2020年第4期243-262,共20页
Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The ma... Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models. 展开更多
关键词 Action recognition deep CNN features sparse model supervised dictionary learning
在线阅读 下载PDF
Deep Sequential Feature Learning in Clinical Image Classification of Infectious Keratitis 被引量:4
20
作者 Yesheng Xu Ming Kong +7 位作者 Wenjia Xie Runping Duan Zhengqing Fang Yuxiao Lin Qiang Zhu Siliang Tang Fei Wu Yu-Feng Yao 《Engineering》 SCIE EI 2021年第7期1002-1010,共9页
Infectious keratitis is the most common condition of corneal diseases in which a pathogen grows in the cornea leading to inflammation and destruction of the corneal tissues.Infectious keratitis is a medical emergency ... Infectious keratitis is the most common condition of corneal diseases in which a pathogen grows in the cornea leading to inflammation and destruction of the corneal tissues.Infectious keratitis is a medical emergency for which a rapid and accurate diagnosis is needed to ensure prompt and precise treatment to halt the disease progression and to limit the extent of corneal damage;otherwise,it may develop a sight-threatening and even eye-globe-threatening condition.In this paper,we propose a sequentiallevel deep model to effectively discriminate infectious corneal disease via the classification of clinical images.In this approach,we devise an appropriate mechanism to preserve the spatial structures of clinical images and disentangle the informative features for clinical image classification of infectious keratitis.In a comparison,the performance of the proposed sequential-level deep model achieved 80%diagnostic accuracy,far better than the 49.27%±11.5%diagnostic accuracy achieved by 421 ophthalmologists over 120 test images. 展开更多
关键词 deep learning Corneal disease Sequential features Machine learning Long short-term memory
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部