期刊文献+
共找到468篇文章
< 1 2 24 >
每页显示 20 50 100
Using BlazePose on Spatial Temporal Graph Convolutional Networks for Action Recognition 被引量:2
1
作者 Motasem S.Alsawadi El-Sayed M.El-kenawy Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2023年第1期19-36,共18页
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac... The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively. 展开更多
关键词 Action recognition BlazePose graph neural network OpenPose SKELETON spatial temporal graph convolution network
在线阅读 下载PDF
Skeleton Split Strategies for Spatial Temporal Graph Convolution Networks
2
作者 Motasem S.Alsawadi Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2022年第6期4643-4658,共16页
Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the ... Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events.A skeleton representation of the human body has been proven to be effective for this task.The skeletons are presented in graphs form-like.However,the topology of a graph is not structured like Euclideanbased data.Therefore,a new set of methods to perform the convolution operation upon the skeleton graph is proposed.Our proposal is based on the Spatial Temporal-Graph Convolutional Network(ST-GCN)framework.In this study,we proposed an improved set of label mapping methods for the ST-GCN framework.We introduce three split techniques(full distance split,connection split,and index split)as an alternative approach for the convolution operation.The experiments presented in this study have been trained using two benchmark datasets:NTU-RGB+D and Kinetics to evaluate the performance.Our results indicate that our split techniques outperform the previous partition strategies and aremore stable during training without using the edge importance weighting additional training parameter.Therefore,our proposal can provide a more realistic solution for real-time applications centred on daily living recognition systems activities for indoor environments. 展开更多
关键词 Skeleton split strategies spatial temporal graph convolutional neural networks skeleton joints action recognition
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
3
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
Local-global dynamic correlations based spatial-temporal convolutional network for traffic flow forecasting
4
作者 ZHANG Hong GONG Lei +2 位作者 ZHAO Tianxin ZHANG Xijun WANG Hongyan 《High Technology Letters》 EI CAS 2024年第4期370-379,共10页
Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial... Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial-temporal dynamic characteristics of traffic flow,this paper proposes a new traffic flow forecasting model spatial-temporal attention graph neural network(STA-GNN)by combining at-tention mechanism(AM)and spatial-temporal convolutional network.The model learns the hidden dynamic local spatial correlations of the traffic network by combining the dynamic adjacency matrix constructed by the graph learning layer with the graph convolutional network(GCN).The local tem-poral correlations of traffic flow at different scales are extracted by stacking multiple convolutional kernels in temporal convolutional network(TCN).And the global spatial-temporal dependencies of long-time sequences of traffic flow are captured by the spatial-temporal attention mechanism(STAtt),which enhances the global spatial-temporal modeling and the representational ability of model.The experimental results on two datasets,METR-LA and PEMS-BAY,show the proposed STA-GNN model outperforms the common baseline models in forecasting accuracy. 展开更多
关键词 traffic flow forecasting graph convolutional network(GCN) temporal convolu-tional network(TCN) attention mechanism(AM)
在线阅读 下载PDF
Human Motion Prediction Based on Multi-Level Spatial and Temporal Cues Learning
5
作者 Jiayi Geng Yuxuan Wu +5 位作者 Wenbo Lu Pengxiang Su Amel Ksibi Wei Li Zaffar Ahmed Shaikh Di Gai 《Computers, Materials & Continua》 2025年第11期3689-3707,共19页
Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies a... Predicting human motion based on historical motion sequences is a fundamental problem in computer vision,which is at the core of many applications.Existing approaches primarily focus on encoding spatial dependencies among human joints while ignoring the temporal cues and the complex relationships across non-consecutive frames.These limitations hinder the model’s ability to generate accurate predictions over longer time horizons and in scenarios with complex motion patterns.To address the above problems,we proposed a novel multi-level spatial and temporal learning model,which consists of a Cross Spatial Dependencies Encoding Module(CSM)and a Dynamic Temporal Connection Encoding Module(DTM).Specifically,the CSM is designed to capture complementary local and global spatial dependent information at both the joint level and the joint pair level.We further present DTM to encode diverse temporal evolution contexts and compress motion features to a deep level,enabling the model to capture both short-term and long-term dependencies efficiently.Extensive experiments conducted on the Human 3.6M and CMU Mocap datasets demonstrate that our model achieves state-of-the-art performance in both short-term and long-term predictions,outperforming existing methods by up to 20.3% in accuracy.Furthermore,ablation studies confirm the significant contributions of the CSM and DTM in enhancing prediction accuracy. 展开更多
关键词 Human motion prediction spatial dependencies learning temporal context learning graph convolutional networks transformer
在线阅读 下载PDF
基于STGCN-Transformer的短期电力净负荷预测
6
作者 孟伟 俞斌 +3 位作者 白隆 徐婕 顾晋豪 郭锋 《中国测试》 北大核心 2025年第6期160-169,共10页
智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题... 智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题,该文提出一种基于时空图卷积网络(spatial temporal graph convolutional networks,STGCN)和Transformer相结合的综合能源系统短期负荷预测模型。首先,利用STGCN作为输入嵌入层对多元输入序列进行编码,填补Transformer中没有充分考虑相关信息的空白。然后,利用Transformer中的自注意机制捕获序列数据的时间依赖性。最后,利用前馈神经网络输出预测负荷值。以浙江省某地区电力数据集为例,与其他4种预测模型相比较平均绝对百分比误差均在5%以内,结果表明该文模型具有较高的预测精度和稳定性。 展开更多
关键词 时空图卷积网络 TRANSFORMER 多头注意力机制 短期净负荷预测
在线阅读 下载PDF
应用STGCN时空建模的地震波阻抗反演方法
7
作者 王泽峰 赵海波 +3 位作者 杨懋新 王团 许辉群 毛伟建 《石油地球物理勘探》 北大核心 2025年第1期43-53,共11页
现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓... 现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓扑结构及互相关性,使用马氏距离对地震数据进行空间邻近度的加权处理建立邻接矩阵;进一步通过切比雪夫多项式扩大空间感受野的同时减少参数量,高效地提取地震数据的空间构造特征,同时利用门控循环单元捕获其时序相关性;最后构建时空图卷积单元实现基于STGCN的地震数据与波阻抗在时间和空间两个维度的映射。模型测试及实际资料反演结果表明,该方法在提高反演精度的同时对噪声具有一定的适应性,并可以很好的体现地层的横向变化。 展开更多
关键词 地震波阻抗反演 深度学习 时空建模 时空图卷积神经网络
在线阅读 下载PDF
基于改进STGCN与N-BEATS的风功率超短期预测
8
作者 程旭初 刘景霞 康荣凯 《现代电子技术》 北大核心 2025年第8期115-121,共7页
精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提... 精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提取数据时空特征来提高预测精度。首先,利用STGCN对多元输入序列进行深度特征提取,充分挖掘风机SCADA数据中的时空潜在关系;同时,为了进一步提高预测精度,通过构建序列分解模块与多分辨率卷积对STGCN模型进行改进,使其能够更好地适应风电数据的复杂特性;然后,神经基扩展分析(N-BEATS)新型神经网络对STGCN提取的时空信息数据进行时序关系分析,得到最终预测结果;最后,以内蒙古某风场SCADA数据为例,通过多模型对比实验与自身消融实验验证了所提组合模型策略的有效性以及对STGCN的改进效果。实验结果表明,所设计模型在预测精度上取得了显著的提升,为风电功率预测领域的研究提供了新的思路和方法。 展开更多
关键词 超短期风功率预测 时空图卷积 神经基扩展分析 序列分解 深度特征提取 图卷积网络
在线阅读 下载PDF
Multi-Polar Evolution of Global Inventive Talent Flow Network-An Endogenous Migration Model and Empirical Analysis
9
作者 Zheng Jianghuai Sun Dongqing +1 位作者 Dai Wei Shi Lei 《China Economist》 2025年第4期80-100,共21页
The global clustering of inventive talent shapes innovation capacity and drives economic growth.For China,this process is especially crucial in sustaining its development momentum.This paper draws on data from the EPO... The global clustering of inventive talent shapes innovation capacity and drives economic growth.For China,this process is especially crucial in sustaining its development momentum.This paper draws on data from the EPO Worldwide Patent Statistical Database(PATSTAT)to extract global inventive talent mobility information and analyzes the spatial structural evolution of the global inventive talent flow network.The study finds that this network is undergoing a multi-polar transformation,characterized by the rising importance of a few central countries-such as the United States,Germany,and China-and the increasing marginalization of many peripheral countries.In response to this typical phenomenon,the paper constructs an endogenous migration model and conducts empirical testing using the Temporal Exponential Random Graph Model(TERGM).The results reveal several endogenous mechanisms driving global inventive talent flows,including reciprocity,path dependence,convergence effects,transitivity,and cyclic structures,all of which contribute to the network’s multi-polar trend.In addition,differences in regional industrial structures significantly influence talent mobility choices and are a decisive factor in the formation of poles within the multi-polar landscape.Based on these findings,it is suggested that efforts be made to foster two-way channels for talent exchange between China and other global innovation hubs,in order to enhance international collaboration and knowledge flow.We should aim to reduce the migration costs and institutional barriers faced by R&D personnel,thereby encouraging greater mobility of high-skilled talent.Furthermore,the government is advised to strategically leverage regional strengths in high-tech industries as a lever to capture competitive advantages in emerging technologies and products,ultimately strengthening the country’s position in the global innovation landscape. 展开更多
关键词 Inventive talent flow network MULTIPOLARITY spatial structural evolution regional industrial structure disparities temporal exponential random graph model(TERGM)
在线阅读 下载PDF
人体动作姿态识别方法研究综述
10
作者 梁本来 《信息记录材料》 2026年第1期18-20,26,共4页
人体动作识别技术是计算机视觉领域的重要研究方向。本文综述了当前主流的人体动作姿态识别方法,包括基于图像的姿态估计、基于视频的时序分析、三维空间姿态重建及基于骨架的动作识别等方法,通过对比分析各类方法在计算复杂度、场景适... 人体动作识别技术是计算机视觉领域的重要研究方向。本文综述了当前主流的人体动作姿态识别方法,包括基于图像的姿态估计、基于视频的时序分析、三维空间姿态重建及基于骨架的动作识别等方法,通过对比分析各类方法在计算复杂度、场景适应性和性能表现(准确性、实时性、鲁棒性等)等方面的特点,揭示了该技术领域面临的三维标注数据获取困难、复杂环境泛化能力不足及实时性与精度难以兼顾等核心挑战。针对未来发展趋势,本文探讨了轻量化模型设计、多模态融合、弱监督与自监督学习、三维时空建模、Transformer架构应用及领域自适应等关键研究方向,旨在为后续相关研究提供思路与借鉴。 展开更多
关键词 人体动作姿态识别 深度学习 计算机视觉 时空图卷积网络
在线阅读 下载PDF
基于STGCN的洪水预报误差实时校正方法 被引量:5
11
作者 余宇峰 李薇 +1 位作者 李珂 成春生 《水文》 CSCD 北大核心 2022年第5期35-40,共6页
中小河流具有分布广、产汇流时间短、洪水突发性强、水文资料匮乏等特点,是当前洪水防控的薄弱环节。误差实时校正是提升洪水预报精度的有效途径,针对中小河流洪水预报预见期短、预报精度不高的问题,构建基于深度学习的误差校正模型,利... 中小河流具有分布广、产汇流时间短、洪水突发性强、水文资料匮乏等特点,是当前洪水防控的薄弱环节。误差实时校正是提升洪水预报精度的有效途径,针对中小河流洪水预报预见期短、预报精度不高的问题,构建基于深度学习的误差校正模型,利用时空图卷积网络寻找能反映误差序列非线性关系的映射函数,以充分挖掘水文误差序列的时序特征和局部空间特征;提出基于收敛因子和位置更新策略的改进灰狼优化算法搜索时空图卷积网络的超参数,进一步提高模型参数的适用性。实验结果证明了算法在洪水预报实时校正中的有效性和适用性,具有良好的应用前景。 展开更多
关键词 中小河流 时空图卷积网络 灰狼优化算法 误差校正 智能预报
在线阅读 下载PDF
一种改进STGCN的深地时空域地震子波提取方法 被引量:1
12
作者 戴永寿 孙家钊 +3 位作者 李泓浩 颜廷尚 孙伟峰 左琳 《石油物探》 CSCD 北大核心 2024年第6期1111-1125,1137,共16页
地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道... 地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道地震记录提取时变子波,忽略了多道地震记录之间子波的空间变化。同时,传统时空域子波提取方法,如经验模态分解(EMD)方法,对测井资料等先验信息依赖程度较高,实际应用范围受限。深度学习为时空域子波提取提供了新的思路,针对以上问题,提出了一种改进时空图卷积神经网络(STGCN)的时空域子波提取方法。首先,根据目标区地震数据分布特征与非平稳性质,建立以非平稳地震剖面为输入,时空域子波为标签的合成训练数据,再利用传统EMD时变子波提取方法逐道提取目标区子波,有针对性地构建以目标区地震剖面为输入,目标区时空域子波为标签的实际训练数据。最后,利用两种训练数据对改进后的STGCN进行训练,使其能够融合提取的子波时空特征,从而实现目标区时空域子波的有效提取。合成数据和实际地震数据的处理结果表明,该方法对于深地时空域子波的提取有效且准确,相较于传统方法更具优越性,具有较好的实际应用价值。 展开更多
关键词 深度学习 时空域子波提取 时空图卷积神经网络 时空特征
在线阅读 下载PDF
融合动态图卷积与时序卷积的多序列渗流压力预测方法研究
13
作者 程正飞 吴国华 +2 位作者 喻葭临 蒲国庆 余红玲 《水力发电》 2026年第1期74-80,共7页
渗流状态变化直接关系到土石坝工程长期运行安全。为提升渗流压力变化趋势的感知与预警能力,提出一种融合动态图卷积与时序卷积的多序列渗流压力预测方法。通过滑动相关性构建动态邻接矩阵,刻画监测点间时变空间依赖,结合图卷积网络(GCN... 渗流状态变化直接关系到土石坝工程长期运行安全。为提升渗流压力变化趋势的感知与预警能力,提出一种融合动态图卷积与时序卷积的多序列渗流压力预测方法。通过滑动相关性构建动态邻接矩阵,刻画监测点间时变空间依赖,结合图卷积网络(GCN)提取结构性特征,并引入时序卷积网络(TCN)捕捉长时依赖,实现渗流趋势精准预测。最后,基于西南某大型土石坝多年实测的渗流压力监测数据,设计多组实验对比验证得到,动态图结构提升模型性能约18%;TCN替换为多层感知机(MLP)后MAE增至1.26,MAPE升至9.59%,验证了TCN在捕捉时序依赖中的关键作用。 展开更多
关键词 土石坝 渗流压力预测 滑动相关性 图卷积网络 时序卷积网络
在线阅读 下载PDF
基于多特征融合的GraphHeat-ChebNet隧道形变预测模型 被引量:1
14
作者 熊安萍 李梦凡 龙林波 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第1期164-175,共12页
对隧道的形变进行预测是隧道结构异常检测的内容之一。为了充分挖掘形变特征的时空关联性,针对隧道内衬多个断面的形变同时预测,提出一种基于多特征融合的GraphHeat-ChebNet隧道形变预测模型。所提模型中利用GraphHeat和ChebNet这2种图... 对隧道的形变进行预测是隧道结构异常检测的内容之一。为了充分挖掘形变特征的时空关联性,针对隧道内衬多个断面的形变同时预测,提出一种基于多特征融合的GraphHeat-ChebNet隧道形变预测模型。所提模型中利用GraphHeat和ChebNet这2种图卷积网络(graph convolution net,GCN)分别提取特征信号的低频和高频部分,并获取形变特征的空间关联性,ConvGRUs网络用于提取特征在时间上的关联性,通过三阶段融合方法保留挖掘的信息。为了解决实验数据在时间维度上不充足的问题,引入双层滑动窗口机制。此外,所提模型与其他模型或算法在不同数据集上实验比较,衡量一天和两天预测值的误差指标优于其他模型,而且对大部分节点预测的误差较低。说明模型受样本节点数影响较小,能较好地预测一天和两天的形变,模型学习特征与时空模式的能力较强,泛化性较好。 展开更多
关键词 隧道形变 预测模型 融合时空数据 滑动窗口 图卷积网络(GCN)
在线阅读 下载PDF
LSFormer:用于交通流预测的负载量感知空间异质性变换器
15
作者 李轩 李艳红 +2 位作者 徐昊翔 黄健翔 陈亮亮 《中南民族大学学报(自然科学版)》 2026年第1期86-96,共11页
高精度的交通流预测可以有效缓解智能城市道路的拥堵压力.然而,交通流预测面临着如何有效揭示交通流数据中隐藏的时空依赖关系的挑战.目前大多数方法都是基于图神经网络(GNN)或变压器模型.前者只考虑短程空间信息,无法捕捉长程空间依赖... 高精度的交通流预测可以有效缓解智能城市道路的拥堵压力.然而,交通流预测面临着如何有效揭示交通流数据中隐藏的时空依赖关系的挑战.目前大多数方法都是基于图神经网络(GNN)或变压器模型.前者只考虑短程空间信息,无法捕捉长程空间依赖关系,而后者虽然能够捕捉长程依赖关系,但大多数研究都没有充分挖掘变压器架构的潜力.为此,提出了一种用于交通流预测的新型负载感知空间异质性变换器,即LSFormer.具体来说,为空间自注意力模块设计了相对位置编码以优化空间位置信息感知问题,使模型能更好地捕捉位置信息.然后,引入了负载感知模块,以突出周边交通流对中心点的影响,解决了现有方法对周边区域依赖关系建模不足的问题.在5个真实世界公共交通数据集上的广泛实验结果表明:文中所提模型可以达到先进的性能.此外,还将学习到的空间嵌入可视化,使模型具有可解释性. 展开更多
关键词 交通流预测 时空特征 变换器 图神经网络
在线阅读 下载PDF
面向交通流量预测的时空Graph-CoordAttention网络 被引量:2
16
作者 刘建松 康雁 +2 位作者 李浩 王韬 王海宁 《计算机科学》 CSCD 北大核心 2023年第S01期558-564,共7页
交通预测是城市智能交通系统的一个重要研究组成部分,使人们的出行更加效率和安全。由于复杂的时间和空间依赖性,准确预测交通流量仍然是一个巨大的挑战。近年来,图卷积网络(GCN)在交通预测方面表现出巨大的潜力,但基于GCN的模型往往侧... 交通预测是城市智能交通系统的一个重要研究组成部分,使人们的出行更加效率和安全。由于复杂的时间和空间依赖性,准确预测交通流量仍然是一个巨大的挑战。近年来,图卷积网络(GCN)在交通预测方面表现出巨大的潜力,但基于GCN的模型往往侧重于单独捕捉时间和空间的依赖性,忽视了时间和空间依赖性之间的动态关联性,不能很好地融合它们。此外,以前的方法使用现实世界的静态交通网络来构建空间邻接矩阵,这可能忽略了动态的空间依赖性。为了克服这些局限性,并提高模型的性能,提出了一种新颖的时空Graph-CoordAttention网络(STGCA)。具体来说,提出了时空同步模块,用来建模不同时刻的时空依赖交融关系。然后,提出了一种动态图学习的方案,基于车流量之间数据关联,挖掘出潜在的图信息。在4个公开的数据集上和现有基线模型进行对比实验,STGCA表现了优异的性能。 展开更多
关键词 交通流量预测 时空预测 图卷积网络 注意力机制 时空依赖
在线阅读 下载PDF
基于STGCN算法的视频图像人体动作轮廓动态识别 被引量:3
17
作者 张宗 石林 《现代电子技术》 北大核心 2024年第18期144-148,共5页
人体动作轮廓在视频中的呈现具有多样性和连续性。人体动作不仅涉及到时间上的变化,还包括空间上的位置关系,受其姿势、速度、方向等影响。人体动作时空信息之间的关联难以充分捕捉,导致动作轮廓识别精度较低。为此,引入时空图卷积网络(... 人体动作轮廓在视频中的呈现具有多样性和连续性。人体动作不仅涉及到时间上的变化,还包括空间上的位置关系,受其姿势、速度、方向等影响。人体动作时空信息之间的关联难以充分捕捉,导致动作轮廓识别精度较低。为此,引入时空图卷积网络(STGCN)算法,提出一种视频图像人体动作轮廓动态识别方法。文中采用OpenPose模型从视频图像中提取描述关节点位置的置信图和描述人体关节间连接情况的二维矢量场,构建人体动作骨架图。结合视频帧时间序列组建人体动作骨架时空图,将其作为STGCN模型的输入,通过时空图卷积操作充分捕捉人体动作的时空特征后,采用Softmax层获取动态识别到的视频图像人体动作轮廓;并在STGCN模型中引入两种注意力模块,强化网络特征提取能力,提高动作轮廓识别精度。实验结果表明,所提方法可以有效实现视频图像人体动作轮廓的动态识别,引入的两种注意力模块对STGCN模型进行改进,可提升其动作轮廓识别效果。 展开更多
关键词 时空图卷积网络算法 视频图像 人体动作轮廓 动态识别 注意力机制 骨架图 人体关节点
在线阅读 下载PDF
基于改进STGCN深度学习框架的交通速度预测
18
作者 孙大盟 欧阳安杰 何立明 《计算机技术与发展》 2024年第11期133-139,共7页
实时准确的交通速度预测对于加快智慧交通建设和推动智能交通系统发展至关重要。然而交通网络具有复杂的空间结构和动态随机的时变特征,致使现有预测方法无法准确捕捉其隐藏的时空相关性。为了充分挖掘数据中隐藏的动态时空特性,并提高... 实时准确的交通速度预测对于加快智慧交通建设和推动智能交通系统发展至关重要。然而交通网络具有复杂的空间结构和动态随机的时变特征,致使现有预测方法无法准确捕捉其隐藏的时空相关性。为了充分挖掘数据中隐藏的动态时空特性,并提高预测准确性,该文提出了一种基于STGCN框架的交通速度预测改进算法,即时空注意力图神经网络(STA-GNN)。该算法采用可学习的位置注意力机制,有效聚合邻近节点信息,从而获取道路网络中的空间相关性。同时,引入带有门控机制的以一维因果卷积网络为内核的时序卷积网络,来捕获时间序列中的时间相关性,并通过残差块连接来提高模型的泛化能力。所提方法在PeMSD7数据集上进行了15分钟、30分钟和45分钟的交通速度预测实验。实验结果显示,该模型在45分钟预测任务中,均方根误差相较于STGCN模型降低了约10.2%。表明STA-GNN模型在中长期交通速度预测任务中表现更为出色。 展开更多
关键词 智慧交通系统 交通速度预测 图卷积网络 位置注意机制 时空相关性
在线阅读 下载PDF
A Spatio-Temporal Heterogeneity Data Accuracy Detection Method Fused by GCN and TCN
19
作者 Tao Liu Kejia Zhang +4 位作者 Jingsong Yin Yan Zhang Zihao Mu Chunsheng Li Yanan Hu 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2563-2582,共20页
Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlatio... Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions,traditional detection methods can not guarantee both detection speed and accuracy.Therefore,this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks.Firstly,the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted adjacency value to simplify the complex topology.Secondly,design spatiotemporal convolutional units based on graph convolutional neural networks and temporal convolutional networks to improve detection speed and accuracy.Finally,the proposed method is compared with three methods,ARIMA,T-GCN,and STGCN,in real scenarios to verify its effectiveness in terms of detection speed,detection accuracy and stability.The experimental results show that the RMSE,MAE,and MAPE of this method are the smallest in the cases of simple connectivity and complex connectivity degree,which are 13.82/12.08,2.77/2.41,and 16.70/14.73,respectively.Also,it detects the shortest time of 672.31/887.36,respectively.In addition,the evaluation results are the same under different time periods of processing and complex topology environment,which indicates that the detection accuracy of this method is the highest and has good research value and application prospects. 展开更多
关键词 Spatiotemporal heterogeneity data data accuracy complex topology structure graph convolutional networks temporal convolutional networks
在线阅读 下载PDF
S^(2)ANet:Combining local spectral and spatial point grouping for point cloud processing
20
作者 Yujie LIU Xiaorui SUN +1 位作者 Wenbin SHAO Yafu YUAN 《虚拟现实与智能硬件(中英文)》 EI 2024年第4期267-279,共13页
Background Despite the recent progress in 3D point cloud processing using deep convolutional neural networks,the inability to extract local features remains a challenging problem.In addition,existing methods consider ... Background Despite the recent progress in 3D point cloud processing using deep convolutional neural networks,the inability to extract local features remains a challenging problem.In addition,existing methods consider only the spatial domain in the feature extraction process.Methods In this paper,we propose a spectral and spatial aggregation convolutional network(S^(2)ANet),which combines spectral and spatial features for point cloud processing.First,we calculate the local frequency of the point cloud in the spectral domain.Then,we use the local frequency to group points and provide a spectral aggregation convolution module to extract the features of the points grouped by the local frequency.We simultaneously extract the local features in the spatial domain to supplement the final features.Results S^(2)ANet was applied in several point cloud analysis tasks;it achieved stateof-the-art classification accuracies of 93.8%,88.0%,and 83.1%on the ModelNet40,ShapeNetCore,and ScanObjectNN datasets,respectively.For indoor scene segmentation,training and testing were performed on the S3DIS dataset,and the mean intersection over union was 62.4%.Conclusions The proposed S^(2)ANet can effectively capture the local geometric information of point clouds,thereby improving accuracy on various tasks. 展开更多
关键词 Local frequency Spectral and spatial aggregation convolution Spectral group convolution Point cloud representation learning graph convolutional network
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部