Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric ma...Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.展开更多
Research on human motion prediction has made significant progress due to its importance in the development of various artificial intelligence applications.However,effectively capturing spatio-temporal features for smo...Research on human motion prediction has made significant progress due to its importance in the development of various artificial intelligence applications.However,effectively capturing spatio-temporal features for smoother and more precise human motion prediction remains a challenge.To address these issues,a robust human motion prediction method via integration of spatial and temporal cues(RISTC)has been proposed.This method captures sufficient spatio-temporal correlation of the observable sequence of human poses by utilizing the spatio-temporal mixed feature extractor(MFE).In multi-layer MFEs,the channel-graph united attention blocks extract the augmented spatial features of the human poses in the channel and spatial dimension.Additionally,multi-scale temporal blocks have been designed to effectively capture complicated and highly dynamic temporal information.Our experiments on the Human3.6M and Carnegie Mellon University motion capture(CMU Mocap)datasets show that the proposed network yields higher prediction accuracy than the state-of-the-art methods.展开更多
High-resolution spatiotemporal simulations effectively capture the complexities of atmospheric plume sion disper-in complex terrain.However,their high computational cost makes them impractical for applications requiri...High-resolution spatiotemporal simulations effectively capture the complexities of atmospheric plume sion disper-in complex terrain.However,their high computational cost makes them impractical for applications requiring rapid responses or iterative processes,such as optimization,uncertainty quantification,or inverse modeling.To address this challenge,this work introduces the Dual-Stage Temporal Three-dimensional UNet Super-resolution(DST3D-UNet-SR)model,a highly efficient deep learning model for plume dispersion predictions.DST3D-UNet-SR is composed of two sequential modules:the temporal module(TM),which predicts the transient evolution of a plume in complex terrain from low-resolution temporal data,and the spatial refinement module(SRM),which subsequently enhances the spatial resolution of the TM predictions.We train DST3D-UNet-SR using a comprehensive dataset derived from high-resolution large eddy simulations(LES)of plume transport.We propose the DST3D-UNet-SR model to significantly accelerate LES of three-dimensional(3D)plume dispersion by three orders of magnitude.Additionally,the model demonstrates the ability to dynamically adapt to evolving conditions through the incorporation of new observational data,substantially improving prediction accuracy in high-concentration regions near the source.展开更多
Tuberculosis(TB)remained the first leading cause of death from a single infectious agent worldwide in 2023,resulting in nearly twice as many deaths as those caused by the human immunodeficiency virus/acquired immune d...Tuberculosis(TB)remained the first leading cause of death from a single infectious agent worldwide in 2023,resulting in nearly twice as many deaths as those caused by the human immunodeficiency virus/acquired immune deficiency syndrome.An estimated 10.8 million TB cases were reported globally in 2023,with approximately 1.25 million associated deaths.In China,which ranks third in the global TB burden,there were approximately 741,000 new cases and 25,000 deaths in 2023^([1]).TB poses a significant threat to human health worldwide.展开更多
Based on the monitoring data of PM 10 concentration from six environmental monitoring stations and the ground meteorological observation data in Yantai City from 2019 to 2021,the spatial and temporal variation of PM 1...Based on the monitoring data of PM 10 concentration from six environmental monitoring stations and the ground meteorological observation data in Yantai City from 2019 to 2021,the spatial and temporal variation of PM 10 concentration and its relationship with meteorological factors were studied.The results show that from the perspective of temporal variation,the annual average of PM 10 concentration in Yantai City tended to decrease year by year.It was high in winter and spring and low in summer and autumn.In terms of monthly variation,the changing curve is U-shaped,and it was high in December and January but low in July and August.During a day,PM 10 concentration had two peaks.The first peak appeared approximately from 09:00 to 11:00,and the second peak can be found from 21:00 to 23:00.From the perspective of spatial distribution,PM 10 concentration was the highest in the development area and Fushan District.It was the highest in the west,followed by the east,while it was the lowest in the middle.The spatial difference rate was the highest in summer.Average temperature,relative humidity,wind speed and precipitation were the main meteorological factors influencing PM 10 concentration in Yantai area.PM 10 concentration was negatively correlated with average temperature and relative humidity,and the correlation was the most significant from June to October.It was negatively correlated with wind speed and precipitation,and the correlation was different in various months.The negative correlation was significant in summer and winter.展开更多
Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies a...Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies among human joints while ignoring the temporal cues and the complex relationships across non-consecutive frames.These limitations hinder the model’s ability to generate accurate predictions over longer time horizons and in scenarios with complex motion patterns.To address the above problems,we proposed a novel multi-level spatial and temporal learning model,which consists of a Cross Spatial Dependencies Encoding Module(CSM)and a Dynamic Temporal Connection Encoding Module(DTM).Specifically,the CSM is designed to capture complementary local and global spatial dependent information at both the joint level and the joint pair level.We further present DTM to encode diverse temporal evolution contexts and compress motion features to a deep level,enabling the model to capture both short-term and long-term dependencies efficiently.Extensive experiments conducted on the Human 3.6M and CMU Mocap datasets demonstrate that our model achieves state-of-the-art performance in both short-term and long-term predictions,outperforming existing methods by up to 20.3% in accuracy.Furthermore,ablation studies confirm the significant contributions of the CSM and DTM in enhancing prediction accuracy.展开更多
This study investigated the spatio-temporal variation characteristics of ecosystem service value(ESV)alongside its driving influencing factors,thereby offering valuable theoretical insights for the sustainable develop...This study investigated the spatio-temporal variation characteristics of ecosystem service value(ESV)alongside its driving influencing factors,thereby offering valuable theoretical insights for the sustainable development of Jingzhou City,Hubei Province.Based on the land use data for Jingzhou City from 2000 to 2020,this study quantified the value of the ecological environment using the equivalent factor method.Furthermore,it analyzed and elucidated the spatio-temporal heterogeneity and driving mechanisms of ecosystem services in Jingzhou City.The results indicated that between 2000 and 2020,cultivated land(66.40%)and water area(18.82%)were the predominant land use types in Jingzhou City.The areas of water area and construction land exhibited a growth trend during this period.Construction land had the highest rate of land use change,followed by water area and cultivated land.Land use transitions primarily occurred between cultivated land and water area,as well as between cultivated land and construction land.The total value of ecosystem services in Jingzhou City increased by 165.07%from 2000 to 2020.ESV exhibited an upward trend from 2000 to 2015,followed by a gradual decline from 2015 to 2020.The ranking of individual ecosystem services,in descending order,was as follows:regulation services,supporting services,provisioning services,and cultural services.High-value ESV areas were predominantly situated in the water area of Lake Honghu,while low-value regions were mainly found in the cultivated land in the central and western parts of Jingzhou City.The spatial differentiation of ESV in Jingzhzou City was influenced by both natural and socio-economic factors,with natural factors exerting a more significant impact than socioeconomic factors.Specifically,the Normalized Difference Vegetation Index(NDVI)was the dominant environmental factor,while GDP plays a synergistic role.展开更多
To overcome the deficiencies of single-modal emotion recognition based on facial expression or bodily posture in natural scenes,a spatial guidance and temporal enhancement(SG-TE)network is proposed for facial-bodily e...To overcome the deficiencies of single-modal emotion recognition based on facial expression or bodily posture in natural scenes,a spatial guidance and temporal enhancement(SG-TE)network is proposed for facial-bodily emotion recognition.First,ResNet50,DNN and spatial ransformer models are used to capture facial texture vectors,bodily skeleton vectors and wholebody geometric vectors,and an intraframe correlation attention guidance(S-CAG)mechanism,which guides the facial texture vector and the bodily skeleton vector by the whole-body geometric vector,is designed to exploit the spatial potential emotional correlation between face and posture.Second,an interframe significant segment enhancement(T-SSE)structure is embedded into a temporal transformer to enhance high emotional intensity frame information and avoid emotional asynchrony.Finally,an adaptive weight assignment(M-AWA)strategy is constructed to realise facial-bodily fusion.The experimental results on the BabyRobot Emotion Dataset(BRED)and Context-Aware Emotion Recognition(CAER)dataset indicate that the proposed network reaches accuracies of 81.61%and 89.39%,which are 9.61%and 9.46%higher than those of the baseline network,respectively.Compared with the state-of-the-art methods,the proposed method achieves 7.73%and 20.57%higher accuracy than single-modal methods based on facial expression or bodily posture,respectively,and 2.16%higher accuracy than the dual-modal methods based on facial-bodily fusion.Therefore,the proposed method,which adaptively fuses the complementary information of face and posture,improves the quality of emotion recognition in real-world scenarios.展开更多
Based on the data of meteorological elements and concentration of negative ions in the county town station,Luguhe station and Yunjishan station during 2020-2024,the temporal and spatial variations in the concentration...Based on the data of meteorological elements and concentration of negative ions in the county town station,Luguhe station and Yunjishan station during 2020-2024,the temporal and spatial variations in the concentration of negative ions and their influencing factors in Xinfeng County were analyzed.The results show that the concentration of negative ions was the highest in summer,followed by spring;it was lower in autumn and the lowest in winter.In terms of diurnal variations,it was higher in the early morning and night,and lower in the noon and afternoon,which was closely related to the diurnal variations of human activities and meteorological conditions.The factors that affect the concentration of negative ions in the air are more complex.Besides meteorological factors,vegetation,altitude,human activities and other factors should be considered.展开更多
Predicting information dissemination on social media,specifcally users’reposting behavior,is crucial for applications such as advertising campaigns.Conventional methods use deep neural networks to make predictions ba...Predicting information dissemination on social media,specifcally users’reposting behavior,is crucial for applications such as advertising campaigns.Conventional methods use deep neural networks to make predictions based on features related to user topic interests and social preferences.However,these models frequently fail to account for the difculties arising from limited training data and model size,which restrict their capacity to learn and capture the intricate patterns within microblogging data.To overcome this limitation,we introduce a novel model Adapt pre-trained Large Language model for Reposting Prediction(ALL-RP),which incorporates two key steps:(1)extracting features from post content and social interactions using a large language model with extensive parameters and trained on a vast corpus,and(2)performing semantic and temporal adaptation to transfer the large language model’s knowledge of natural language,vision,and graph structures to reposting prediction tasks.Specifcally,the temporal adapter in the ALL-RP model captures multi-dimensional temporal information from evolving patterns of user topic interests and social preferences,thereby providing a more realistic refection of user attributes.Additionally,to enhance the robustness of feature modeling,we introduce a variant of the temporal adapter that implements multiple temporal adaptations in parallel while maintaining structural simplicity.Experimental results on real-world datasets demonstrate that the ALL-RP model surpasses state-of-the-art models in predicting both individual user reposting behavior and group sharing behavior,with performance gains of 2.81%and 4.29%,respectively.展开更多
Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in hor...Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages.展开更多
Background Lip reading uses lip images for visual speech recognition.Deep-learning-based lip reading has greatly improved performance in current datasets;however,most existing research ignores the significance of shor...Background Lip reading uses lip images for visual speech recognition.Deep-learning-based lip reading has greatly improved performance in current datasets;however,most existing research ignores the significance of short-term temporal dependencies of lip-shape variations between adjacent frames,which leaves space for further improvement in feature extraction.Methods This article presents a spatiotemporal feature fusion network(STDNet)that compensates for the deficiencies of current lip-reading approaches in short-term temporal dependency modeling.Specifically,to distinguish more similar and intricate content,STDNet adds a temporal feature extraction branch based on a 3D-CNN,which enhances the learning of dynamic lip movements in adjacent frames while not affecting spatial feature extraction.In particular,we designed a local–temporal block,which aggregates interframe differences,strengthening the relationship between various local lip regions through multiscale convolution.We incorporated the squeeze-and-excitation mechanism into the Global-Temporal Block,which processes a single frame as an independent unitto learn temporal variations across the entire lip region more effectively.Furthermore,attention pooling was introduced to highlight meaningful frames containing key semantic information for the target word.Results Experimental results demonstrated STDNet's superior performance on the LRW and LRW-1000,achieving word-level recognition accuracies of 90.2% and 53.56%,respectively.Extensive ablation experiments verified the rationality and effectiveness of its modules.Conclusions The proposed model effectively addresses short-term temporal dependency limitations in lip reading,and improves the temporal robustness of the model against variable-length sequences.These advancements validate the importance of explicit short-term dynamics modeling for practical lip-reading systems.展开更多
Smart grid substation operations often take place in hazardous environments and pose significant threats to the safety of power personnel.Relying solely on manual supervision can lead to inadequate oversight.In respon...Smart grid substation operations often take place in hazardous environments and pose significant threats to the safety of power personnel.Relying solely on manual supervision can lead to inadequate oversight.In response to the demand for technology to identify improper operations in substation work scenarios,this paper proposes a substation safety action recognition technology to avoid the misoperation and enhance the safety management.In general,this paper utilizes a dual-branch transformer network to extract spatial and temporal information from the video dataset of operational behaviors in complex substation environments.Firstly,in order to capture the spatial-temporal correlation of people's behaviors in smart grid substation,we devise a sparse attention module and a segmented linear attention module that are embedded into spatial branch transformer and temporal branch transformer respectively.To avoid the redundancy of spatial and temporal information,we fuse the temporal and spatial features using a tensor decomposition fusion module by a decoupled manner.Experimental results indicate that our proposed method accurately detects improper operational behaviors in substation work scenarios,outperforming other existing methods in terms of detection and recognition accuracy.展开更多
Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by la...Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).展开更多
Surface ozone(O_(3))is a major air pollutant and draw increasing attention in the Pearl River Delta(PRD),China.Here,we characterize the spatial-temporal variability of ozone based on a dataset obtained from 57 nationa...Surface ozone(O_(3))is a major air pollutant and draw increasing attention in the Pearl River Delta(PRD),China.Here,we characterize the spatial-temporal variability of ozone based on a dataset obtained from 57 national monitoring sites during 2013-2019.Our results show that:(1)the seasonal difference of ozone distribution in the inland and coastal areas was significant,which was largely affected by the wind pattern reversals related to the East Asian monsoon,and local ozone production and destruction;(2)the daily maximum 8hr average(MDA8 O_(3))showed an overall upward trend by 1.11 ppbv/year.While the trends in the nine cities varied differently by ranging from-0.12 to 2.51 ppbv/year.The hot spots of ozone were spreading to southwestern areas from the central areas since 2016.And ozone is becoming a year-round air pollution problem with the pollution season extending to winter and spring in PRD region.(3)at the central and southwestern PRD cities,the percentage of exceedance days from the continuous type(defined as≥3 days)was increasing.Furthermore,the ozone concentration of continuous type was much higher than that of scattered exceedance type(<3 days).In addition,although the occurrence of continuous type starts to decline since2017,the total number of exceedance days during the continuous type is increasing.These results indicate that it is more difficult to eliminate the continuous exceedance than the scatter pollution days and highlight the great challenge in mitigation of O_(3)pollution in these cities.展开更多
Background The gut microbiota influences chicken health,welfare,and productivity.A diverse and balanced microbiota has been associated with improved growth,efficient feed utilisation,a well-developed immune system,dis...Background The gut microbiota influences chicken health,welfare,and productivity.A diverse and balanced microbiota has been associated with improved growth,efficient feed utilisation,a well-developed immune system,disease resistance,and stress tolerance in chickens.Previous studies on chicken gut microbiota have predominantly focused on broiler chickens and have usually been limited to one or two sections of the digestive system,under con-trolled research environments,and often sampled at a single time point.To extend these studies,this investigation examined the microbiota of commercially raised layer chickens across all major gut sections of the digestive system and with regular sampling from rearing to the end of production at 80 weeks.The aim was to build a detailed picture of microbiota development across the entire digestive system of layer chickens and study spatial and temporal dynamics.Results The taxonomic composition of gut microbiota differed significantly between birds in the rearing and pro-duction stages,indicating a shift after laying onset.Similar microbiota compositions were observed between proven-triculus and gizzard,as well as between jejunum and ileum,likely due to their anatomical proximity.Lactobacil-lus dominated the upper gut in pullets and the lower gut in older birds.The oesophagus had a high proportion of Proteobacteria,including opportunistic pathogens such as Gallibacterium.Relative abundance of Gallibacterium increased after peak production in multiple gut sections.Aeriscardovia was enriched in the late-lay phase compared to younger birds in multiple gut sections.Age influenced microbial richness and diversity in different organs.The upper gut showed decreased diversity over time,possibly influenced by dietary changes,while the lower gut,specifi-cally cecum and colon,displayed increased richness as birds matured.However,age-related changes were inconsist-ent across all organs,suggesting the influence of organ-specific factors in microbiota maturation.Conclusion Addressing a gap in previous research,this study explored the microbiota across all major gut sections and tracked their dynamics from rearing to the end of the production cycle in commercially raised layer chickens.This study provides a comprehensive understanding of microbiota structure and development which help to develop targeted strategies to optimise gut health and overall productivity in poultry production.展开更多
Background: The Democratic Republic of Congo (DRC) has been facing outbreaks of VDPV since 2017. These wild poliovirus variants are responsible for poliomyelitis, which is in the process of eradication.. In the follow...Background: The Democratic Republic of Congo (DRC) has been facing outbreaks of VDPV since 2017. These wild poliovirus variants are responsible for poliomyelitis, which is in the process of eradication.. In the following lines, we try to show the evolution of VDPV cases across the country in order to understand their chronological dynamics and seasonal influence. Methods: We conducted a cross-sectional study of of VDPV notified in the DRC from 2018 to 2023. Maps of the spatial dynamics of VDPV cases were produced from attack rates with QGIS® (3.22.8). As for temporal dynamics, time series were decomposed and presented in the form of graphs showing the chronological evolution of VDPV cases and their seasonal trend, using R.4.0 software package. Results: A total of 1196 Cases of VDPV types 1, 2 and 3 were recorded in the biological confirmation databases of the INRB and the Expanded Program of Immunization during the study period across25 provinces. The eastern part of the country reporting the most cases. The general trend is upwards, with a peak in 2022 of 527 cases, whereas in 2021 there was a notable drop of 31 cases. Analysis of the temporal breakdown suggests a seasonal pattern, with peaks between the months of September and December, considered being rainy periods in some provinces. Conclusion: During the 6 years of our study (2018 - 2023) almost all the Health Zones were hit by VDPV epidemics. The eastern part was the most impacted. The seasonal component is well marked suggesting a rise in detection in the rainy season and during pivotal periods of climate change.展开更多
The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination ...The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.展开更多
Green innovation is an important driving force for high-quality development and an important guarantee for the revitalization of the old industrial base in Northeast China.However,research on green innovation is still...Green innovation is an important driving force for high-quality development and an important guarantee for the revitalization of the old industrial base in Northeast China.However,research on green innovation is still insufficient.Using the super-efficiency epsilon-based measure Malmquist model,kernel density estimation,and spatial econometric model,this study investigated the spatiotemporal evolution characteristics and influencing factors of green innovation efficiency(GIE)in Northeast China from 2005 to 2020.The results reveal that:1)The GIE in Northeast China has obvious phased characteristics,where 2005-2011 was a period of fluctuating decline while 2012-2020 was a period of fluctuating increase,reflecting the severe resource and environmental constraints faced by the green innovation process.2)The GIE in the Northeast China has a significant spatial dependence,which has not formed a relatively stable spatial club feature.The process for improving the GIE in the Northeast China in the future is still arduous and far off.3)The interweaving and mutual influence of nonequilibrium factors have led to the diversity and complexity of the spatiotemporal pattern evolution of GIE.Overall,the level of economic development and industrial structure has a positive effect,while foreign investment and industrial agglomeration have a negative effect.The direct effects of government regulation,resource endowment,science and technology,environmental regulation,and urbanization are not significant.The research conclusion of this article can provide important reference for the revitalization of Northeast China.展开更多
Global forest cover is undergoing significant transformations due to anthropogenic activities and natural disturbances,profoundly impacting hydrological processes.However,the inherent spatial heterogeneity within wate...Global forest cover is undergoing significant transformations due to anthropogenic activities and natural disturbances,profoundly impacting hydrological processes.However,the inherent spatial heterogeneity within watersheds leads to varied hydrological responses across spatiotemporal scales,challenging comprehensive assessment of logging impacts at the watershed scale.Here,we developed multiple forest logging scenarios using the soil and water assessment tool(SWAT)model for the Le'an River watershed,a 5,837 km2 subtropical watershed in China,to quantify the hydrological effects of forest logging across different spatiotemporal scales.Our results demonstrate that increasing forest logging ratios from 1.54% to 9.25% consistently enhanced ecohydrological sensitivity.However,sensitivity varied across spatiotemporal scales,with the rainy season(15.30%-15.81%)showing higher sensitivity than annual(11.56%-12.07%)and dry season(3.38%-5.57%)periods.Additionally,the ecohydrological sensitivity of logging varied significantly across the watershed,with midstream areas exhibiting the highest sensitivity(13.13%-13.25%),followed by downstream(11.87%-11.98%)and upstream regions(9.96%-10.05%).Furthermore,the whole watershed exhibited greater hydrological resilience to logging compared to upstream areas,with attenuated runoff changes due to scale effects.Scale effects were more pronounced during dry seasons((-8.13 to -42.13)×10^(4) m^(3)·month^(-1))than in the rainy season((-11.11 to -26.65)×10^(4) m^(3)·month^(-1)).These findings advance understanding of logging impacts on hydrology across different spatiotemporal scales in subtropical regions,providing valuable insights for forest management under increasing anthropogenic activities and climate change.展开更多
基金supported by funds from the Ministry of Science and Technology of the People's Republic of China(No.2019YFA0708603)NSFC(Nos.41973050,42288201,41930215)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0202)。
文摘Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.
基金supported by the National Key R&D Program of China(No.2018YFB1305200)the Natural Science Foundation of Zhejiang Province(No.LGG21F030011)。
文摘Research on human motion prediction has made significant progress due to its importance in the development of various artificial intelligence applications.However,effectively capturing spatio-temporal features for smoother and more precise human motion prediction remains a challenge.To address these issues,a robust human motion prediction method via integration of spatial and temporal cues(RISTC)has been proposed.This method captures sufficient spatio-temporal correlation of the observable sequence of human poses by utilizing the spatio-temporal mixed feature extractor(MFE).In multi-layer MFEs,the channel-graph united attention blocks extract the augmented spatial features of the human poses in the channel and spatial dimension.Additionally,multi-scale temporal blocks have been designed to effectively capture complicated and highly dynamic temporal information.Our experiments on the Human3.6M and Carnegie Mellon University motion capture(CMU Mocap)datasets show that the proposed network yields higher prediction accuracy than the state-of-the-art methods.
文摘High-resolution spatiotemporal simulations effectively capture the complexities of atmospheric plume sion disper-in complex terrain.However,their high computational cost makes them impractical for applications requiring rapid responses or iterative processes,such as optimization,uncertainty quantification,or inverse modeling.To address this challenge,this work introduces the Dual-Stage Temporal Three-dimensional UNet Super-resolution(DST3D-UNet-SR)model,a highly efficient deep learning model for plume dispersion predictions.DST3D-UNet-SR is composed of two sequential modules:the temporal module(TM),which predicts the transient evolution of a plume in complex terrain from low-resolution temporal data,and the spatial refinement module(SRM),which subsequently enhances the spatial resolution of the TM predictions.We train DST3D-UNet-SR using a comprehensive dataset derived from high-resolution large eddy simulations(LES)of plume transport.We propose the DST3D-UNet-SR model to significantly accelerate LES of three-dimensional(3D)plume dispersion by three orders of magnitude.Additionally,the model demonstrates the ability to dynamically adapt to evolving conditions through the incorporation of new observational data,substantially improving prediction accuracy in high-concentration regions near the source.
文摘Tuberculosis(TB)remained the first leading cause of death from a single infectious agent worldwide in 2023,resulting in nearly twice as many deaths as those caused by the human immunodeficiency virus/acquired immune deficiency syndrome.An estimated 10.8 million TB cases were reported globally in 2023,with approximately 1.25 million associated deaths.In China,which ranks third in the global TB burden,there were approximately 741,000 new cases and 25,000 deaths in 2023^([1]).TB poses a significant threat to human health worldwide.
基金the Science and Technology Research Project of Shandong Meteorological Bureau(2022SDQN11)Science and Technology Research Project of Yantai Meteorological Bureau(2024ytcx07).
文摘Based on the monitoring data of PM 10 concentration from six environmental monitoring stations and the ground meteorological observation data in Yantai City from 2019 to 2021,the spatial and temporal variation of PM 10 concentration and its relationship with meteorological factors were studied.The results show that from the perspective of temporal variation,the annual average of PM 10 concentration in Yantai City tended to decrease year by year.It was high in winter and spring and low in summer and autumn.In terms of monthly variation,the changing curve is U-shaped,and it was high in December and January but low in July and August.During a day,PM 10 concentration had two peaks.The first peak appeared approximately from 09:00 to 11:00,and the second peak can be found from 21:00 to 23:00.From the perspective of spatial distribution,PM 10 concentration was the highest in the development area and Fushan District.It was the highest in the west,followed by the east,while it was the lowest in the middle.The spatial difference rate was the highest in summer.Average temperature,relative humidity,wind speed and precipitation were the main meteorological factors influencing PM 10 concentration in Yantai area.PM 10 concentration was negatively correlated with average temperature and relative humidity,and the correlation was the most significant from June to October.It was negatively correlated with wind speed and precipitation,and the correlation was different in various months.The negative correlation was significant in summer and winter.
基金supported by the Urgent Need for Overseas Talent Project of Jiangxi Province(Grant No.20223BCJ25040)the Thousand Talents Plan of Jiangxi Province(Grant No.jxsg2023101085)+3 种基金the National Natural Science Foundation of China(Grant No.62106093)the Natural Science Foundation of Jiangxi(Grant Nos.20224BAB212011,20232BAB212008,20242BAB25078,and 20232BAB202051)The Youth Talent Cultivation Innovation Fund Project of Nanchang University(Grant No.XX202506030015)funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R759),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies among human joints while ignoring the temporal cues and the complex relationships across non-consecutive frames.These limitations hinder the model’s ability to generate accurate predictions over longer time horizons and in scenarios with complex motion patterns.To address the above problems,we proposed a novel multi-level spatial and temporal learning model,which consists of a Cross Spatial Dependencies Encoding Module(CSM)and a Dynamic Temporal Connection Encoding Module(DTM).Specifically,the CSM is designed to capture complementary local and global spatial dependent information at both the joint level and the joint pair level.We further present DTM to encode diverse temporal evolution contexts and compress motion features to a deep level,enabling the model to capture both short-term and long-term dependencies efficiently.Extensive experiments conducted on the Human 3.6M and CMU Mocap datasets demonstrate that our model achieves state-of-the-art performance in both short-term and long-term predictions,outperforming existing methods by up to 20.3% in accuracy.Furthermore,ablation studies confirm the significant contributions of the CSM and DTM in enhancing prediction accuracy.
文摘This study investigated the spatio-temporal variation characteristics of ecosystem service value(ESV)alongside its driving influencing factors,thereby offering valuable theoretical insights for the sustainable development of Jingzhou City,Hubei Province.Based on the land use data for Jingzhou City from 2000 to 2020,this study quantified the value of the ecological environment using the equivalent factor method.Furthermore,it analyzed and elucidated the spatio-temporal heterogeneity and driving mechanisms of ecosystem services in Jingzhou City.The results indicated that between 2000 and 2020,cultivated land(66.40%)and water area(18.82%)were the predominant land use types in Jingzhou City.The areas of water area and construction land exhibited a growth trend during this period.Construction land had the highest rate of land use change,followed by water area and cultivated land.Land use transitions primarily occurred between cultivated land and water area,as well as between cultivated land and construction land.The total value of ecosystem services in Jingzhou City increased by 165.07%from 2000 to 2020.ESV exhibited an upward trend from 2000 to 2015,followed by a gradual decline from 2015 to 2020.The ranking of individual ecosystem services,in descending order,was as follows:regulation services,supporting services,provisioning services,and cultural services.High-value ESV areas were predominantly situated in the water area of Lake Honghu,while low-value regions were mainly found in the cultivated land in the central and western parts of Jingzhou City.The spatial differentiation of ESV in Jingzhzou City was influenced by both natural and socio-economic factors,with natural factors exerting a more significant impact than socioeconomic factors.Specifically,the Normalized Difference Vegetation Index(NDVI)was the dominant environmental factor,while GDP plays a synergistic role.
基金National Natural Science Foundation of China,Grant/Award Number:62176084,Natural Science Foundation of Anhui Province of China,Grant/Award Number:1908085MF195,Natural Science Research Project of the Education Department of Anhui Province of China Grant/Award Numbers:2022AH051038,2023AH050474 and 2023AH050490.
文摘To overcome the deficiencies of single-modal emotion recognition based on facial expression or bodily posture in natural scenes,a spatial guidance and temporal enhancement(SG-TE)network is proposed for facial-bodily emotion recognition.First,ResNet50,DNN and spatial ransformer models are used to capture facial texture vectors,bodily skeleton vectors and wholebody geometric vectors,and an intraframe correlation attention guidance(S-CAG)mechanism,which guides the facial texture vector and the bodily skeleton vector by the whole-body geometric vector,is designed to exploit the spatial potential emotional correlation between face and posture.Second,an interframe significant segment enhancement(T-SSE)structure is embedded into a temporal transformer to enhance high emotional intensity frame information and avoid emotional asynchrony.Finally,an adaptive weight assignment(M-AWA)strategy is constructed to realise facial-bodily fusion.The experimental results on the BabyRobot Emotion Dataset(BRED)and Context-Aware Emotion Recognition(CAER)dataset indicate that the proposed network reaches accuracies of 81.61%and 89.39%,which are 9.61%and 9.46%higher than those of the baseline network,respectively.Compared with the state-of-the-art methods,the proposed method achieves 7.73%and 20.57%higher accuracy than single-modal methods based on facial expression or bodily posture,respectively,and 2.16%higher accuracy than the dual-modal methods based on facial-bodily fusion.Therefore,the proposed method,which adaptively fuses the complementary information of face and posture,improves the quality of emotion recognition in real-world scenarios.
文摘Based on the data of meteorological elements and concentration of negative ions in the county town station,Luguhe station and Yunjishan station during 2020-2024,the temporal and spatial variations in the concentration of negative ions and their influencing factors in Xinfeng County were analyzed.The results show that the concentration of negative ions was the highest in summer,followed by spring;it was lower in autumn and the lowest in winter.In terms of diurnal variations,it was higher in the early morning and night,and lower in the noon and afternoon,which was closely related to the diurnal variations of human activities and meteorological conditions.The factors that affect the concentration of negative ions in the air are more complex.Besides meteorological factors,vegetation,altitude,human activities and other factors should be considered.
文摘Predicting information dissemination on social media,specifcally users’reposting behavior,is crucial for applications such as advertising campaigns.Conventional methods use deep neural networks to make predictions based on features related to user topic interests and social preferences.However,these models frequently fail to account for the difculties arising from limited training data and model size,which restrict their capacity to learn and capture the intricate patterns within microblogging data.To overcome this limitation,we introduce a novel model Adapt pre-trained Large Language model for Reposting Prediction(ALL-RP),which incorporates two key steps:(1)extracting features from post content and social interactions using a large language model with extensive parameters and trained on a vast corpus,and(2)performing semantic and temporal adaptation to transfer the large language model’s knowledge of natural language,vision,and graph structures to reposting prediction tasks.Specifcally,the temporal adapter in the ALL-RP model captures multi-dimensional temporal information from evolving patterns of user topic interests and social preferences,thereby providing a more realistic refection of user attributes.Additionally,to enhance the robustness of feature modeling,we introduce a variant of the temporal adapter that implements multiple temporal adaptations in parallel while maintaining structural simplicity.Experimental results on real-world datasets demonstrate that the ALL-RP model surpasses state-of-the-art models in predicting both individual user reposting behavior and group sharing behavior,with performance gains of 2.81%and 4.29%,respectively.
基金supported by the National Key Research and Development Plan Project Sub-Topic of China(Grant Nos.2022YFD1901500 and 2022YFD1901505-07)the National Natural Science Foundation of China(Grant No.32260531)+1 种基金the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China(Grant No.Qiankehezhongyindi[2023]8)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China(Grant No.Qianjiaoji[2023]007).
文摘Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages.
基金Supported by the National Key Research and Development Program of China(2023YFC3306201)the National Natural Science Foundation of China(61772125)the Fundamental Research Funds for the Central Universities(N2317004).
文摘Background Lip reading uses lip images for visual speech recognition.Deep-learning-based lip reading has greatly improved performance in current datasets;however,most existing research ignores the significance of short-term temporal dependencies of lip-shape variations between adjacent frames,which leaves space for further improvement in feature extraction.Methods This article presents a spatiotemporal feature fusion network(STDNet)that compensates for the deficiencies of current lip-reading approaches in short-term temporal dependency modeling.Specifically,to distinguish more similar and intricate content,STDNet adds a temporal feature extraction branch based on a 3D-CNN,which enhances the learning of dynamic lip movements in adjacent frames while not affecting spatial feature extraction.In particular,we designed a local–temporal block,which aggregates interframe differences,strengthening the relationship between various local lip regions through multiscale convolution.We incorporated the squeeze-and-excitation mechanism into the Global-Temporal Block,which processes a single frame as an independent unitto learn temporal variations across the entire lip region more effectively.Furthermore,attention pooling was introduced to highlight meaningful frames containing key semantic information for the target word.Results Experimental results demonstrated STDNet's superior performance on the LRW and LRW-1000,achieving word-level recognition accuracies of 90.2% and 53.56%,respectively.Extensive ablation experiments verified the rationality and effectiveness of its modules.Conclusions The proposed model effectively addresses short-term temporal dependency limitations in lip reading,and improves the temporal robustness of the model against variable-length sequences.These advancements validate the importance of explicit short-term dynamics modeling for practical lip-reading systems.
文摘Smart grid substation operations often take place in hazardous environments and pose significant threats to the safety of power personnel.Relying solely on manual supervision can lead to inadequate oversight.In response to the demand for technology to identify improper operations in substation work scenarios,this paper proposes a substation safety action recognition technology to avoid the misoperation and enhance the safety management.In general,this paper utilizes a dual-branch transformer network to extract spatial and temporal information from the video dataset of operational behaviors in complex substation environments.Firstly,in order to capture the spatial-temporal correlation of people's behaviors in smart grid substation,we devise a sparse attention module and a segmented linear attention module that are embedded into spatial branch transformer and temporal branch transformer respectively.To avoid the redundancy of spatial and temporal information,we fuse the temporal and spatial features using a tensor decomposition fusion module by a decoupled manner.Experimental results indicate that our proposed method accurately detects improper operational behaviors in substation work scenarios,outperforming other existing methods in terms of detection and recognition accuracy.
基金supported by the National Natural Science Foundation of China(42171129)the second Tibetan Plateau Scientific Expedition and Research(2019QZKK0208)Yunnan University Talent Introduction Research Project(YJRC3201702)。
文摘Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (No.2020B0301030004)the National Natural Science Foundation of China (No.42175111)+1 种基金the Guangdong science and technology plan project (No.2019B121201002)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University (No.22qntd1908)。
文摘Surface ozone(O_(3))is a major air pollutant and draw increasing attention in the Pearl River Delta(PRD),China.Here,we characterize the spatial-temporal variability of ozone based on a dataset obtained from 57 national monitoring sites during 2013-2019.Our results show that:(1)the seasonal difference of ozone distribution in the inland and coastal areas was significant,which was largely affected by the wind pattern reversals related to the East Asian monsoon,and local ozone production and destruction;(2)the daily maximum 8hr average(MDA8 O_(3))showed an overall upward trend by 1.11 ppbv/year.While the trends in the nine cities varied differently by ranging from-0.12 to 2.51 ppbv/year.The hot spots of ozone were spreading to southwestern areas from the central areas since 2016.And ozone is becoming a year-round air pollution problem with the pollution season extending to winter and spring in PRD region.(3)at the central and southwestern PRD cities,the percentage of exceedance days from the continuous type(defined as≥3 days)was increasing.Furthermore,the ozone concentration of continuous type was much higher than that of scattered exceedance type(<3 days).In addition,although the occurrence of continuous type starts to decline since2017,the total number of exceedance days during the continuous type is increasing.These results indicate that it is more difficult to eliminate the continuous exceedance than the scatter pollution days and highlight the great challenge in mitigation of O_(3)pollution in these cities.
基金This study was conducted in compliance with the standards stated in the eighth edition(2013)of the Australian Code for the Care and Use of Animals for Scientific Purposes,and the study was approved by the institutional Animal Ethics Committee of The University of Adelaide under the approval No.S-2018-015.
文摘Background The gut microbiota influences chicken health,welfare,and productivity.A diverse and balanced microbiota has been associated with improved growth,efficient feed utilisation,a well-developed immune system,disease resistance,and stress tolerance in chickens.Previous studies on chicken gut microbiota have predominantly focused on broiler chickens and have usually been limited to one or two sections of the digestive system,under con-trolled research environments,and often sampled at a single time point.To extend these studies,this investigation examined the microbiota of commercially raised layer chickens across all major gut sections of the digestive system and with regular sampling from rearing to the end of production at 80 weeks.The aim was to build a detailed picture of microbiota development across the entire digestive system of layer chickens and study spatial and temporal dynamics.Results The taxonomic composition of gut microbiota differed significantly between birds in the rearing and pro-duction stages,indicating a shift after laying onset.Similar microbiota compositions were observed between proven-triculus and gizzard,as well as between jejunum and ileum,likely due to their anatomical proximity.Lactobacil-lus dominated the upper gut in pullets and the lower gut in older birds.The oesophagus had a high proportion of Proteobacteria,including opportunistic pathogens such as Gallibacterium.Relative abundance of Gallibacterium increased after peak production in multiple gut sections.Aeriscardovia was enriched in the late-lay phase compared to younger birds in multiple gut sections.Age influenced microbial richness and diversity in different organs.The upper gut showed decreased diversity over time,possibly influenced by dietary changes,while the lower gut,specifi-cally cecum and colon,displayed increased richness as birds matured.However,age-related changes were inconsist-ent across all organs,suggesting the influence of organ-specific factors in microbiota maturation.Conclusion Addressing a gap in previous research,this study explored the microbiota across all major gut sections and tracked their dynamics from rearing to the end of the production cycle in commercially raised layer chickens.This study provides a comprehensive understanding of microbiota structure and development which help to develop targeted strategies to optimise gut health and overall productivity in poultry production.
文摘Background: The Democratic Republic of Congo (DRC) has been facing outbreaks of VDPV since 2017. These wild poliovirus variants are responsible for poliomyelitis, which is in the process of eradication.. In the following lines, we try to show the evolution of VDPV cases across the country in order to understand their chronological dynamics and seasonal influence. Methods: We conducted a cross-sectional study of of VDPV notified in the DRC from 2018 to 2023. Maps of the spatial dynamics of VDPV cases were produced from attack rates with QGIS® (3.22.8). As for temporal dynamics, time series were decomposed and presented in the form of graphs showing the chronological evolution of VDPV cases and their seasonal trend, using R.4.0 software package. Results: A total of 1196 Cases of VDPV types 1, 2 and 3 were recorded in the biological confirmation databases of the INRB and the Expanded Program of Immunization during the study period across25 provinces. The eastern part of the country reporting the most cases. The general trend is upwards, with a peak in 2022 of 527 cases, whereas in 2021 there was a notable drop of 31 cases. Analysis of the temporal breakdown suggests a seasonal pattern, with peaks between the months of September and December, considered being rainy periods in some provinces. Conclusion: During the 6 years of our study (2018 - 2023) almost all the Health Zones were hit by VDPV epidemics. The eastern part was the most impacted. The seasonal component is well marked suggesting a rise in detection in the rainy season and during pivotal periods of climate change.
文摘The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.
基金Under the auspices of the National Natural Science Foundation of China(No.42571228,42401212)National Natural Science Foundation of Shandong(No.ZR2024MD022)。
文摘Green innovation is an important driving force for high-quality development and an important guarantee for the revitalization of the old industrial base in Northeast China.However,research on green innovation is still insufficient.Using the super-efficiency epsilon-based measure Malmquist model,kernel density estimation,and spatial econometric model,this study investigated the spatiotemporal evolution characteristics and influencing factors of green innovation efficiency(GIE)in Northeast China from 2005 to 2020.The results reveal that:1)The GIE in Northeast China has obvious phased characteristics,where 2005-2011 was a period of fluctuating decline while 2012-2020 was a period of fluctuating increase,reflecting the severe resource and environmental constraints faced by the green innovation process.2)The GIE in the Northeast China has a significant spatial dependence,which has not formed a relatively stable spatial club feature.The process for improving the GIE in the Northeast China in the future is still arduous and far off.3)The interweaving and mutual influence of nonequilibrium factors have led to the diversity and complexity of the spatiotemporal pattern evolution of GIE.Overall,the level of economic development and industrial structure has a positive effect,while foreign investment and industrial agglomeration have a negative effect.The direct effects of government regulation,resource endowment,science and technology,environmental regulation,and urbanization are not significant.The research conclusion of this article can provide important reference for the revitalization of Northeast China.
基金supported by the National Natural Science Foundation of China(No.31660234).
文摘Global forest cover is undergoing significant transformations due to anthropogenic activities and natural disturbances,profoundly impacting hydrological processes.However,the inherent spatial heterogeneity within watersheds leads to varied hydrological responses across spatiotemporal scales,challenging comprehensive assessment of logging impacts at the watershed scale.Here,we developed multiple forest logging scenarios using the soil and water assessment tool(SWAT)model for the Le'an River watershed,a 5,837 km2 subtropical watershed in China,to quantify the hydrological effects of forest logging across different spatiotemporal scales.Our results demonstrate that increasing forest logging ratios from 1.54% to 9.25% consistently enhanced ecohydrological sensitivity.However,sensitivity varied across spatiotemporal scales,with the rainy season(15.30%-15.81%)showing higher sensitivity than annual(11.56%-12.07%)and dry season(3.38%-5.57%)periods.Additionally,the ecohydrological sensitivity of logging varied significantly across the watershed,with midstream areas exhibiting the highest sensitivity(13.13%-13.25%),followed by downstream(11.87%-11.98%)and upstream regions(9.96%-10.05%).Furthermore,the whole watershed exhibited greater hydrological resilience to logging compared to upstream areas,with attenuated runoff changes due to scale effects.Scale effects were more pronounced during dry seasons((-8.13 to -42.13)×10^(4) m^(3)·month^(-1))than in the rainy season((-11.11 to -26.65)×10^(4) m^(3)·month^(-1)).These findings advance understanding of logging impacts on hydrology across different spatiotemporal scales in subtropical regions,providing valuable insights for forest management under increasing anthropogenic activities and climate change.