期刊文献+
共找到36,418篇文章
< 1 2 250 >
每页显示 20 50 100
Spatial and Temporal Evolution of Lithospheric Mantle beneath the Eastern North China Craton:Constraints from Mineral Chemistry of Peridotite Xenoliths from the Miocene Qingyuan Basalts and a Regional Synthesis 被引量:1
1
作者 Jian-Fang Guo Qiang Ma +1 位作者 Jian-Ping Zheng Yu-Ping Su 《Journal of Earth Science》 2025年第2期474-484,共11页
Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric ma... Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle. 展开更多
关键词 lithospheric mantle peridotite xenoliths temporal and spatial variations Tan-Lu fault zone North China craton PETROLOGY GEOCHEMISTRY
原文传递
Robust human motion prediction via integration of spatial and temporal cues
2
作者 ZHANG Shaobo LIU Sheng +1 位作者 GAO Fei FENG Yuan 《Optoelectronics Letters》 2025年第8期499-506,共8页
Research on human motion prediction has made significant progress due to its importance in the development of various artificial intelligence applications.However,effectively capturing spatio-temporal features for smo... Research on human motion prediction has made significant progress due to its importance in the development of various artificial intelligence applications.However,effectively capturing spatio-temporal features for smoother and more precise human motion prediction remains a challenge.To address these issues,a robust human motion prediction method via integration of spatial and temporal cues(RISTC)has been proposed.This method captures sufficient spatio-temporal correlation of the observable sequence of human poses by utilizing the spatio-temporal mixed feature extractor(MFE).In multi-layer MFEs,the channel-graph united attention blocks extract the augmented spatial features of the human poses in the channel and spatial dimension.Additionally,multi-scale temporal blocks have been designed to effectively capture complicated and highly dynamic temporal information.Our experiments on the Human3.6M and Carnegie Mellon University motion capture(CMU Mocap)datasets show that the proposed network yields higher prediction accuracy than the state-of-the-art methods. 展开更多
关键词 human p integration spatial temporal cues ristc human motion prediction temporal cues mixed feature extractor spatial cues artificial intelligence spatio temporal correlation
原文传递
A staged deep learning approach to spatial refinement in 3D temporal atmospheric transport
3
作者 M.Giselle Fernández-Godino Wai Tong Chung +4 位作者 Akshay A.Gowardhan Matthias Ihme Qingkai Kong Donald D.Lucas Stephen C.Myers 《Artificial Intelligence in Geosciences》 2025年第1期191-201,共11页
High-resolution spatiotemporal simulations effectively capture the complexities of atmospheric plume sion disper-in complex terrain.However,their high computational cost makes them impractical for applications requiri... High-resolution spatiotemporal simulations effectively capture the complexities of atmospheric plume sion disper-in complex terrain.However,their high computational cost makes them impractical for applications requiring rapid responses or iterative processes,such as optimization,uncertainty quantification,or inverse modeling.To address this challenge,this work introduces the Dual-Stage Temporal Three-dimensional UNet Super-resolution(DST3D-UNet-SR)model,a highly efficient deep learning model for plume dispersion predictions.DST3D-UNet-SR is composed of two sequential modules:the temporal module(TM),which predicts the transient evolution of a plume in complex terrain from low-resolution temporal data,and the spatial refinement module(SRM),which subsequently enhances the spatial resolution of the TM predictions.We train DST3D-UNet-SR using a comprehensive dataset derived from high-resolution large eddy simulations(LES)of plume transport.We propose the DST3D-UNet-SR model to significantly accelerate LES of three-dimensional(3D)plume dispersion by three orders of magnitude.Additionally,the model demonstrates the ability to dynamically adapt to evolving conditions through the incorporation of new observational data,substantially improving prediction accuracy in high-concentration regions near the source. 展开更多
关键词 Atmospheric sciences GEOSCIENCES Plume transport 3D temporal sequences Artificial intelligence CNN LSTM Autoencoder Autoregressive model U-Net SUPER-RESOLUTION spatial refinement
在线阅读 下载PDF
Temporal and spatial distribution characteristics of water resources in Guangdong Province based on a cloud model 被引量:9
4
作者 Qi Zhou Wei Wang +2 位作者 Yong Pang Zhi-yong Zhou Hui-ping Luo 《Water Science and Engineering》 EI CAS CSCD 2015年第4期263-272,共10页
With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distr... With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced. 展开更多
关键词 Water resources temporal and spatial distribution characteristics Cloud model Guangdong Province
在线阅读 下载PDF
Spatio-temporal dynamics of maize cropping system in Northeast China between 1980 and 2010 by using spatial production allocation model 被引量:13
5
作者 TAN Jieyang YANG Peng +6 位作者 LIU Zhenhuan WU Wenbin ZHANG Li LI Zhipeng YOU Liangzhi TANG Huajun LI Zhengguo 《Journal of Geographical Sciences》 SCIE CSCD 2014年第3期397-410,共14页
Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are st... Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand. 展开更多
关键词 spring maize spatial production allocation model spatio-temporal pattern Northeast China
原文传递
Spatial-temporal Dynamics of Tuberculosis and Its Association with Meteorological Factors and Air Pollution in Shaanxi Province,China
6
作者 Hengliang Lyu Xihao Liu +6 位作者 Hui Chen Xueli Zhang Feng Liu Zitong Zheng Hongwei Zhang Yuanyong Xu Wenyi Zhang 《Biomedical and Environmental Sciences》 2025年第7期867-872,共6页
Tuberculosis(TB)remained the first leading cause of death from a single infectious agent worldwide in 2023,resulting in nearly twice as many deaths as those caused by the human immunodeficiency virus/acquired immune d... Tuberculosis(TB)remained the first leading cause of death from a single infectious agent worldwide in 2023,resulting in nearly twice as many deaths as those caused by the human immunodeficiency virus/acquired immune deficiency syndrome.An estimated 10.8 million TB cases were reported globally in 2023,with approximately 1.25 million associated deaths.In China,which ranks third in the global TB burden,there were approximately 741,000 new cases and 25,000 deaths in 2023^([1]).TB poses a significant threat to human health worldwide. 展开更多
关键词 air pollution TUBERCULOSIS Shaanxi province meteorological factors China spatial temporal dynamics
暂未订购
Spatial and Temporal Distribution Characteristics of PM 10 Concentration in Yantai City and Its Relationship with Meteorological Factors
7
作者 Yumeng JIANG 《Meteorological and Environmental Research》 2025年第3期22-26,32,共6页
Based on the monitoring data of PM 10 concentration from six environmental monitoring stations and the ground meteorological observation data in Yantai City from 2019 to 2021,the spatial and temporal variation of PM 1... Based on the monitoring data of PM 10 concentration from six environmental monitoring stations and the ground meteorological observation data in Yantai City from 2019 to 2021,the spatial and temporal variation of PM 10 concentration and its relationship with meteorological factors were studied.The results show that from the perspective of temporal variation,the annual average of PM 10 concentration in Yantai City tended to decrease year by year.It was high in winter and spring and low in summer and autumn.In terms of monthly variation,the changing curve is U-shaped,and it was high in December and January but low in July and August.During a day,PM 10 concentration had two peaks.The first peak appeared approximately from 09:00 to 11:00,and the second peak can be found from 21:00 to 23:00.From the perspective of spatial distribution,PM 10 concentration was the highest in the development area and Fushan District.It was the highest in the west,followed by the east,while it was the lowest in the middle.The spatial difference rate was the highest in summer.Average temperature,relative humidity,wind speed and precipitation were the main meteorological factors influencing PM 10 concentration in Yantai area.PM 10 concentration was negatively correlated with average temperature and relative humidity,and the correlation was the most significant from June to October.It was negatively correlated with wind speed and precipitation,and the correlation was different in various months.The negative correlation was significant in summer and winter. 展开更多
关键词 Yantai City PM 10 spatial and temporal distribution Meteorological factors CORRELATION
在线阅读 下载PDF
Human Motion Prediction Based on Multi-Level Spatial and Temporal Cues Learning
8
作者 Jiayi Geng Yuxuan Wu +5 位作者 Wenbo Lu Pengxiang Su Amel Ksibi Wei Li Zaffar Ahmed Shaikh Di Gai 《Computers, Materials & Continua》 2025年第11期3689-3707,共19页
Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies a... Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies among human joints while ignoring the temporal cues and the complex relationships across non-consecutive frames.These limitations hinder the model’s ability to generate accurate predictions over longer time horizons and in scenarios with complex motion patterns.To address the above problems,we proposed a novel multi-level spatial and temporal learning model,which consists of a Cross Spatial Dependencies Encoding Module(CSM)and a Dynamic Temporal Connection Encoding Module(DTM).Specifically,the CSM is designed to capture complementary local and global spatial dependent information at both the joint level and the joint pair level.We further present DTM to encode diverse temporal evolution contexts and compress motion features to a deep level,enabling the model to capture both short-term and long-term dependencies efficiently.Extensive experiments conducted on the Human 3.6M and CMU Mocap datasets demonstrate that our model achieves state-of-the-art performance in both short-term and long-term predictions,outperforming existing methods by up to 20.3% in accuracy.Furthermore,ablation studies confirm the significant contributions of the CSM and DTM in enhancing prediction accuracy. 展开更多
关键词 Human motion prediction spatial dependencies learning temporal context learning graph convolutional networks transformer
在线阅读 下载PDF
Spatial and Temporal Changes and Influencing Factors of Ecosystem Service Value in Jingzhou City Based on Land Use Change
9
作者 GAO Yanpeng WANG Wanxi 《Journal of Landscape Research》 2025年第1期35-42,共8页
This study investigated the spatio-temporal variation characteristics of ecosystem service value(ESV)alongside its driving influencing factors,thereby offering valuable theoretical insights for the sustainable develop... This study investigated the spatio-temporal variation characteristics of ecosystem service value(ESV)alongside its driving influencing factors,thereby offering valuable theoretical insights for the sustainable development of Jingzhou City,Hubei Province.Based on the land use data for Jingzhou City from 2000 to 2020,this study quantified the value of the ecological environment using the equivalent factor method.Furthermore,it analyzed and elucidated the spatio-temporal heterogeneity and driving mechanisms of ecosystem services in Jingzhou City.The results indicated that between 2000 and 2020,cultivated land(66.40%)and water area(18.82%)were the predominant land use types in Jingzhou City.The areas of water area and construction land exhibited a growth trend during this period.Construction land had the highest rate of land use change,followed by water area and cultivated land.Land use transitions primarily occurred between cultivated land and water area,as well as between cultivated land and construction land.The total value of ecosystem services in Jingzhou City increased by 165.07%from 2000 to 2020.ESV exhibited an upward trend from 2000 to 2015,followed by a gradual decline from 2015 to 2020.The ranking of individual ecosystem services,in descending order,was as follows:regulation services,supporting services,provisioning services,and cultural services.High-value ESV areas were predominantly situated in the water area of Lake Honghu,while low-value regions were mainly found in the cultivated land in the central and western parts of Jingzhou City.The spatial differentiation of ESV in Jingzhzou City was influenced by both natural and socio-economic factors,with natural factors exerting a more significant impact than socioeconomic factors.Specifically,the Normalized Difference Vegetation Index(NDVI)was the dominant environmental factor,while GDP plays a synergistic role. 展开更多
关键词 Land use change Ecosystem service value temporal and spatial variations Geographical detector Jingzhou City
在线阅读 下载PDF
SG-TE:Spatial Guidance and Temporal Enhancement Network for Facial-Bodily Emotion Recognition
10
作者 Zhong Huang Danni Zhang +3 位作者 Fuji Ren Min Hu Juan Liu Haitao Yu 《CAAI Transactions on Intelligence Technology》 2025年第3期871-890,共20页
To overcome the deficiencies of single-modal emotion recognition based on facial expression or bodily posture in natural scenes,a spatial guidance and temporal enhancement(SG-TE)network is proposed for facial-bodily e... To overcome the deficiencies of single-modal emotion recognition based on facial expression or bodily posture in natural scenes,a spatial guidance and temporal enhancement(SG-TE)network is proposed for facial-bodily emotion recognition.First,ResNet50,DNN and spatial ransformer models are used to capture facial texture vectors,bodily skeleton vectors and wholebody geometric vectors,and an intraframe correlation attention guidance(S-CAG)mechanism,which guides the facial texture vector and the bodily skeleton vector by the whole-body geometric vector,is designed to exploit the spatial potential emotional correlation between face and posture.Second,an interframe significant segment enhancement(T-SSE)structure is embedded into a temporal transformer to enhance high emotional intensity frame information and avoid emotional asynchrony.Finally,an adaptive weight assignment(M-AWA)strategy is constructed to realise facial-bodily fusion.The experimental results on the BabyRobot Emotion Dataset(BRED)and Context-Aware Emotion Recognition(CAER)dataset indicate that the proposed network reaches accuracies of 81.61%and 89.39%,which are 9.61%and 9.46%higher than those of the baseline network,respectively.Compared with the state-of-the-art methods,the proposed method achieves 7.73%and 20.57%higher accuracy than single-modal methods based on facial expression or bodily posture,respectively,and 2.16%higher accuracy than the dual-modal methods based on facial-bodily fusion.Therefore,the proposed method,which adaptively fuses the complementary information of face and posture,improves the quality of emotion recognition in real-world scenarios. 展开更多
关键词 bodily posture facial expression intraframe spatial guidance interframe temporal enhancement multimodal feature fusion
在线阅读 下载PDF
Temporal and Spatial Variations in the Concentration of Negative Ions and Its Influencing Factors in Xinfeng County
11
作者 Yiping LIN Xuanying XIE +1 位作者 Liqing ZHOU Liwen YE 《Meteorological and Environmental Research》 2025年第1期41-43,48,共4页
Based on the data of meteorological elements and concentration of negative ions in the county town station,Luguhe station and Yunjishan station during 2020-2024,the temporal and spatial variations in the concentration... Based on the data of meteorological elements and concentration of negative ions in the county town station,Luguhe station and Yunjishan station during 2020-2024,the temporal and spatial variations in the concentration of negative ions and their influencing factors in Xinfeng County were analyzed.The results show that the concentration of negative ions was the highest in summer,followed by spring;it was lower in autumn and the lowest in winter.In terms of diurnal variations,it was higher in the early morning and night,and lower in the noon and afternoon,which was closely related to the diurnal variations of human activities and meteorological conditions.The factors that affect the concentration of negative ions in the air are more complex.Besides meteorological factors,vegetation,altitude,human activities and other factors should be considered. 展开更多
关键词 Concentration of negative ions temporal and spatial variations Influencing factors Xinfeng County
在线阅读 下载PDF
Learning Temporal User Features for Repost Prediction with Large Language Models
12
作者 Wu-Jiu Sun Xiao Fan Liu 《Computers, Materials & Continua》 2025年第3期4117-4136,共20页
Predicting information dissemination on social media,specifcally users’reposting behavior,is crucial for applications such as advertising campaigns.Conventional methods use deep neural networks to make predictions ba... Predicting information dissemination on social media,specifcally users’reposting behavior,is crucial for applications such as advertising campaigns.Conventional methods use deep neural networks to make predictions based on features related to user topic interests and social preferences.However,these models frequently fail to account for the difculties arising from limited training data and model size,which restrict their capacity to learn and capture the intricate patterns within microblogging data.To overcome this limitation,we introduce a novel model Adapt pre-trained Large Language model for Reposting Prediction(ALL-RP),which incorporates two key steps:(1)extracting features from post content and social interactions using a large language model with extensive parameters and trained on a vast corpus,and(2)performing semantic and temporal adaptation to transfer the large language model’s knowledge of natural language,vision,and graph structures to reposting prediction tasks.Specifcally,the temporal adapter in the ALL-RP model captures multi-dimensional temporal information from evolving patterns of user topic interests and social preferences,thereby providing a more realistic refection of user attributes.Additionally,to enhance the robustness of feature modeling,we introduce a variant of the temporal adapter that implements multiple temporal adaptations in parallel while maintaining structural simplicity.Experimental results on real-world datasets demonstrate that the ALL-RP model surpasses state-of-the-art models in predicting both individual user reposting behavior and group sharing behavior,with performance gains of 2.81%and 4.29%,respectively. 展开更多
关键词 Reposting prediction large language model semantic adaptation temporal adaptation
在线阅读 下载PDF
Could Plant Height Compensate for Temporal and Spatial Limitations of Canopy Spectra for Inversion of Plant Nitrogen Accumulation in Rice?
13
作者 WANG Xiaoke XU Guiling +7 位作者 FENG Yuehua SONG Zhengli GUO Yanjun Muhammad Usama LATIF LU Linya Somsana PHONENASAY XU Xiangjun CUI BingPing 《Rice science》 2025年第4期467-471,I0037-I0042,共11页
Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in hor... Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages. 展开更多
关键词 temporal limitations RICE nitrogen accumulation canopy top information spatial limitations plant height spectral remote sensing canopy spectra
在线阅读 下载PDF
STDNet:Improved lip reading via short-term temporal dependency modeling
14
作者 Xiaoer WU Zhenhua TAN +1 位作者 Ziwei CHENG Yuran RU 《虚拟现实与智能硬件(中英文)》 2025年第2期173-187,共15页
Background Lip reading uses lip images for visual speech recognition.Deep-learning-based lip reading has greatly improved performance in current datasets;however,most existing research ignores the significance of shor... Background Lip reading uses lip images for visual speech recognition.Deep-learning-based lip reading has greatly improved performance in current datasets;however,most existing research ignores the significance of short-term temporal dependencies of lip-shape variations between adjacent frames,which leaves space for further improvement in feature extraction.Methods This article presents a spatiotemporal feature fusion network(STDNet)that compensates for the deficiencies of current lip-reading approaches in short-term temporal dependency modeling.Specifically,to distinguish more similar and intricate content,STDNet adds a temporal feature extraction branch based on a 3D-CNN,which enhances the learning of dynamic lip movements in adjacent frames while not affecting spatial feature extraction.In particular,we designed a local–temporal block,which aggregates interframe differences,strengthening the relationship between various local lip regions through multiscale convolution.We incorporated the squeeze-and-excitation mechanism into the Global-Temporal Block,which processes a single frame as an independent unitto learn temporal variations across the entire lip region more effectively.Furthermore,attention pooling was introduced to highlight meaningful frames containing key semantic information for the target word.Results Experimental results demonstrated STDNet's superior performance on the LRW and LRW-1000,achieving word-level recognition accuracies of 90.2% and 53.56%,respectively.Extensive ablation experiments verified the rationality and effectiveness of its modules.Conclusions The proposed model effectively addresses short-term temporal dependency limitations in lip reading,and improves the temporal robustness of the model against variable-length sequences.These advancements validate the importance of explicit short-term dynamics modeling for practical lip-reading systems. 展开更多
关键词 Lip reading Spatio-temporal feature fusion Short-term temporal dependency modeling
在线阅读 下载PDF
Dual-branch spatial-temporal decoupled fusion transformer for safety action recognition in smart grid substation
15
作者 HAO Yu ZHENG Hao +3 位作者 WANG Tongwen WANG Yu SUN Wei ZHANG Shujuan 《Optoelectronics Letters》 2025年第8期507-512,共6页
Smart grid substation operations often take place in hazardous environments and pose significant threats to the safety of power personnel.Relying solely on manual supervision can lead to inadequate oversight.In respon... Smart grid substation operations often take place in hazardous environments and pose significant threats to the safety of power personnel.Relying solely on manual supervision can lead to inadequate oversight.In response to the demand for technology to identify improper operations in substation work scenarios,this paper proposes a substation safety action recognition technology to avoid the misoperation and enhance the safety management.In general,this paper utilizes a dual-branch transformer network to extract spatial and temporal information from the video dataset of operational behaviors in complex substation environments.Firstly,in order to capture the spatial-temporal correlation of people's behaviors in smart grid substation,we devise a sparse attention module and a segmented linear attention module that are embedded into spatial branch transformer and temporal branch transformer respectively.To avoid the redundancy of spatial and temporal information,we fuse the temporal and spatial features using a tensor decomposition fusion module by a decoupled manner.Experimental results indicate that our proposed method accurately detects improper operational behaviors in substation work scenarios,outperforming other existing methods in terms of detection and recognition accuracy. 展开更多
关键词 identify improper operations manual supervision avoid misoperation spatial temporal substation safety action recognition technology dual branch decoupled fusion enhance safety managementin
原文传递
Exploration of spatial and temporal characteristics of PM2.5 concentration in Guangzhou, China using wavelet analysis and modified land use regression model 被引量:4
16
作者 Fenglei Fan Runping Liu 《Geo-Spatial Information Science》 SCIE CSCD 2018年第4期311-321,共11页
This article attempts to detail time series characteristics of PM2.5 concentration in Guangzhou(China)from 1 June 2012 to 31 May 2013 based on wavelet analysis tools,and discuss its spatial distribution using geograph... This article attempts to detail time series characteristics of PM2.5 concentration in Guangzhou(China)from 1 June 2012 to 31 May 2013 based on wavelet analysis tools,and discuss its spatial distribution using geographic information system software and a modified land use regression model.In this modified model,an important variable(land use data)is substituted for impervious surface area,which can be obtained conveniently from remote sensing imagery through the linear spectral mixture analysis method.Impervious surface has higher precision than land use data because of its sub-pixel level.Seasonal concentration pattern and day-by-day change feature of PM2.5 in Guangzhou with a micro-perspective are discussed and understood.Results include:(1)the highest concentration of PM2.5 occurs in October and the lowest in July,respectively;(2)average concentration of PM2.5 in winter is higher than in other seasons;and(3)there are two high concentration zones in winter and one zone in spring. 展开更多
关键词 PM2.5 temporal change spatial distribution wavelet analysis land use regression(LUR)model GIS
原文传递
Spatial-temporal Evolution and Determinants of the Belt and Road Initiative: A Maximum Entropy Gravity Model Approach 被引量:8
17
作者 HUANG Qinshi ZHU Xigang +3 位作者 LIU Chunhui WU Wei LIU Fengbao ZHANG Xinyi 《Chinese Geographical Science》 SCIE CSCD 2020年第5期839-854,共16页
The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis... The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis of equilibrium points without any reference to when or how to achieve it. In this paper, a dynamic gravity model was established based on the Maximum Entropy(MaxEnt) theory to estimate and monitor the interconnection intensity and dynamic characters of bilateral relations. In order to detect the determinants of interconnection intensity, a Geodetector method was applied to identify and evaluate the determinants of spatial networks in five dimensions. The empirical study clearly demonstrates a heterogeneous and non-circular spatial structure. The main driving forces of spatial-temporal evolution are foreign direct investment, tourism and railway infrastructure construction, while determinants in different sub-regions show obvious spatial differentiation. Southeast Asian countries are typically multi-island area where aviation infrastructure plays a more important role. North and Central Asian countries regard oil as a pillar industry where power and port facilities have a greater impact on the interconnection. While Western Asian countries are mostly influenced by the railway infrastructure, Eastern European countries already have relatively robust infrastructure where tariff policies provide a greater impetus. 展开更多
关键词 spatial interaction model the Belt and Road Initiative(BRI) Maximum Entropy(MaxEnt)gravity model spatial pattern China
在线阅读 下载PDF
An hourly shallow landslide warning model developed by combining automatic landslide spatial susceptibility and temporal rainfall threshold predictions 被引量:4
18
作者 CAO Yi-ming GUO Wei +3 位作者 WU Yu-ming LI Lang-ping ZHANG Yi-xing LAN Heng-xing 《Journal of Mountain Science》 SCIE CSCD 2022年第12期3370-3387,共18页
Landslide warning models are important for mitigating landslide risks.The rainfall threshold model is the most widely used early warning model for predicting rainfall-triggered landslides.Recently,the rainfall thresho... Landslide warning models are important for mitigating landslide risks.The rainfall threshold model is the most widely used early warning model for predicting rainfall-triggered landslides.Recently,the rainfall threshold model has been coupled with the landslide susceptibility(LS)model to improve the accuracy of early warnings in the spatial domain.Existing coupled models,designed based on a matrix including predefined rainfall thresholds and susceptibility levels,have been used to determine the warning level.These predefined classifications inevitably have subjective rainfall thresholds and susceptibility levels,thus affecting the probability distribution information and eventually influencing the reliability of the produced early warning.In this paper,we propose a novel landslide warning model in which the temporal and spatial probabilities of landslides are coupled without predefining the classified levels.The temporal probability of landslides is obtained from the probability distribution of rainfall intensities that triggered historical landslides.The spatial probability of landslides is then obtained from the susceptibility probability distribution.A case study shows that the proposed probability-coupled model can successfully provide hourly warning results before the occurrence of a landslide.Although all three models successfully predicted the landslide,the probability-coupled model produced a warning zone comprising the fewest grid cells.Quantitatively,the probabilitycoupled model produced only 39 grid cells in the warning zone,while the rainfall threshold model and the matrix-coupled model produced warning zones including 81 and 49 grid cells,respectively.The proposed model is also applicable to other regions affected by rainfall-induced landslides and is thus expected to be useful for practical landslide risk management. 展开更多
关键词 LANDSLIDE Hourly warning temporal probability spatial probability Rainfall threshold SUSCEPTIBILITY
原文传递
Modeling of Spatial Distributions of Farmland Density and Its Temporal Change Using Geographically Weighted Regression Model 被引量:2
19
作者 ZHANG Haitao GUO Long +3 位作者 CHEN Jiaying FU Peihong GU Jianli LIAO Guangyu 《Chinese Geographical Science》 SCIE CSCD 2014年第2期191-204,共14页
This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199... This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors. 展开更多
关键词 spatial lag model spatial error model geographically weighted regression model global spatial autocorrelation local spatial aurocorrelation
在线阅读 下载PDF
DEVELOPMENT OF A GIS DATA MODEL WITH SPATIAL,TEMPORAL AND ATTRIBUTE COMPONENTS BASED ON OBJECT-ORIENTED APPROACH 被引量:2
20
作者 SHI Wenzhong ZHANG Minwen 《Geo-Spatial Information Science》 2000年第1期17-23,共7页
This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model ... This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components. 展开更多
关键词 OBJECT-ORIENTATION GIS data modeling spatial temporal and attribute model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部