Cell migration plays a significant role in physiological and pathological processes.Understanding the characteristics of cell movement is crucial for comprehending biological processes such as cell functionality,cell ...Cell migration plays a significant role in physiological and pathological processes.Understanding the characteristics of cell movement is crucial for comprehending biological processes such as cell functionality,cell migration,and cell–cell interactions.One of the fundamental characteristics of cell movement is the specific distribution of cell speed,containing valuable information that still requires comprehensive understanding.This article investigates the distribution of mean velocities along cell trajectories,with a focus on optimizing the efficiency of cell food search in the context of the entire colony.We confirm that the specific velocity distribution in the experiments corresponds to an optimal search efficiency when spatial weighting is considered.The simulation results indicate that the distribution of average velocity does not align with the optimal search efficiency when employing average spatial weighting.However,when considering the distribution of central spatial weighting,the specific velocity distribution in the experiment is shown to correspond to the optimal search efficiency.Our simulations reveal that for any given distribution of average velocity,a specific central spatial weighting can be identified among the possible central spatial weighting that aligns with the optimal search strategy.Additionally,our work presents a method for determining the spatial weights embedded in the velocity distribution of cell movement.Our results have provided new avenues for further investigation of significant topics,such as relationship between cell behavior and environmental conditions throughout their evolutionary history,and how cells achieve collective cooperation through cell-cell communication.展开更多
Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spatial straightness error using Geometric Approximation Searching Algorithm (GASA). According to t...Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spatial straightness error using Geometric Approximation Searching Algorithm (GASA). According to the minimum condition principle of form error evaluation, the mathematic model and optimization objective of the GASA are given. The algorithm avoids the optimization and linearization, and can be fulfilled in three steps. First construct two parallel quadrates based on the preset two reference points of the spatial line respectively;second construct centerlines by connecting one quadrate each vertices to another quadrate each vertices;after that, calculate the distances between measured points and the constructed centerlines. The minimum zone straightness error is obtained by repeating comparing and reconstructing quadrates. The principle and steps of the algorithm to evaluate spatial straightness error is described in detail, and the mathematical formula and program flowchart are given also. Results show that this algorithm can evaluate spatial straightness error more effectively and exactly.展开更多
The combined optimization problem of resource production and allocation is considered. The spatial character of the problem is emphasized and cellular modeling is introduced. First a new enhanced harmony search algori...The combined optimization problem of resource production and allocation is considered. The spatial character of the problem is emphasized and cellular modeling is introduced. First a new enhanced harmony search algorithm is applied combined with cellular concepts. Then another new approach is presented involving a cellular automaton combined with harmony search. This second approach renders solutions with greater compactness, a desirable characteristic in spatial optimization. The two algorithms are compared and discussed.展开更多
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris...This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.31971183).
文摘Cell migration plays a significant role in physiological and pathological processes.Understanding the characteristics of cell movement is crucial for comprehending biological processes such as cell functionality,cell migration,and cell–cell interactions.One of the fundamental characteristics of cell movement is the specific distribution of cell speed,containing valuable information that still requires comprehensive understanding.This article investigates the distribution of mean velocities along cell trajectories,with a focus on optimizing the efficiency of cell food search in the context of the entire colony.We confirm that the specific velocity distribution in the experiments corresponds to an optimal search efficiency when spatial weighting is considered.The simulation results indicate that the distribution of average velocity does not align with the optimal search efficiency when employing average spatial weighting.However,when considering the distribution of central spatial weighting,the specific velocity distribution in the experiment is shown to correspond to the optimal search efficiency.Our simulations reveal that for any given distribution of average velocity,a specific central spatial weighting can be identified among the possible central spatial weighting that aligns with the optimal search strategy.Additionally,our work presents a method for determining the spatial weights embedded in the velocity distribution of cell movement.Our results have provided new avenues for further investigation of significant topics,such as relationship between cell behavior and environmental conditions throughout their evolutionary history,and how cells achieve collective cooperation through cell-cell communication.
文摘Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spatial straightness error using Geometric Approximation Searching Algorithm (GASA). According to the minimum condition principle of form error evaluation, the mathematic model and optimization objective of the GASA are given. The algorithm avoids the optimization and linearization, and can be fulfilled in three steps. First construct two parallel quadrates based on the preset two reference points of the spatial line respectively;second construct centerlines by connecting one quadrate each vertices to another quadrate each vertices;after that, calculate the distances between measured points and the constructed centerlines. The minimum zone straightness error is obtained by repeating comparing and reconstructing quadrates. The principle and steps of the algorithm to evaluate spatial straightness error is described in detail, and the mathematical formula and program flowchart are given also. Results show that this algorithm can evaluate spatial straightness error more effectively and exactly.
文摘The combined optimization problem of resource production and allocation is considered. The spatial character of the problem is emphasized and cellular modeling is introduced. First a new enhanced harmony search algorithm is applied combined with cellular concepts. Then another new approach is presented involving a cellular automaton combined with harmony search. This second approach renders solutions with greater compactness, a desirable characteristic in spatial optimization. The two algorithms are compared and discussed.
文摘This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments.