In this study,we analyze spring precipitation from 92 meteorological stations spanning between 1961 and 2012 to understand temporal-spatial variability and change of spring precipitation over Southwest China.Various a...In this study,we analyze spring precipitation from 92 meteorological stations spanning between 1961 and 2012 to understand temporal-spatial variability and change of spring precipitation over Southwest China.Various analysis methods are used for different purposes,including empirical orthogonal function(EOF) analysis and rotated EOF(REOF) for analyzing spatial structure change of precipitation anomaly,and the Mann-Kendall testing method to determine whether there were abrupt changes during the analyzed time span.We find that the first spatial mode of the precipitation has a domain uniform structure;the second is dominated by a spatial dipole;and the third contains five variability centers.The 2000 s is the decade with the largest amount of precipitation while the 1990 s is the decade with the smallest amount of precipitation.The year-to-year difference of that region is large:the amount of the largest precipitation year doubles that of the smallest precipitation year.We also find that spring precipitation in Southwest China experienced a few abrupt changes:a sudden increase at 1966,a sudden decrease at 1979,and a sudden increase at 1995.We speculate that the spring precipitation will increase gradually in the next two decades.展开更多
Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are st...Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.展开更多
Vegetation greenness is a key indicator of terrestrial vegetation activity. To under- stand the variation in vegetation activity in spring across eastern China (EC), we analysed the variation in the Normalised Diffe...Vegetation greenness is a key indicator of terrestrial vegetation activity. To under- stand the variation in vegetation activity in spring across eastern China (EC), we analysed the variation in the Normalised Difference Vegetation Index (NDVI) from April to May during 1982-2006. The regional mean NDVI across EC increased at the rate of 0.02/10yr (P=0.28; p=0.024) prior to 1998; the increase ceased, and the NDVI dropped to a low level thereafter. However, the processes of variation in the NDVI were different from one region to another. In the North China Plain, a cultivated area, the NDVI increased (0.03/10yr; f2=0.52; p〈0.001) from 1982 to 2006. In contrast, the NDVI decreased (-0.02/10yr; P=0.24; p=0.014) consecu- tively from 1982 to 2006 in the Yangtze River and Pearl River deltas, two regions of rapid urbanisation. In the eastern region of the Inner Mongolian Plateau and the lower reaches of the Yangtze River in East China, the NDVI increased prior to 1998 and decreased thereafter. In the Hulun Buir area and the southern part of the Yangtze River Basin, the NDVI increased prior to 1998 and remained static thereafter. The NDVI in the grasslands and croplands in the semi-humid and semi-arid areas showed a significant positive correlation with precipitation, while the NDVI in the woodlands in the humid to semi-humid areas showed a significant positive correlation with temperature. As much as 60% of the variation in the NDVI was explained by either precipitation or temperature.展开更多
The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research...The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research aims to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. The validity of recent speculations that the onset and termination of spring have changed in recent decades with global change is also examined. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are also isolated and assessed across the period of record to identify important changes in the season’s initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Prior to 1975, more polar air masses are detected while after 1975 more moderate and tropical types are identified. Late spring is characterized by increased variability in all moist air mass frequencies. These findings indicate that, from a synoptic perspective, the season is dry through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the season represents more variable day-to-day air mass conditions in modern times than detected in past decades.展开更多
This study investigates the spatial-temporal variability of winter-spring (February-March-April) precipitation (WSP) in Pakistan over the period of 1961-2006 by making use of Empirical Orthogonal Function (EOF). The E...This study investigates the spatial-temporal variability of winter-spring (February-March-April) precipitation (WSP) in Pakistan over the period of 1961-2006 by making use of Empirical Orthogonal Function (EOF). The EOF analysis is based on ground observed data, reanalysis NCEP/NCAR of various geopotential heights and NOAA extended reconstructed sea surface temperatures (ERSST.v3). The significant modes are obviously variable at interannual time scale. The leading mode shows the node of maximum spatial variability anchored over the Peshawar Valley and Azad Kashmir (PVAK) axis. The pattern is associated with strong (weak) westerly jet over the Middle East. The pattern is also found closely associated with post monsoon and early winter El Nino. The Nino4 index can be an appropriate predictor for the first consistent single node pattern. The second significant mode represents a tripole pattern with areas of prominent variability over northwestern Pakistan, Quetta-Kalat region and northeastern Punjab. The pattern is found to be pro-NAO and in relation to this pattern, warm and stable SST anomalies appearing in the southern mid-latitudes of Indian and Atlantic basins.展开更多
Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some as...Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some aspects of the 4D-LSM on solving problems in geomechanics are investigated, such as the ability to reproduce elastic properties of geomaterials, the capability of solving heterogeneous problems,the accuracy on modelling stress wave propagation, the ability to solve dynamic fracturing and the parallel computational efficiency. Our results indicate that the 4D-LSM is promising to deal with problems in geomechanics.展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CB430200(2013CB430206))the Sixth Program Ten Talented People of the Meteorological Bureau of Gansu Province,China
文摘In this study,we analyze spring precipitation from 92 meteorological stations spanning between 1961 and 2012 to understand temporal-spatial variability and change of spring precipitation over Southwest China.Various analysis methods are used for different purposes,including empirical orthogonal function(EOF) analysis and rotated EOF(REOF) for analyzing spatial structure change of precipitation anomaly,and the Mann-Kendall testing method to determine whether there were abrupt changes during the analyzed time span.We find that the first spatial mode of the precipitation has a domain uniform structure;the second is dominated by a spatial dipole;and the third contains five variability centers.The 2000 s is the decade with the largest amount of precipitation while the 1990 s is the decade with the smallest amount of precipitation.The year-to-year difference of that region is large:the amount of the largest precipitation year doubles that of the smallest precipitation year.We also find that spring precipitation in Southwest China experienced a few abrupt changes:a sudden increase at 1966,a sudden decrease at 1979,and a sudden increase at 1995.We speculate that the spring precipitation will increase gradually in the next two decades.
基金Foundation: National Natural Science Foundation of China, No.41171328, No.41201184, No.41101537 National Basic Program of China, No.2010CB951502
文摘Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.
基金China Global Change Research Program, No.2010CB951801 No.2010CB950903+1 种基金National Natural Science Foundation of China, No.41001122 No.41030101
文摘Vegetation greenness is a key indicator of terrestrial vegetation activity. To under- stand the variation in vegetation activity in spring across eastern China (EC), we analysed the variation in the Normalised Difference Vegetation Index (NDVI) from April to May during 1982-2006. The regional mean NDVI across EC increased at the rate of 0.02/10yr (P=0.28; p=0.024) prior to 1998; the increase ceased, and the NDVI dropped to a low level thereafter. However, the processes of variation in the NDVI were different from one region to another. In the North China Plain, a cultivated area, the NDVI increased (0.03/10yr; f2=0.52; p〈0.001) from 1982 to 2006. In contrast, the NDVI decreased (-0.02/10yr; P=0.24; p=0.014) consecu- tively from 1982 to 2006 in the Yangtze River and Pearl River deltas, two regions of rapid urbanisation. In the eastern region of the Inner Mongolian Plateau and the lower reaches of the Yangtze River in East China, the NDVI increased prior to 1998 and decreased thereafter. In the Hulun Buir area and the southern part of the Yangtze River Basin, the NDVI increased prior to 1998 and remained static thereafter. The NDVI in the grasslands and croplands in the semi-humid and semi-arid areas showed a significant positive correlation with precipitation, while the NDVI in the woodlands in the humid to semi-humid areas showed a significant positive correlation with temperature. As much as 60% of the variation in the NDVI was explained by either precipitation or temperature.
文摘The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research aims to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. The validity of recent speculations that the onset and termination of spring have changed in recent decades with global change is also examined. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are also isolated and assessed across the period of record to identify important changes in the season’s initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Prior to 1975, more polar air masses are detected while after 1975 more moderate and tropical types are identified. Late spring is characterized by increased variability in all moist air mass frequencies. These findings indicate that, from a synoptic perspective, the season is dry through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the season represents more variable day-to-day air mass conditions in modern times than detected in past decades.
文摘This study investigates the spatial-temporal variability of winter-spring (February-March-April) precipitation (WSP) in Pakistan over the period of 1961-2006 by making use of Empirical Orthogonal Function (EOF). The EOF analysis is based on ground observed data, reanalysis NCEP/NCAR of various geopotential heights and NOAA extended reconstructed sea surface temperatures (ERSST.v3). The significant modes are obviously variable at interannual time scale. The leading mode shows the node of maximum spatial variability anchored over the Peshawar Valley and Azad Kashmir (PVAK) axis. The pattern is associated with strong (weak) westerly jet over the Middle East. The pattern is also found closely associated with post monsoon and early winter El Nino. The Nino4 index can be an appropriate predictor for the first consistent single node pattern. The second significant mode represents a tripole pattern with areas of prominent variability over northwestern Pakistan, Quetta-Kalat region and northeastern Punjab. The pattern is found to be pro-NAO and in relation to this pattern, warm and stable SST anomalies appearing in the southern mid-latitudes of Indian and Atlantic basins.
基金financially supported by the National Natural Science Foundation of China (Grant No. 1177020290)
文摘Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some aspects of the 4D-LSM on solving problems in geomechanics are investigated, such as the ability to reproduce elastic properties of geomaterials, the capability of solving heterogeneous problems,the accuracy on modelling stress wave propagation, the ability to solve dynamic fracturing and the parallel computational efficiency. Our results indicate that the 4D-LSM is promising to deal with problems in geomechanics.