The modern paradigm of the Internet of Things(IoT)has led to a significant increase in demand for latency-sensitive applications in Fog-based cloud computing.However,such applications cannot meet strict quality of ser...The modern paradigm of the Internet of Things(IoT)has led to a significant increase in demand for latency-sensitive applications in Fog-based cloud computing.However,such applications cannot meet strict quality of service(QoS)requirements.The large-scale deployment of IoT requires more effective use of network infrastructure to ensure QoS when processing big data.Generally,cloud-centric IoT application deployment involves different modules running on terminal devices and cloud servers.Fog devices with different computing capabilities must process the data generated by the end device,so deploying latency-sensitive applications in a heterogeneous fog computing environment is a difficult task.In addition,when there is an inconsistent connection delay between the fog and the terminal device,the deployment of such applications becomes more complicated.In this article,we propose an algorithm that can effectively place application modules on network nodes while considering connection delay,processing power,and sensing data volume.Compared with traditional cloud computing deployment,we conducted simulations in iFogSim to confirm the effectiveness of the algorithm.The simulation results verify the effectiveness of the proposed algorithm in terms of end-to-end delay and network consumption.Therein,latency and execution time is insensitive to the number of sensors.展开更多
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2021-2016-0-00313)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘The modern paradigm of the Internet of Things(IoT)has led to a significant increase in demand for latency-sensitive applications in Fog-based cloud computing.However,such applications cannot meet strict quality of service(QoS)requirements.The large-scale deployment of IoT requires more effective use of network infrastructure to ensure QoS when processing big data.Generally,cloud-centric IoT application deployment involves different modules running on terminal devices and cloud servers.Fog devices with different computing capabilities must process the data generated by the end device,so deploying latency-sensitive applications in a heterogeneous fog computing environment is a difficult task.In addition,when there is an inconsistent connection delay between the fog and the terminal device,the deployment of such applications becomes more complicated.In this article,we propose an algorithm that can effectively place application modules on network nodes while considering connection delay,processing power,and sensing data volume.Compared with traditional cloud computing deployment,we conducted simulations in iFogSim to confirm the effectiveness of the algorithm.The simulation results verify the effectiveness of the proposed algorithm in terms of end-to-end delay and network consumption.Therein,latency and execution time is insensitive to the number of sensors.
文摘由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature Fusion,SAM-MSFF)的低照度目标检测方法 .该方法首先通过多尺度交互内存金字塔融合多尺度特征,增强低照度图像特征中的有效信息,并设置内存向量存储样本的特征,捕获样本之间的潜在关联性;然后,引入空间感知注意力机制获取特征在空间域的长距离上下文信息和局部信息,从而增强低照度图像中的目标特征,抑制背景信息和噪声的干扰;最后,利用多感受野增强模块扩张特征的感受野,对具有不同感受野的特征进行分组重加权计算,使检测网络根据输入的多尺度信息自适应地调整感受野的大小.在ExDark数据集上进行实验,本文方法的平均精度(mean Average Precision,mAP)达到77.04%,比现有的主流目标检测方法提高2.6%~14.34%.