Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation ref...Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P < 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land > grass land > forest land > garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions.展开更多
Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and bloo...Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and blood pressure variability (HRV and BPV) and baroreflex sensitivity (BRS) data. Methods: Firstly, HRV and BPV of 89 healthy aviation personnel were analyzed by the conventional autoregressive (AR) spectral analysis and their spontaneous BRS was obtained by the sequence method. Secondly, principal component analysis was conducted over original and derived indices of HRV, BPV and BRS data and the relevant principal components, PCi orig and PCi deri (i=1, 2, 3,...) were obtained. Finally, the equation for calculating cardiovascular age was obtained by multiple regression with the chronological age being assigned as the dependent variable and the principal components significantly related to age as the regressors. Results: The first four principal components of original indices accounted for over 90% of total variance of the indices, so did the first three principal components of derived indices. So, these seven principal components could reflect the information of cardiovascular autonomic regulation which was embodied in the 17 indices of HRV, BPV and BRS exactly with a minimal loss of information. Of the seven principal components, PC2 orig , PC4 orig and PC2 deri were negatively correlated with the chronological age ( P <0 05), whereas the PC3 orig was positively correlated with the chronological age ( P <0 01). The cardiovascular age thus calculated from the regression equation was significantly correlated with the chronological age among the 89 aviation personnel ( r =0.73, P <0 01). Conclusion: The cardiovascular age calculated based on a multi variate analysis of HRV, BPV and BRS could be regarded as a comprehensive indicator reflecting the age dependency of autonomic regulation of cardiovascular system in healthy aviation personnel.展开更多
This paper presents a Zhejiang Province southeastern China seasonal temperature model based on GIS techniques. Terrain variables derived from the 1 km resolution DEM are used as predictors of seasonal temperature, usi...This paper presents a Zhejiang Province southeastern China seasonal temperature model based on GIS techniques. Terrain variables derived from the 1 km resolution DEM are used as predictors of seasonal temperature, using a regression-based approach. Variables used for modelling include: longitude, latitude, elevation, distance from the nearest coast, direction to the nearest coast, slope, aspect, and the ratio of land to sea within given radii. Seasonal temperature data, for the observation period 1971 to 2000, were obtained from 59 meteorological stations. Temperature data from 52 meteorological stations were used to construct the regression model. Data from the other 7 stations were retained for model validation. Seasonal temperature surfaces were constructed using the regression equations, and refined by kriging the residuals from the regression model and subtracting the result from the predicted surface. Latitude, elevation and distance from the sea are found to be the most important predictors of local seasonal temperature. Validation determined that regression plus kriging predicts seasonal temperature with a coefficient of determination (R2), between the estimated and observed values, of 0.757 (autumn) and 0.935 (winter). A simple regression model without kriging yields less accurate results in all seasons except for the autumn temperature.展开更多
Evaluating the in situ concrete compressive strength by means of cores cut from hardened concrete is acknowledged as the most ordinary method, however, it is very difficult to predict the compressive strength of concr...Evaluating the in situ concrete compressive strength by means of cores cut from hardened concrete is acknowledged as the most ordinary method, however, it is very difficult to predict the compressive strength of concrete since it is affected by many factors such as different mix designs, methods of mixing, curing conditions, compaction, etc. In this paper, considering the experimental results, three different models of multiple linear regression model (MLR), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) are established, trained, and tested within the Matlab programming environment for predicting the 28 days compressive strength of concrete with 173 different mix designs. Finally, these three models are compared with each other and resulted in the fact that ANN and ANFIS models enables us to reliably evaluate the compressive strength of concrete with different mix designs, however, multiple linear regression model is not feasible enough in this area because of nonlinear relationship between the concrete mix parameters. Finally, the sensitivity analysis (SA) for two different sets of parameters on the concrete compressive strength prediction are carried out.展开更多
基金Under the auspices of National Science and Technology Support Program of China(No.2014BAC15B03)the West Light Funds of Chinese Academy of Sciences(No.YB201302)
文摘Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P < 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land > grass land > forest land > garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions.
文摘Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and blood pressure variability (HRV and BPV) and baroreflex sensitivity (BRS) data. Methods: Firstly, HRV and BPV of 89 healthy aviation personnel were analyzed by the conventional autoregressive (AR) spectral analysis and their spontaneous BRS was obtained by the sequence method. Secondly, principal component analysis was conducted over original and derived indices of HRV, BPV and BRS data and the relevant principal components, PCi orig and PCi deri (i=1, 2, 3,...) were obtained. Finally, the equation for calculating cardiovascular age was obtained by multiple regression with the chronological age being assigned as the dependent variable and the principal components significantly related to age as the regressors. Results: The first four principal components of original indices accounted for over 90% of total variance of the indices, so did the first three principal components of derived indices. So, these seven principal components could reflect the information of cardiovascular autonomic regulation which was embodied in the 17 indices of HRV, BPV and BRS exactly with a minimal loss of information. Of the seven principal components, PC2 orig , PC4 orig and PC2 deri were negatively correlated with the chronological age ( P <0 05), whereas the PC3 orig was positively correlated with the chronological age ( P <0 01). The cardiovascular age thus calculated from the regression equation was significantly correlated with the chronological age among the 89 aviation personnel ( r =0.73, P <0 01). Conclusion: The cardiovascular age calculated based on a multi variate analysis of HRV, BPV and BRS could be regarded as a comprehensive indicator reflecting the age dependency of autonomic regulation of cardiovascular system in healthy aviation personnel.
基金Project supported by the Natural Science Foundation of ZhejiangProvince (No. 30295) and the Key Project of Zhejiang Province (No.011103192), China
文摘This paper presents a Zhejiang Province southeastern China seasonal temperature model based on GIS techniques. Terrain variables derived from the 1 km resolution DEM are used as predictors of seasonal temperature, using a regression-based approach. Variables used for modelling include: longitude, latitude, elevation, distance from the nearest coast, direction to the nearest coast, slope, aspect, and the ratio of land to sea within given radii. Seasonal temperature data, for the observation period 1971 to 2000, were obtained from 59 meteorological stations. Temperature data from 52 meteorological stations were used to construct the regression model. Data from the other 7 stations were retained for model validation. Seasonal temperature surfaces were constructed using the regression equations, and refined by kriging the residuals from the regression model and subtracting the result from the predicted surface. Latitude, elevation and distance from the sea are found to be the most important predictors of local seasonal temperature. Validation determined that regression plus kriging predicts seasonal temperature with a coefficient of determination (R2), between the estimated and observed values, of 0.757 (autumn) and 0.935 (winter). A simple regression model without kriging yields less accurate results in all seasons except for the autumn temperature.
文摘Evaluating the in situ concrete compressive strength by means of cores cut from hardened concrete is acknowledged as the most ordinary method, however, it is very difficult to predict the compressive strength of concrete since it is affected by many factors such as different mix designs, methods of mixing, curing conditions, compaction, etc. In this paper, considering the experimental results, three different models of multiple linear regression model (MLR), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) are established, trained, and tested within the Matlab programming environment for predicting the 28 days compressive strength of concrete with 173 different mix designs. Finally, these three models are compared with each other and resulted in the fact that ANN and ANFIS models enables us to reliably evaluate the compressive strength of concrete with different mix designs, however, multiple linear regression model is not feasible enough in this area because of nonlinear relationship between the concrete mix parameters. Finally, the sensitivity analysis (SA) for two different sets of parameters on the concrete compressive strength prediction are carried out.