In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
Control rod is the most important approach to control reactivity in reactors,which is currently a cluster of pins filled with boron carbide(B4C).In this case,neutrons are captured in the outer region,and thus the inne...Control rod is the most important approach to control reactivity in reactors,which is currently a cluster of pins filled with boron carbide(B4C).In this case,neutrons are captured in the outer region,and thus the inner absorber is inefficient.Moreover,the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of B4C in the high flux area.In this work,some control rod designs are proposed with optimized spatial structures including the spatially mixed rod,radially moderated rod,and composite control rod with small-sized pins.The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC.A long-time depletion calculation is conducted to evaluate their burnup stability.For the spatially mixed rod,rare-earth absorbers are combined with B4C in spatial structure.Compared with the homogenous B4C rod,mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor.The minimum reactivity loss at the end of the cycle is only 1.8%from the dysprosium titanate rod,while the loss for pure B4C rod is nearly 12%.For the radially moderated design,a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3,while excessive moderating may lead to the failure of control rods.The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers.The rod worth can be further enhanced by introducing small moderator pins,and the reactivity loss caused by the reduction of absorbers is sustainable.展开更多
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
基金the National Key R&D Project(Grant No.2020YFB1901700)the National Natural Science Foundation of China(Grant No.11775127).
文摘Control rod is the most important approach to control reactivity in reactors,which is currently a cluster of pins filled with boron carbide(B4C).In this case,neutrons are captured in the outer region,and thus the inner absorber is inefficient.Moreover,the lifetime of the control rod is challenged due to the high reactivity worth loss resulted from the excessive degradation of B4C in the high flux area.In this work,some control rod designs are proposed with optimized spatial structures including the spatially mixed rod,radially moderated rod,and composite control rod with small-sized pins.The control rod worth and effective absorption cross section of these designs are computed using the Monte Carlo code RMC.A long-time depletion calculation is conducted to evaluate their burnup stability.For the spatially mixed rod,rare-earth absorbers are combined with B4C in spatial structure.Compared with the homogenous B4C rod,mixed designs ensure more sufficient reactivity worth in the lifetime of the reactor.The minimum reactivity loss at the end of the cycle is only 1.8%from the dysprosium titanate rod,while the loss for pure B4C rod is nearly 12%.For the radially moderated design,a doubled neutronic efficiency is achieved when the volume ratio of moderator equals approximately 0.3,while excessive moderating may lead to the failure of control rods.The control rod with small-sized pins processes an enhanced safety performance and saves the investment in absorbers.The rod worth can be further enhanced by introducing small moderator pins,and the reactivity loss caused by the reduction of absorbers is sustainable.